Equilibrios para el Quimiostato

Introducción

Control y Optimización de Bioreactores Clase 1

Salomé Martínez¹ <u>Héctor Ramírez C.</u>¹

¹DIM & CMM, Universidad de Chile, Santiago de Chile

Curso MA45C: Ecología Matemática 2010

Planificación

Introducción

2 Modelo Matemático

Estudio de Equilibrios para el Quimiostato

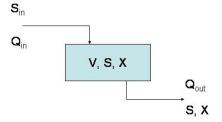
Bioreactores

Bioreactores

Bioreactores

- Los bioreactores son aparatos de laboratorio usado para diversos experimentos con microorganismos.
- Reproducen experimentalmente una amplia variedad de sistemas que van desde lagos hasta plantas de tratamiento de aguas, pasando por numerosas aplicaciones productivas.
- Podemos describirlo (de manera muy general) como un recipiente con una apertura para que el flujo de material estéril entre y una salida para que el flujo resultante del proceso salga (microorganismos, estéril o nutriente, desechos, etc.)

Distintos Tipos de Bioreactores



- Modo Continuo o Quimiostato: Flujos Q_{in} = Q_{out} ≠ 0 y volumen V constante.
- Modo Semi-continuo (o fedbatch): $Q_{in} \neq 0$, $Q_{out} = 0$ y V varía.
- Modo Discontinuo (o batch) : $Q_{in} = 0$, $Q_{out} = 0$ y V constante.
- X y S representan las concentraciones de los microorganismos y del nutriente, respectivamente.
- S_{in} es la concentración del nutriente en el flujo entrante.

Bioreactores Industriales

Bioreactores de Laboratorio

Hipótesis Fundamentales para el Modelo Matemático

- El recipiente del bioreactor está perfectamente mezclado, es decir: el nutriente esta uniformemente distribuido y, en caso de haber más de una especie de microorganismo, estas tienen el mismo acceso al nutriente.
- Así, es razonable pensar que lo que se consume es proporcional a la cantidad de microorganismos, es decir:

consumo =
$$\mu(S)VX$$
, con $\mu(S) \ge 0$, $\mu(0) = 0$.

 El crecimiento de los microorganismos es proporcional a lo que se consume. La constante de proporcionalidad será denotada por Y.
 Esta hipótesis está validada empíricamente.

Modelo Matemático de un Bioreactor

Ecuaciones de balance de masa para XV y SV nos llevan a escribir el modelo de un bioreactor como sigue:

$$\left\{ egin{array}{lll} \dot{s} &=& rac{Q_{in}}{V}(s_{in}-s)-\mu(s)x, \ \dot{x} &=& [Y\mu(s)-rac{Q_{in}}{V}]x, \ \dot{V} &=& Q_{in}-Q_{out}. \end{array}
ight.$$

Aquí $(s, x, Q_{in}, Q_{out}, V) \in \mathcal{D} = \mathbb{R}^2_{++} \times [0, Q_{max}] \times [0, Q_{max}] \times [0, V_{max}], y donde$

- 5) $D = Q_{in}/V$ es la tasa de dilución del bioreactor (horas⁻¹),
- 6) $\mu(\cdot)$ representa la tasa de crecimiento de la especie (horas⁻¹).
- 7) Y es la constante de la producción de la especie (células por microgramos de nutriente).

