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Abstract

This paper presents a hypothesis allowing us to explain the coexistence of several species (here micro-organisms) in competiti
on a single resource (called a substrate) in a chemostat. We introduce a new class of kinetics that does not only depend on t
substrate concentration in the medium, but also on the biomass concentration. From the study of elementary infig tzetiiveen(
micro-organisms,i{) between micro-organisms and their environment in which they grow and from simulations, we show that this
modelling approach can be interpreted in terms of substrate diffusion phenomena. A rigorous study of this new class of model
allows us to hypothesize that abiotic parameters can explain the fact that an arbitrarily large number of species can coexist in tt
presence of a unique substrafe.citethisarticle: C. Lobry, J. Harmand, C. R. Biologies 329 (2006).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Cet article présente une hypothése permettant d’expliquer la coexistence de plusieurs especes (ici des micro-organismes)
compétition sur une seule ressource (substrat) dans un chémostat. Nous introduisons une nouvelle classe de cinétiques qui ne
pendent pas seulement de la concentration en substrat du milieu, mais également des concentrations en microorganismes. A p:
de considérations relatives aux interactions élémentaiy@&nire microorganismesij) entre microorganismes et le milieu dans
lequel ils croissent, et en utilisant des simulations, nous montrons que cette modélisation peut étre interprétée comme une limit
tion diffusionnelle. L'étude rigoureuse de cette nouvelle classe de modeéles nous permet d’avancer I'’hypothése selon laquelle ¢
phénomeénes abiotiques seraient a I'origine du maintien d’une grande diversité (nombre d’espéeces arbitrairement large) en présel
d’un seul substraPour citer cet article: C. Lobry, J. Harmand, C. R. Biologies 329 (2006).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

* Corresponding author. Since the pioneering work of Monod, Novick and
E-mail address: harmand@ensam.inra(fi. Harmand). Szilard [1,2], continuous cultures of micro-organisms
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in the chemostat became a very popular way to study
the growth of populations of micro-organisms. The ba-
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which is impossible with botlx; and X3 different from
0 because, in the general case, we cannot solve two

sic assumption about the chemostat — an assumption thaequations with only one unknown.

is questioned in this paper —is that it is perfectly stirred,

This is easily generalized to more than one popula-

and, as a consequence, that each individual has an equaion and one substrate. In fact, in the chemostat model,

access to the nutrients. Under this assumption, the ba-

sic mathematical model for the growth of one species of
micro-organism on a single substraités given by the
following set of two differential equations:

S(1) = &(Sin— S1)) — LS X (1)
X(1) = (1(S@) = §)X (1)

whereS(¢) represents the concentration of the nutrient
(or substrate) at time, Sj, is the concentration of nu-
trient in the input flow,X (¢) is the concentration of the
biomass at time, d is the flow rate and/ the volume

of the reactor. The nonlinear functign(S) represents
the growth rate of the population aritlis a constant
(yield coefficient). The two constantd andY can be
taken equal to 1 by a suitable choice of units and thus
the model is reduced to:

{ $(t) = d(Sin = S@) = p(SOX (@) @
X(@)=(u(S@) —d)X (1)

Despite its nonlinear character, the mathematical theory
of this system is very simple. It was done by Spif3dr

in the 1950s and can be found in many textbooks. The
recent monograph of Smith and Waltmpt] gives a
fairly large treatment of many mathematical questions
related to the chemostat. In particular, at equilibrium,
the concentrations of substrate and biomaS§s, X*),

are given by the following system of two equations:

0=d(Sin — §*) — u(SHX*

{0=(M(S*) —d)X*

from which we can deduce that eith€f = 0, in which
case the chemostat is said to be ‘washed out’, either
u(s*) =d.

Now, consider the chemostat model with two com-
petitors for the same substrate which is written below:

=d(Sin — S()) — na(S(1) X1(1)
—12(S (1)) X2(0)

O = (ua(S(1) — ) X1(1)

B0 = (ua(S(1)) — d) Xa(1)

@

ds()

dr

®3)

it turns out that coexistence @f species is not possi-
ble if the number of nutrients is strictly smaller than

If this theoretical prediction has been corroborated by
the experiences of Hansen and Huljh where two
species competing for one nutrient grow in a chemostat,
there are many examples of continuous cultures where
a large number of species are competing for compara-
tively few substrates and where no species seems to be
eliminated. In aquatic ecosystems, for instance, only a
few resources are potentially limiting (it is recognized
that this number is around 10), while dozens of phyto-
plankton species coexist. This has led to the well-known
‘paradox of the plankton’ (cf[6]) and has generated

a great amount of literature trying to find an explana-
tion to this paradox. Other examples of this paradox can
be observed in continuous well-mixed wastewater treat-
ment plants where very complex ecosystems involving
hundreds of species seem not to be simplified over the
time in the presence of a small number of limiting sub-
strates (cf[7]). Different possible explanations of this
persistence have been advanced.

