MA57I Tópicos en Análisis Convexo II. Semestre 2010-01

Profesor: Rafael Correa y Abderrahim Hantoute Auxiliares: Cristopher Hermosilla y Emilio Vilches

Auxiliar 7

Miércoles 12 de Mayo de 2010

P1. Valor propio máximo.

Denotemos por \mathbb{S}^n (resp. \mathbb{S}^n_+) el conjunto de matrices simétricas de orden n (resp. simétricas semi-definidas positivas). Dotamos a \mathbb{S}^n con el producto escalar $\langle A, B \rangle = \text{tr} AB$. Considere $\lambda_{\text{máx}} \colon \mathbb{S}^n \to \mathbb{R}$ la aplicación valor propio máximo.

- a) Demuestre que la función $\lambda_{\text{máx}}$ es una función convexa. Indicación: Pruebe que $\lambda_{\text{máx}}(A) = \sup_{\|v\|=1} v^{\top} Av$.
- b) Demuestre que la conjugada de $\lambda_{\text{máx}}$ está dada por

$$\lambda_{\text{máx}}^*(A^*) = \begin{cases} 0 & \text{si } A^* \in \mathbb{S}_+^n \text{ y } \text{tr} A^* = 1\\ +\infty & \text{en caso contrario.} \end{cases}$$

c) Demuestre que el subdiferencial de $\lambda_{\text{máx}}$ está dado por

$$\partial \lambda_{\max}(A) = \operatorname{co}\{vv^{\top} : ||v||_2 = 1, Av = \lambda_{\max}(A)v\}$$

- d) Demuestre que
 - 1) $\lambda_{\text{máx}}(\cdot)$ es diferenciable en A si $\lambda_{\text{máx}}(A)$ es simple, y que en este caso $\nabla \lambda_{\text{máx}}(A) = vv^{\top}$, donde $\pm v$ son los únicos vectores propios unitarios correspondientes al valor propio máximo.
 - 2) $\partial \lambda_{\text{máx}}(0) = \{ S \in \mathbb{S}^n_+ : \text{tr} S = 1 \}.$
 - 3) La derivada direccional de λ_{\max} en $A\in\mathbb{S}^n$ sobre la dirección $D\in\mathbb{S}^n$ es

$$\lambda'_{\text{máx}}(A; D) = \lambda_{\text{máx}}(V^{\top}DV),$$

donde V es una matriz cuyas columnas forman una base ortonormal del espacio propio asociado a $\lambda_{\max}(A)$.