Modelo Matemático de un Bioreactor

Con los cambios de variable:

$$\overline{s} = \frac{s}{s_{in}}, \quad \overline{x} = \frac{x}{s_{in}Y}, \quad \overline{\mu}(\overline{s}) = Y\mu(s_{in}\overline{s}),$$

el modelo del bioreactor se reescribe como sigue:

$$\begin{cases} \dot{s} = \frac{Q_{in}}{V}(1-s) - \mu(s)x, \\ \dot{x} = [\mu(s) - \frac{Q_{in}}{V}]x, \\ \dot{V} = Q_{in} - Q_{out}. \end{cases}$$

 $\mathsf{Aqui}\ (s,x,\mathit{Q_{in}},\mathit{Q_{out}},\mathit{V}) \in \mathcal{D} = \mathbb{R}^2_{++} \times [0,\mathit{Q_{max}}] \times [0,\mathit{Q_{max}}] \times [0,\mathit{V_{max}}].$

Utilidades de los Distintos Modos

- Modo Continuo o Quimiostato ($Q_{in} = Q_{out}$ y V = constante):
 - + Trata lo que esta llegando en el tiempo t (no se necesita "almacenamiento").
 - Proceso es menos eficiente pues hay menos control sobre la concentración del nutriente.
 - Riesgo de contaminación del proceso.
- Modo Semi-continuo ($Q_{in} \neq 0$, $Q_{out} = 0$ y V varía):
 - + Se puede adaptar el proceso a las necesidades del microorganismo.
 - Proceso es más eficiente.
 - Requiere "almacenamiento".
 - Riesgo de contaminación del proceso.
- Modo Discontinuo ($Q_{in} = 0$, $Q_{out} = 0$ y V constante):
 - Proceso es más eficiente.
 - No hay riesgo de contaminación del proceso.
 - Requiere "almacenamiento".

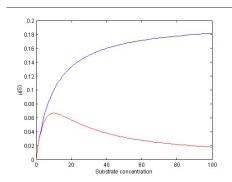
Distintas Funciones para la Tasa de Crecimiento

Consideramos funciones de crecimiento del tipo Monod (1942):

$$\mu(s)=\frac{ms}{a+s}.$$

y del tipo Haldane (1968):

$$\mu(s) = \frac{ms}{s^2/a_1 + s + a_2}.$$



Equilibrios para el Quimiostato

Consideremos el modo continuo o Quimiostato $Q_{in} = Q_{out} = Q$ y V no varía:

$$\left\{ \begin{array}{ll} \dot{s} & = & \frac{Q_{in}}{V}(1-s) - \mu(s)x, \\ \dot{x} & = & [\mu(s) - \frac{Q_{in}}{V}]x, \\ V & \textit{constante}. \end{array} \right.$$

Teorema

Supongamos que μ es C^1 , acotada y satisface

$$\mu(0) = 0$$
 y $\mu(s) > 0$ para todo $s > 0$

Entonces

- El dominio $(x, s) \in \mathbb{R}^2_+$ es invariante.
- Cada trayectoria (x(t), s(t)) es acotada.
- Para los equilibrios x^* y s^* se tiene que $x^* + s^* = s_{in} = 1$.
- Estos equilibrios son: $(x^*, s^*) = (0, s_{in})$ (washout) y $(x^*, s^*) = (s_{in} \lambda, \lambda) =: E$, donde $\mu(\lambda) = D := Q_{in}/V$.

Estabilidad de los Equilibrios para el Quimiostato

Teorema (Caso μ Monod)

- Si μ(s_{in}) < D entonces sólo hay un equilibrio: washout, el cual es asintóticamente estable.
- Si μ(s_{in}) > D entonces entonces hay dos equilibrios: un inestable (washout) y un estable (E).

Teorema (Caso μ Haldane)

- Si μ(s_{max}) < D entonces sólo hay un equilibrio: washout, el cual es asintóticamente estable.
- Si μ(s_{max}) > D ≥ μ(s_{in}) entonces hay tres equilibrios: dos estables y un inestable.
- Si $D < \mu(s_{in})$ entonces hay dos equilibrios: un inestable (washout) y un estable (E), como en el caso Monod.

Bibliografía

A. NOVICK AND L. SZILARD.

Description of the chemostat.

Science 112, pp. 715–716, 1950.

H.L. SMITH AND P. WALTMAN. The Theory of the Chemostat. Cambridge University Press, 1995.