Obviously, the first seminal observation can be at-
tributed to Armstrong and McGehee, who claimed that
‘coexistence’ is not synonymous of ‘coexistence at
equilibrium’ and proposed examples of model ecosys-
tems with coexistence of two species via self-sustained
oscillations (cf.[8,9]). This work can be considered
as the starting point of many mathematical investiga-
tions about the existence of self-sustained oscillations
systems (via limit cycles or chaos). A very good sur-

vey about this question has been written by Scheffer et

al.[10]. The question whether these considerations pro-

vide a solution to the ‘paradox of the plankton’, or not is
still a matter of controversy (cf11,12]). However, we

do not discuss further this point since our explanation is
based on a quite different basis.

In this note we propose a possible explanation based
only on physical (abiotic) reasons. We consider a math-
ematical model for the biomass growth in the chemostat
in which the kinetics function does not only depend on

the concentration of substrate but also on the density of

We see immediately on this model that, at equilibrium, the biomass of each species and decrease with it. Using
the coexistence of the two populations is impossible this new model, it is shown that the number of coex-

since, at equilibrium, one must have simultaneously:

(11(S*) —d)X7 =0
(n2(S*) —d)X5 =0

isting species can be arbitrarily large. To support our
proposal, a number of physical evidences are pointed

out in Sectiond, which can be read independently of
the rest of the paper as a motivation of the present work.
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2. A ‘density-dependent’ chemostat model

We consider the following model for competition of
n species for one substrate in a chemostat:

B0 = d(Sin = $1) — oy i (Xa(0), ...,
Xj@®), ..., X (1), S(1))X; (1)
i=1...,n
D = (i (X1(0), .. X (O, X ),
St) —d)Xi(1)
i=1...,n
where the functiong; satisfy the following hypotheses:

4

(H1) wi(X1, ..., X, ..., X, 8) 2 0, wi(X1, ..., Xj,
oL X0, 00 =0, S—)/,Li(Xl,...,Xj,...,Xn,S)
is an increasing function.

(H2) For each and; the mappingX; — pu;(Xg,...,
Xj,...,Xu, S)is decreasing.

The first set of hypotheses expresses that for a given
size of the various populations, the growth rate of each
population increases with the concentration of substrate.

The second set expresses that a competition is exerted*i (X1, ...

by each;j species on thé species: the bigger the con-
centration of thejth species, the smaller the growth rate
of the ith species. In fact, this simply expresses that
there is a competition of all species for the substrate.
Notice that this model complies with the concept of
‘mass conservation’ of the classical chemostat. A gen-
eral mathematical theory of this model is out of the
scope of the present paper and is being currently de-
veloped (cf.[13]). From this theory, it turns out that if
the ‘intra species’ competition is greater than the ‘inter

species’ one, in a sense to be specified, then all species

can coexist. We make it precise in a particular case,
which will be sufficient for our argumentation.
Consider the system:

a” =d(Sin — S(0) — Xig wi(Xi (1), S))X; (1)

i=1...,n o
% = (i (X; (), S5¢) —d)X; (1)

i=1...,n

as@ _

and assume that:

(H3) wi(X;,$) >0, (X;,00=0,5 - u;i(X;, S)isa
increasing function.

(H4) For eachi the mappingX; — u;(X;,S) is de-
creasing and tends to 0 at infinity.

(H5) For everyi, there exists aS; < Si, such that
wi (0, S;) = d. This hypothesis simply expresses
that, in the absence of the other species, none of
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the species is washed out. This is clearly a neces-

sary condition for the coexistence of all species.
(H6) From H4 it follows that for evens € [S;, Sinl,

there exists a uniquk; (S) such thag; (X; (S), S)

=d. DenotingS =maxS;; i =1,...,n}, we as-

sume that the inequalit§ + 3" X;(S) < Sin

holds.

Proposition 1 (cf. proof in [13]). Consider the sys-
tem (5) under assumptions H3—H6. Then, there exists a
unique equilibrium of (5) noted (X7, ..., X}, ..., X},
§*) such that for every i one has X* > 0 and it is glob-
ally asymptotically stable. This means that the system
converges towards this equilibrium whatever the initial
conditions satisfying X; (0) > 0.

Remark. In Proposition 1 only ‘intra species’ com-
petition is taken into account, since the functigns
only depend ory;. Since a system like the one used
in Proposition lis ‘robust’ against a small pertur-
bation, this system is still stable. This means that
Proposition lapplies also for a general growth rates
,Xj,...,Xn, S) provided that assumptions
H3-H6 are valid for the system with;(0,0,...,
Xj,...,0,8) and the differences;(X1,..., X;,...,
X, 8)—w1i(0,0,...,X;,...,0,5) are small enough in
a sense to be specified.

