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Abstract: This paper deals with the development and the
parameter identification of an anaerobic digestion pro-
cess model. A two-step (acidogenesis-methanization)
mass-balance model has been considered. The model
incorporates electrochemical equilibria in order to in-
clude the alkalinity, which has to play a central role in the
related monitoring and control strategy of a treatment
plant. The identification is based on a set of dynamical
experiments designed to cover a wide spectrum of op-
erating conditions that are likely to take place in the
practical operation of the plant. A step by step identifi-
cation procedure to estimate the model parameters is
presented. The results of 70 days of experiments in a 1-
m? fermenter are then used to validate the model. ® 2001
John Wiley & Sons, Inc. Biotechnol Bioeng 75: 424-438, 2001.
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INTRODUCTION

The anaerobic wastewater treatment process presents
very interesting advantages compared to the classical
aerobic treatment (Mata-Alvarez et al., 2000; Pavlosta-
this, 1994): It has a high capacity to degrade concentrated
and difficult substrates (plant residues, animal wastes,
food industry wastewater, and so forth), produces very
few sludges, requires little energy, and, in some cases, it
can even recover energy using methane combustion. But
in spite of these advantages, the anaerobic treatment
plants are still very rare at the industrial scale, probably
because they are known to become easily unstable under
some circumstances, such as variations of the process
operating conditions (Fripiat et al., 1984). Nevertheless,
this drawback can be overcome by associating a moni-
toring procedure with a decision support system that
allows enhancement of the stable performance of the
online wastewater treatment operation via a feedback
control loop (Dochain et al., 1991; Perrier and Dochain,
1993; Steyer et al., 1999). Therefore, a reliable dynamic
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model of the process is required for the design of such
monitoring and control algorithms.

The dynamical modeling of anaerobic digestion has
been an active research area during the last three decades.
Andrews (1968) introduced the Haldane model to char-
acterize growth inhibition that can emphasize the process
instability (i.e., the biomass wash-out via the accumula-
tion of acids). A model with a single bacterial population
was then proposed (Graef and Andrews, 1974).

The representation of the process was then improved
by considering three stages: solubilization of organics,
acidogenesis, and methanogenesis (Hill and Barth,
1977). Mosey (1983) introduced a four-population
model with two acidogenesis reactions and two meth-
anization reactions which also emphasizes the role of
hydrogen. These main modeling studies have then been
extended and detailed by other authors in order to get
closer to the complexity of the process (Moletta et al.,
1986; Batstone et al., 1997; Costello et al., 1991a; Cos-
tello et al., 1991b; Fernandes et al., 1993; Kiley et al.,
1997). It results in detailed models of the process which
include several bacterial populations and several sub-
strates. As a result, the number of parameters in these
models can become very large.

As suggested in the above paragraph, there exists a
wide range of models dealing with anaerobic digestion.
However, the models describing with detail all the pro-
cesses responsible for anaerobic digestion are generally
difficult to use for control purposes (Bastin and Do-
chain, 1990). In addition, the question of model identi-
fication and validation is rarely performed in a
sufficiently large range of operating conditions (typi-
cally, loading rates and retention times). Moreover, in
all these models, the considered process is often assumed
to behave like a continuously stirred tank reactor
(CSTR). In practice, the technologies often aim at in-
creasing the contact surface between the biological
phase and the organic matter in order to improve the
process efficiency. As a consequence, the technology



based on fixed or fluidized bed reactors generate a tri-
phasic medium (solid-liquid—gas) where the bacteria are
usually not in the liquid phase anymore. The principles
of CSTR modeling (i.e., liquid homogeneous medium)
may thus not be valid anymore in these reactors.

However, the lack of phenomenological knowledge,
the complexity of the process, its nonlinear nature, and
the lack of sensors explain why most of the existing
models are generally only rough approximations that
have not been validated with a large set of data. In this
context, it is of great interest to derive models that would
be as insensitive as possible to the lack of phenomeno-
logical knowledge. The model based on mass-balance
considerations circumvents this difficulty by locating the
biological lack of knowledge in dedicated terms; namely,
the reaction rates. The use of such models for monitoring
and control design has proved to be effective (Bastin and
Dochain, 1990), because they minimize the number of
assumptions in the model-building exercise.

