TAREA COMPLEMENTOS DE EDP, 2010/1

Profs. Juan Dávila, Manuel del Pino

(1) Consider the energy functional, defined for functions $u \in H^{1}(\mathbb{R})$,

$$
J_{\varepsilon}(u)=\int_{\mathbb{R}}\left[\varepsilon^{2} \frac{\left|u^{\prime}\right|^{2}}{2}+\frac{u^{2}}{2}-\frac{u^{4}}{4}\right] a(x) d x
$$

where $a(x)$ is a positive smooth function, with bounded derivatives, and with $\inf _{\mathbb{R}} a>0$.
(i) (1 point). Prove that a critical point u of J_{ε} in $H^{1}(\mathbb{R})$ is a classical solution of the problem

$$
\begin{equation*}
\varepsilon^{2}\left[a(x) u^{\prime}\right]^{\prime}+a(x)\left[u^{3}-u\right]=0, \quad u(\pm \infty)=0 \tag{0.1}
\end{equation*}
$$

Let

$$
w(t)=\frac{\sqrt{2}}{\cosh t}
$$

which we observe it solves

$$
w^{\prime \prime}-w+w^{3}=0, \quad w>0, \quad w(\pm \infty)=0
$$

(ii) (5 points) Prove the following result (essentially due to Floer and Weinstein, 1986):

Let $\bar{x} \in \mathbb{R}$ be a point such that $a^{\prime}(\bar{x})=0$ and $a^{\prime \prime}(\bar{x}) \neq 0$. Then there exists a "spike solution of Problem (0.1) concentrating near $\bar{x} "$, namely a positive solution u_{ε} such that

$$
u_{\varepsilon}(x)=w\left(\frac{x-\bar{x}}{\varepsilon}\right)+\theta_{\varepsilon}(x)
$$

where $\theta_{\varepsilon} \rightarrow 0$ uniformly on \mathbb{R} as $\varepsilon \rightarrow 0$.
Hint: In Equation (0.1) write the equation in terms of $v_{\varepsilon}(t):=u_{\varepsilon}(\bar{x}+\varepsilon(t+h))$ for a given $h \in \mathbb{R}$. Then look for a solution of the form

$$
v_{\varepsilon}(t)=w(t)+\phi(t)
$$

for a small function ϕ. You will need to solve a linear problem of the form

$$
\psi^{\prime \prime}+\left(3 w^{2}(t)-1\right) \psi=g(t)-c w^{\prime}(t), \quad c:=\frac{\int_{-\infty}^{\infty} g(t) w^{\prime}(t) d t}{\int_{-\infty}^{\infty} w^{\prime}(t)^{2} d t}
$$

Show that if $g \in L^{\infty}(\mathbb{R})$ this problem has a unique solution $\psi=T(g) \in$ $L^{\infty}(\mathbb{R})$ with $\psi^{\prime}(0)=0$. Moreover, we have

$$
\|T(g)\|_{L^{\infty}(\mathbb{R})} \leq C\|g\|_{L^{\infty}(\mathbb{R})}
$$

a) Consider the equation

$$
\begin{gathered}
-\Delta u=\lambda e^{u} \quad \text { in } B_{1} \\
u=0 \quad \text { on } \partial B_{1}
\end{gathered}
$$

where $\lambda>0$ and B_{1} is the unit ball in $\mathbb{R}^{N}, N \geq 3$.
Show that there exists a radial singular solution u_{s} associated to the parameter $\lambda_{s}=2(N-2)$. We assume now that $3 \leq N \leq 9$. Prove that for $\lambda=\lambda_{s}$ there are infinitely many solutions, and that the number of solutions tends to infinity as $\lambda \rightarrow \lambda_{s}$. Show also that $\lambda_{s}<\lambda^{*}$ and u^{*} is bounded, where λ^{*} is the extremal parameter (for existence of a bounded solution), and $u^{*}=\lim _{\lambda \rightarrow \lambda^{*}} u_{\lambda}$, where u_{λ} is the minimal solution.

Prove also that if $\lambda_{k} \rightarrow \lambda_{s}$ and u_{k} is a solution with parameter λ_{k} such that $\sup _{B_{1}} u_{k} \rightarrow \infty$ as $k \rightarrow \infty$, then the Morse index of u_{k} tends to infinity as $k \rightarrow \infty$.
b) Prove that if $3 \leq N \leq 9$ there are no stable solutions of

$$
-\Delta u=e^{u} \quad \text { in } \mathbb{R}^{N}
$$

that are bounded above.
For a), let $v(t)=u(r), r=e^{t}$, and find the equation satisfied by v. Then let

$$
v_{1}(t)=\frac{\lambda}{2(N-2)} e^{v(t)+2 t}, \quad v_{2}(t)=v^{\prime}(t)
$$

Find the system of ODE satisfied by v_{1}, v_{2}. Show that there are 2 stationay points (assume always $N \geq 3$), the origin and $P \neq 0$.

Show that the smooth radial solution to the problem

$$
-\Delta U=2(N-2) e^{U} \quad \text { in } \mathbb{R}^{N}
$$

gives rise to a solution of the system for v_{1}, v_{2}, that is a heteroclinic connection from 0 to P. For this it is useful to consider another change of variable: $w(t)=v(t)+2 t$. Then find the ODE satisfied by w and show that along trajectories the following energy decreases

$$
E(t)=\frac{1}{2} w^{\prime}(t)^{2}+2(N-2)\left(e^{w(t)}-1\right)
$$

Find the linearization around P and show that if $3 \leq N \leq 9$ then the eigenvalues of this linearization have nonzero imaginary part. Deduce the statements about multiplicity.

To establish that the Morse of u_{k} tends to infinity as $k \rightarrow \infty$ (in the unit ball and $3 \leq N \leq 9$), show that the number of intersections of u_{k} with the singular solution tends to infinity as $k \rightarrow \infty$. Use the difference $u_{s}-u_{k}$ restricted to appropriate intervals as test-functions for which the quadratic form associated to stability is negative.

For b), use $e^{\alpha u} \eta^{2}$ as a test function in the equation where $\eta \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ and $\alpha>0$. Then use a similar test function in the stability condition of u. For $\beta>0$ in an appropriate range you will be able to deduce the behavior of $\int_{B_{R}(0)} e^{\beta u}$ as $R \rightarrow \infty$.