In order to further investigate this model, we per-
formed computer simulations for the specific case of the
model:

BO — d(Sin— S(1) — g g(Xi ()i (ST Xi (1)

WO = (2(X; ()i (S(1)) — d) X; (1) ©
vi($) = 5

g(X) = 1+c1§/Y

i=1...,4

where the particular choice of (X;, S) is motivated
later in &.

The constant parameter values (which define a com-
pletely artificial system) reported ifable 1were used.

Table 1

Parameter values used in the simulations

Index 1 2 3 4
Colour of the trajectory Green Red Blue  Black
(colour version of the article)

a; 0.83 100 120 160

b; 0.20 020 030 040
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The trajectories of the dynamical systé@over 400

time units are plotted ifrig. 1 for ¢ = 0 and inFig. 2
for c =1, whiled = 0.2 andSj, = 1 in all simulations.
We see that species 2 wins the competition when0,
while, for ¢ = 1, there is no winner to the competition.

We also performed simulations when thés do de-

pend on all species, namely with the model:

8O — g4(Sin — S1) — X1 8(Xi (1)
FAY i X (O)vi (SO)Xi (1)
WO _ [g(X: (1) + 2 Y0 X; (D) (S()) — d]

7
x X;(t) )
vi (8) = 725
_ 1
g(X)— 1+C§/Y
i=1,...,4
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where A is a parameter representing the inter-species
competition.

The results are plotted iRigs. 3 and 4with . = 0.1
and A = 0.55 and over periods of 400 and 1000 time
units, respectively. This model highlights some compe-
tition of each species with the others. From the remark
onProposition 1it is expected that, fax small enough,
there will be coexistence. When= 0.1, the coexis-
tence is still a property of the model, but for= 0.55,
it is not longer the case and one species, at least, dis-
appears. It seems to us particularly important to notice
that this remark provides an interesting insight into what
is called the ‘barrier effect’ of ecosystems against in-
vaders.

3. Comparison with other models

Notice that the actual chemostat model with compe-
tition is more specific than the following general com-
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petition model:

|

since the substrate concentration enters explicitly in the
model.

However, thanks to the mass conservation principle,
it is known that the sun$(r) + > _;_; X;(¢) in the sys-
tem(4) tends towardsj, and thanks to the fact that the
system trajectories are bounded, the asymptotic behav-
iour of system(4) can be approximated by the asymp-
totic behaviour of the system:

D — (X1, .., X0, -
Ui 0
ax,'

i=1...,n

» Xn (1) X (1)
(8)

dax;(t)
dr

<u,~ <X1(t), LX), X (),

Sin— Y _Xi (t)) - d) Xi (1)
i=1

i=1...,n

©)

which is a particular case of E(B).

Since it is well known that general competitive sys-
tems like (8) can present any complex behaviour, we
conclude that our result relies definitively on our spe-
cific hypothesis associated to the competition for the
substrate in the chemostat. There are many other mod-
els of competition in the chemostat where coexistence
can be proved, but these models rely on assumptions of

different nature than ours. Some models assume that the

flow rate or the concentration of the incoming substrate
is not constant (cf4] or[14]), while others assume that
the flow rates (assimilated to mortality rates) are differ-
ent for each species. In particular, in a recent pgel;
coexistence was proved from a density-dependence hy-
pothesis, namely for the model:

{ B = d(Sin — S(1)) — Xj_g i (SO X (1)

(10)
O = (i (@) = 1 Xi (1) = d) X (1)
In that paper, it is argued that the term; X;, which ap-

i=1...,n
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models where the micro-organism is the predator and
the substrate is the prey. In such a model, the growth
rate of the predator only depends (through the function
;i (S)) on the concentration of the prey. In many situa-
tions, it has been argued that it should be better to use
a growth function depending not only on the concentra-
tion of prey (resp. substrate), but also on the density of
predators, that is to say a function of the rafjoX:

B0 — d(Sin — S1) — w(SO/ X )X (1)

EO = (u(S@)/ X () — )X (1)

Models of this kind are called ‘ratio dependent’.
They originate from research on theoretical ecology, but
they have been shown to be equivalent to a class of ki-
netics functions used in microbial ecology and known
as the Contois mod¢16]. A ratio-dependent competi-
tion model in the chemostat could be:

% =d(Sin — S())
- Yl mil 8/ Cjeaani X,01Xi0)

WO = (i (S/ "y ai ;X (D) — d]Xi (1)
i=1...,n

(11)

(12)

and it can be shown (but it is out of the scope of this
paper) thaProposition Ican be extended to this model.