Let us now recall that a dynamical model can be used
for different purposes. One objective can be the nu-
merical simulation of the process behavior; for example,
for predicting its dynamical behavior or for identifying
and understanding better the major mechanisms driving
its dynamics. Another objective is the design of moni-
toring and control algorithms. The current work has to
be viewed in the latter context. The proposed model has
been developed within the framework of a European
Economic Community project (AMOCO, FAIR pro-
gram) that is aimed at developing a monitoring and
control system for anaerobic digestion processes. The
proposed model is inspired form the model of Graef and
Andrews (1974), but it has been modified to lead to
better (and simpler) structural properties. Moreover, a
second bacterial population has been introduced to
better reproduce the destabilization phase. In this paper,
we present in detail the modeling of the gaseous flow
rates with respect to the biological and chemical species
in the fermenter. This leads to a gaseous flow rate de-
scription that differs from most of the previous models
published in the literature. Moreover, we have consid-
ered a simple model for bacterial attachment. Another
important original aspect of the current work is the
calibration procedure of the model parameters with
experimental data at equilibrium. The experiments used
for model building and identification have been carefully
chosen so as to correspond to a sufficiently wide range of
operating conditions assumed to be possibly encoun-
tered in the practical operation of a treatment plant.
Secondly, as with any systematic identification study,
the model parameter calibration has followed two steps:
parameter identification, then model validation. These
two steps have been performed on different data sets,
and the model performance during transient conditions
is evaluated during the validation step.

The paper is organized as follows. The first section
briefly describes the anaerobic digestion fixed-bed reac-

tor, the measurement devices, and the considered
methods. The modeling assumptions are then intro-
duced in a second section. We simplify the process by
considering two main bacterial populations: X, the
acidogenic bacteria population, and X, the methano-
genic bacteria population. We then give a description of
the basic elements of the model (reaction network,
chemical equilibria, hydrodynamics). From these con-
siderations, a mass-balance-based model consisting of a
set of six differential equations is derived. The equilib-
rium points of this model are studied in the following
section, the main objective being to emphasize the role
played by each parameter. These results are then applied
in another section to calibrate and validate the model
using experimental data produced by a 1-m’ fixed-bed
fermenter located at the LBE-INRA (Narbonne,
France). The parameters of the model are identified on
the basis of a set of steady-state data. The mass-balance
model is then validated in the last section using experi-
mental data from a wide range of operating conditions
covering 3 months of process operation.

MATERIALS AND METHODS
The Influent

The experiments were performed with raw industrial
wine distillery vinasses obtained from local wineries in
the area of Narbonne, France. This substrate, neither
sterile nor homogeneous, is stored in three tanks (27 m?
each) that are connected to the reactor by a piping sys-
tem of about 0.5 m?. The characteristics of the effluent in
those tanks and in the pipes are given in Table I.

The Reactor

The pilot plant is an anaerobic upflow fixed-bed digester.
The reactor is a circular column of 3.5-m height and 0.6-
m diameter. The effective volume of the medium is 0.948
m?>. The support surface equals 135 m? (Cloisonyl: 180

Table I. Characteristics of the industrial wine distellery wastewater.
Component Range
Volatile Fatty Acids (g/L) [5.00-6.00]

% acetic [35-55]

% propionic [15-30]

% butyric [15-35]

% isobutyric [0-1]

% pentanoic [5-15]

% isopentanoic [0-0.1]
Total organic carbon (g/L) [2.50-6.00]
Total COD (g/L) [9.00-17.4]
Soluble COD (g/L) [7.60-16.0]
Total suspended solids (g/L) [2.40-5.00]
Volatile suspended solids (g/L) [1.20-2.70]
Alkalinity (mEq/L) [30.8-62.4]
pH [5.00-5.40]
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Figure 1. Schematic view of the fixed-bed anaerobic digester (LBE-
INRA, Narbonne, France).

m?/m?). The dilution of the influent is performed by
adding water to 20 L of vinasses (measured with the
flowmeter) in a 200-L tank. The feeding tanks are
equipped with level sensors that allows obtaining of a
selected concentration in the influent. The pH is mea-
sured and controlled in the feeding tank. Figure 1 de-
scribes the pilot plant and the measurement devices.

