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where x(¢) is the fish stock level at time ¢, h() is the harvesting
(tipically h(7) = u(t)x(z) with u(z) the fishing effort) and F is the
species biological growth function.

F is usually assumed strictly concave and twice continuously diff.
It is also assumed the existence of a saturation constant K > 0
satisfying F(0) = F(K) = 0 and F(x) > 0 for all x €]0, K[.

For instance, Logistic function:
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We focus on sustainable equilibrium representing exploitation
Introduction Strategies:

0=F(x*) — h*

So, we are interested in choosing x* so that the benefit
(harvesting) is the largest possible. This leads to chose:

x* maximizing F  (that is F'(x*) = 0)

The respective h* = F(x*) is called the maximum sustainable
harvesting (or yield).
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Itroduction Additionally, we assume the following:
@ Harvesting function / is proportional to the fishing effort u(r)
and to the biomass x(t), that is, a(7) = u(t)x(z).
@ We assume the sole owner is price taking, i.e. the price per
unit of biomass p is constant (and known) over time.
@ There are no costs; there is no rate of discount.

@ There are no storage possibilities. Current sales and profits
only depend on current harvesting.

@ The price and all constants are known with certainty.

@ The fishery is exploited in a given (fixed) period of time 7,
and initially it was not exploited.
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subject to:

where

U :={u:1[0,T] — [0, umax] medible, continua por pedazos, etc.}
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The analysis focus on the next optimal harvest policy problem:

The Gordon- o0
Schacfer max / e "(pu(t)x(t) — cu(t))dt
Model u() 0

subject to:

(1) = F(x(1) — u(t)x(r)

x(0) = x>0

See Clark 73, Clark & Munro ’75.
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@ We have empiric reasons in order to propose the harvesting
function H(z) = u®(t)x*(t) witha + 8 > 1, a, > 0.

@ The interest in such a model is based on statistics evidence
obtained for pelagic fisheries in Chile (Pefia & Basch 2000).
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Héctor Ramirez competition for the same fishery resource (say a single fish
stock).

@ The harvesting technology is given for each firm by a
Cobb-Douglas function:
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Hi(t) = uf (0x°(1),

where u;(t) is the firm i’s fishing effort (normalized).

@ We propose a differential game that explain the interaction
between different firms exploiting a pelagic fishery and we
study the social planner problems associated.

@ We are interested in the behavior of the solutions of our
problem for small values of (.
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H:”l;::"ez ° Coopergtive harvesting are not feasible because of high
monitoring costs.

@ We assume price taking firms, i.e. the price per unit of
biomass p is constant (and known) over time and
independent of industry harvesting.
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Fish @ Atevery period ¢, each firm i choose its own fishing effort
M,‘(l )

@ There are no fixed costs. Total harvesting cost for i is equal
to cju;, where ¢; is the constant average of fishing effort for
the i firm.

@ There are no storage possibilities. Current sales and profits
only depend on current harvesting.

@ Individual firms behave as intertemporal profit maximizing
agents.
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mex / e~ (pul (1)x° (1) — ciug())dt
e;il- 0
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'Related works Clark 1980, Dockner et al. 1989, Plourde et-al 1989
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Social Planner

We consider N symmetric player, that is, all firms have the same
technology: r; =rand ¢; = ¢, foralli =1, ..., N.

We set u(-) € [0, U] as the control variable for the social planner.

The social planner optimization problem is the following
o0
max N / PO () — cul)dt (Psp)

subject to:

() = F(x(r)) — Nu“(t)x°(r)
x(O) = x>0

Notice that in this case u; = u.
From now on we suppose that o + 5 = 1.
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For 5 €]0,1[ small enough, system (PP) obtained from
Pontryaguin’s Principle is the following:

%(1) = B1(x, A, B) = F(x) — N¢! P (\)x
A(t) = ®2(x, A, B) = A(r — F'(x) — BN@'P(N)(p — M);

Optimal x(O) = X0,
solutions
(PP)
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0 fAzp
u(x, A) = (=Be=0)2 ;3 <p

@[

c

Optimal
solutions

| \

Proposicion

IfF'(0) €]r,N((1 — ﬁ)p/c)%[ then the Pontryaguin system (PP)

has only one steady state (x*, \*), which belongs to %, K[x]Ag, p,

where
B

FE=r  ds=p-g5%(52)"".
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Héctor Ramirez The Steady state (x*’ )\*) Satisﬁes the fOllOWlng relal‘ions.‘

@ They are continuously differentiable functions of (3.
(x* :]0, 1[—]x, +00[ and X\* :]0, 1[—]0, p|)

° x*(8) — x when 3 — 0.

@ \(B8) — p—cwhen 3 — 0.

Optimal
solutions

Moreover, for 3 small enough, we have:

° % > 0, i.e. x*(3) | when 3 |.
° ln( (X))+1>01mplles <0, i.e. \*(B) | when 3 |.

oln(F

e

=
=
Nai2

) + 1 < 0 implies % W >0, i.e. \*(B) | when 3 |.

.

v
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Pesqueros We need to impose condition F’(0) > r to ensure that the
Héctor Ramirez stationary solution x*(/3) will be strictly positive.

@ Otherwise, it would be optimal to fully deplete the resource x
and thereby being able to invest the obtained harvesting
profits at the market return » > 0.

@ From the above theorem, relation \*(/3) T p —c when 3 | 0

Optimal (i.e. In (F(x)) + 1 > 0) is the solution which is consistent

solutions

with economic intuition.

@ This implies, on the one hand, an upper bound on the number
of firms N, for given values of F and r,

@ and, on the other hand, a lower bound on the discount rate r
(its upper bound is given by the condition F'(0) > r), for
given values of N and F.
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@ We have studied a Cobb-Douglas type harvest function based
on empirical works in fishery management.

@ The case a, 8 > 0 and o + 8 = 1 has been analyzed.

@ In particular, we have established the behavior of the
stationary couple of the Pontryaguin system when 3 — 0.

s @ The possibility of approaching a fishing collapse outcome

has been studied via the phase diagram analysis of the

Pontryaguin system.
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o It is interesting to study the case when & > 1 and 3 > 0.

e To study the Nash equilibriums of our model?.

o To study the sensitivity of these Nash equilibriums with
respect to changes in the parameters « and (3.

@ An interesting but complex goal is the study Stackelberg’s
equilibriums and their dependence on (.

Conclusions

Related work Clark 1980
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