4. Accessto substrate asa limiting factor

In the chemostat model, the concentration of sub-
strate is assumed to be the same at each point of the
reactor or, at least, due to the mixing, in average, it is
assumed that each individual has an equal access to the
substrate. This is probably true for low concentrations
of micro-organisms, but it may become questionable at
high concentrations.

Consider the scheme Fig. 5. We have represented a
one-dimensional profile of biomass (in red or dark grey)
and substrate in black. Since the biomass is absorbing
the substrate, if the diffusion is low compared to the rate
of absorption a gradient of concentration is established.
The concentration is low at the centre of the biomass
since the incoming substrate is absorbed by the biomass

pears in the second equation, can be interpreted as a kinc

of extra mortality due to crowding effect. This idea that
‘crowding’ might be at the origin of coexistence will
be developed in4 But this model departs somewhat
from the classical chemostat framework, since it does
not respect the conservation of the mass. Other models
originated from ecology should be considered. In par-
ticular, it should be noted that the chemostat mddg|
with one species is a particular case of predator—prey

Fig. 5. Growth of a species in a 1D scheme.
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Fig. 6. Growth of a species in a 2D scheme.

that is at the boundary. In a stationary mode we see,
on this one-dimensional scheme, that the growth of the

population is not proportional to the total population but .

just on those that are at the two boundaries. The thick-
ness of the layer where the concentration of substrate is
positive does not depend on the size of the colony (if
it is large enough), but only on the diffusion coefficient
of the substrate. This means that, after some transient,
the growth of the colony, instead of being exponential,
is linear.

For a two-dimensional schemEig. 6) the total pop-
ulation (red or dark grey+ yellow or light grey) is
proportional to the radius of the ‘colony’, while the ac-

tive population (the one that has access to the substrate)” .
e pointed out that the same fundamental problems arise

in red (or dark grey) is contained in the corona, whos
thickness only depends on the parameter of diffusion of
the substrate, but not on the size of the population. Since
the surface of the circle is proportional to the square
of the radius and the surface of the corona is propor-
tional to the radius, it turns out that the growth equation
is given by:

dx @) :km

dr (13)

In the case of a three-dimensional scherfig.(7),
using the same argumentation, we obtain a growth equa-

ologies 329 (2006) 40-46 45

dark grey) and yellow (or light grey) stand for the two
species.

These arguments are in favour of the mad@@lwhere
we used a functiog which behaves like

1
T+ cdXi+AY . X;

5. Discussion

For a long time now, ecology and microbiology have
continued to develop independently of each other. Yet
these two scientific fields have in common the same
problems. One of the key processes studied in both
disciplines is the way a microorganism consumes a re-
source. In ecology, this problem is equivalent to study-
ing the functional response of a population, while in
microbiology the question is related to the character-
ization of the growth rate of microorganisms. About
ten years ago, Arditi et al. (cf. for instan¢¥6]) have
pointed out the major role of the density of preys in the
growth rate process of a predator population. In particu-
lar, they have shown that, in a number of cases, itis more
appropriate to model the functional response of a preda-
tor population in incorporating the ratio of the predator
and prey densities instead of considering only a func-
tion of the density of preys in the growth process. As
underlined in a recent paper in which he considers what
ecologists can earn from microbiology, Jost (df7])

in microbial growth processes and that the Contois func-
tion is precisely a ratio-dependent model. In the present
paper, we show that a kinetics function in which both
the substrate and micro-organisms intervene can be seen
as a way to model problems related to the accessibility
of the biomass to its substrate. In particular, while the
ratio-dependence was shown to be very important when
studying a predation process, we show that it seems to
be even more important when put in the light of com-
petition phenomena. Apart from the fact that it could
be a way to model the substrate diffusion, it is particu-
larly useful to explain the coexistence of an arbitrarily

. . ax @@ _ 3 2 H H . X
ggg)llke a k(X (1))*, which can be rewrlFten 85 |arge number of species on a single substrate. However,
0 = ks X0 =gXO)X®) with a functiong at the present time, it should be noticed that “abiotic

that is decreasing witlx. This explains our choice for  conditions due to substrate limitation phenomena are
the simulations. Now, let us assume that we have two at the roots of the coexistence of several species on a
species growing on the same substrate. Due to the factsingle resource” is only a work hypothesis that needs
that each population is growing through cellular divi- additional theoretical studies and conception of experi-
sion, it is likely that the majority of cells of one species mental tests to be validated. Furthermore, it should be
are surrounded by individuals of the same species, asnoticed that we do not claim that coexistence in micro-
we show on the scheme below where colours red (or bial ecosystems through an equilibrium in models with
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Fig. 7. Isolated cells before (top) and after the growth (bottom).
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