The Online Measurements

The temperature inside the reactor is controlled at 35°C.
The temperature regulation is performed in the recycle
loop via an electric heater using a PID controller. The
influent flow rate is measured by an electromagnetic
sensor (Khrone).

The gas analysis loop (see Fig. 1) consists of a dryer
that eliminates the humidity by cooling the gas. The
Ultramat 22P sensor (Siemens) measures the CO,/CHy4
percentage of the analyzed gas. The gas flowmeter is
located at the output of the loop. It uses an electro-
magnetic floater to continuously measure the produced
gas flow rate.

The Offline Measurements

The samples used to determine the concentrations in the
inlet are taken in the pipe just after the feeding pump.
The samples for the outlet concentrations are taken just
before their rejection to the sewer. The samples are
stored at 4°C. The dissolved part is obtained after cen-
trifugation for 15 min at 15,000 rpm.

Measurement of Total Suspended Solids (TSS)
and Volatile Suspended Solids (VSS)

The residue from centrifugation is put in the steam room
(105°C) in a 30-ml weighted ceramic pot. Twenty-four
hours later, the pot is weighed precisely (TSS measure-

ment, NF T 90-029) and then put in a furnace at 550°C
for 2 h. The pot is weighed again. The difference be-
tween both weights gives the VSS (NF T 90-105-2).

Measurement of the Volatile Fatty Acids (VFA)
Concentration

The VFA are measured with a gas chromatograph (Fi-
sons Instruments GC8000) equipped with an Econocap
FFAP (Alltech) column with a length of 15 m, 1.2 um
film width, 250°C maximum temperature, and regener-
ation at 200°C overnight.

The centrifuged samples are diluted to the external
standard scale and mixed with the same volume of the
internal standard (ethyl 2 butyric acid 1 g/L, acidified to
5% with H3POy,). The programmed method allows the
total separation of the VFA.

Measurement of the Chemical Oxygen Demand
(COD)

The principle of chemical oxygen demand (COD) mea-
surement (NF T 90-101) is the oxidation of the organic
matter by a potassium bichromate excess, in acid media
(H,SO,) at boiling temperature. The oxidant excess is
titrated by a reducing solution of Mohr salt (ammonium
and ferrum sulfate).

Measurement of the Alkalinity

Acid (HCI) is added to the sample in order to reach pH
= 5.75 (the volume titrated corresponds to partial al-
kalinity). Then, acid is added again until the pH reaches
the value of 4.3 and the total added acid volume is the
total alkalinity. The concentration of acetate and bi-
carbonate can be determined from partial and total al-
kalinity (Ripley et al., 1986).

The Experimental Protocol

The experimental protocol has been determined in order
to cover a wide range of organic loading rates and to
obtain situations close to the destabilization of the fer-
menter. This is performed via consecutive step variation
of both the dilution rate and the influent COD. They are
maintained constant for a sufficiently long period of
time in order to reach a steady state. The influent time
evolutions are presented in Fig. 2. Note that some fail-
ures (leaks, pump failures, tube clogging, and so forth)
have slightly disturbed the initial protocol.

MODEL ASSUMPTIONS AND DESCRIPTION
Model Assumptions

The choice of the number of considered bacterial pop-
ulations involved in the anaerobic digestion process is
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Figure 2. Influent profiles during the experiment. The values of COD,
VFA, and pH are extrapolated for any time from offline measure-
ments. The values of the dilution rate result from online measurements.
The time periods used for the parameter identification are represented
with a thick line on the time axis.

directly linked to the model complexity. As one of our
objectives is to obtain a model that would be able to
represent the destabilization phenomenon while being
identifiable, we assume that the bacterial populations
can be divided into two main groups of homogeneous
characteristics, and that the anaerobic digestion can be
described by a two-stage process. In the first step (aci-
dogenesis), the acidogenic bacteria (X;) consume the
organic substrate (S;) and produce CO, and volatile
fatty acids (S,). The population of methanogenic bac-
teria (X,) uses, in a second step, the volatile fatty acids
as substrate for growth, and produce CO, and methane.

On the basis of hydrodynamical tests, we assume that
the reactor behaves like a perfectly mixed tank, and that
the biomass is uniformly distributed within the reactor.

Biological Reaction Pathways

The acidogenic and methanogenic bacteria intervene in
the two following biological reactions:

o Acidogenesis (with reaction rate r; = pX1):

leliqu + k2 Sy + k4 COy (1)

e Methanization (with reaction rate r» = p,X5):

k3 S22 X + ksCO, + ksCHa )

S represents the organic substrate (and its concentra-
tion) characterized by its COD (g/L). The total con-
centration of VFA is denoted S, (mmole/L). In the
sequel, we assume that S,, which is mainly composed of
acetate, propionate, and butyrate, basically behaves like
pure acetate. It is important to note that the total COD
is composed of S} and S,. p; and p, (d7") represent the

specific growth rates of acidogenesis and methanization,
respectively.

Chemical Species

The Inorganic Carbon

Let us consider the chemical reactions involving the
inorganic carbon mainly composed of dissolved CO,,
bicarbonate (B), and carbonate in line with Rozzi
(1984). In normal operating conditions, the pH range is
between 6 to §, and the temperature is between 35 and
38°C. In those conditions, the affinity constant for car-
bonate/bicarbonate (K, = 4.7 x 107" mol/L) indicates
that the carbonate concentration will remain negligible
compared to the bicarbonate. The total inorganic car-
bon C in the considered pH range is then approximately
equal to:

C=CO,+B (3)

and the bicarbonate and dissolved CO, concentrations
are determined by the following chemical reaction (H™
are the protons):

B+H" = CO,+H,0 4)

we denote Ky, the affinity constant of this reaction (K}, =
6.5 x 1077 mol/L):

[H']B

K =
b~ "co,

()

The Volatile Fatty Acids

The total concentration of VFA is composed of ions S~
(mainly acetate) and un-ionized SH (mainly acetic acid):

Sy = [SH] + [$7] (6)
The corresponding affinity constant is equal to:

The numerical value of K, in the considered pH range
(K, = 1.5 x 107> mol/L) shows that [SH] is negligible
and therefore:

S = [S7] (8)

The lon Balance

The total alkalinity Z is defined as the sum of dissoci-
ated acids in the medium:

Z=B+[S7] 9)
From Eq. (8), we have in the considered pH range:
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Remark: This assumption is not valid in the influent
wastewater, where the pH can be very low. We must
therefore compute the influent alkalinity with respect to
the influent bicarbonate (B;,) and VFA (S»;,) as follows:

K
y S2in (11)

“n =Pt g oo

Note also that By, is negligible at low pH.

We assume that all the other anions (of concentration
denoted Z,) that significantly influence the total con-
centration of anions in the medium (i.e., Z + Z,) are
not affected by the anaerobic digestion process. There-
fore, Z, does not vary between the influent wastewater
and the medium in the fermenter: dZy/dt = 0. In the
considered pH range, it is generally the case, because
[OH™], [H,CO5], and [CO%f] are negligible compared to
B and S,, so that Z;, ~ 0. In some particular cases,
chloride can be in high concentrations and significantly
contribute to the total concentration of anions, and then
Zy ~ [CI"]. Our hypothesis then means that the chloride
concentration is not modified in the reactor.

From the electric balance of the charges in the me-
dium, Z + Z, represents also the total concentration of
cations.

The Gases

We assume that the gas outflow is mainly composed
of CO, and CH4. Because of the very low solubility
of methane, the concentration of dissolved methane
is neglected and the produced methane is assumed to
go directly out of the fermenter with a molar flow
rate ¢,,; proportional to the reaction rate of methano-
genesis:

gm = kel Xo (12)

For the outflow rate of CO,, we must take the storage
of CO» in the total inorganic carbon compartment into
account. The molar CO, flow rate ¢g¢ can be computed
using Henry’s law:

gc = kra(COz — Ky Pc) (13)

with kpa being the liquid—gas transfer coefficient, Ky
being Henry’s constant, and Pc being the CO, partial
pressure.

If we assume that the gas pressures rapidly reach their
equilibrium, we get a relationship between the partial
pressure and the flow rates from the ideal gas law:

Pr="Pc_ Pc (14)
M qc

where Pr is the total pressure in the fermenter (typically
corresponding to the atmospheric pressure).
From Egs. (13) and (14), we have:

KuP: — ¢Pc + PCO, =0 (15)

with
¢ = CO, + Ky Py + 4 (16)
k]_a
Let us compute the roots of Eq. (15), which is of the

form n(Pc) = 0, where w is a binomial equation. First,
note that:

_ Prgm
k]_a

n(Pr) = <0 (17)
This shows that the largest root of Eq. (15) is larger than
Pr, and therefore is not a physically admissable solu-
tion. The only admissible solution is thus the lowest root
of Eq. (15); that is:

_ ¢ — \/CI)2 — 4Ky P1CO,

P
¢ 2Kn

(18)

Finally, the CO, concentration can be computed by
combining Egs. (3) and (10):

CO,=C+S8,-Z (19)

The Hydrodynamics of the Fermenter

Additional experiments have shown that the recircula-
tion rate is high enough to maintain the fermenter in
homogeneous conditions. As a consequence, the dy-
namics of the chemical species are directly influenced by
the dilution rate D of the fermenter (defined as the ratio
of the influent flow rate over the volume of the fer-
menter).

For a fixed-bed reactor, the biomass is attached on a
support. It is therefore not affected by the dilution effect
as in a CSTR. Nevertheless, some bacteria do not fix on
their support or are detached by the liquid flow. Thus,
we decided to incorporate this effect in the hydrody-
namical modeling of the biomass. In order to keep a
simple mathematical description of the process, we
simply consider that only a fraction o of the biomass is
in the liquid phase. The parameter o (0 < o < 1) therefore
reflects this process heterogeneity: o = 0 corresponds to
an ideal fixed-bed reactor, whereas oo = 1 corresponds to
an ideal CSTR.

THE MASS-BALANCE MODEL

Let us denote by & = [X;, X5, Z, Sy, S,, C]" the vector of
model variables ('denotes the transpose operator).
From the considerations of reactions (1), (2), and (4), we
obtain the following mass-balance model:

B~ (@) - anlx, (20)
D () - o0ls e1)
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dz

- = D(Zin—2) (22)
S-S -k @X @)
ds,
= D(Soin — $2) + kopy () X1 — kapy () X2 (24)
dc
= P(Cin =€) = qc (&) + kaw () X1 + Kspay(8) X2
(25)
with
qc(&) = kLalC + S — Z — KuPc(8)] (26)

where Pc(§) is computed from Egs. (12), (16), (18), and
(19) as follows:

_<I>—\/<I>2—4KHPT(C+52—Z)

Pc(&) 2K

(27)
with
ke
¢=C+S8,—Z+KuyPr +k—LaH2(§)X2

Stin (g COD/L), S5, (mmole/L), C;, (mmole/L), and Z;,
(mmole/L) are the influent concentrations of Sy, S», C,
and Z, respectively.

Moreover, we have the following model equations for
the methane gas flow rate and for the pH from Eq. (12)
and Egs. (7), (10), and (19):

gm(&) = kepp(8) X2 (28)

(29)

pH(&) = —log;, (Kb ﬂ)

zZ-5

The model can then be rewritten in a more general
matrix form:

& Kg)-De-Q+F (30)
where
Xi 10
X 0 1
_ | Z _ (@)X _ [0 0
Sl R R [u;(f;)Xj’ K=1 ko
Sz kz _k3
C ki ks

(31)

0 0
0 0
DZi, 0
F = b) Q = b)
DSiin 0
DSoin 0
| DCin | qc(€)

aD 0 0 0 0 O

0O 0 0O 0 D O

0o o0 o0 0 0 D

The model given by Eq. (30) will serve as a basis for the
design of online monitoring and control strategies of the
anaerobic digestion process (Bastin and Dochain, 1990).
For this purpose, the modeling of the growth rates 1,(&)
and py(§) is not required. Yet, for numerical simula-
tions, analytical expressions for the growth rates are
needed. In the following section, expressions for p,(&)
and p,(&) are proposed.

Modeling of the Bacterial Kinetics

The modeling of biological kinetics is a difficult task for
which a systematic methodology is still lacking. For the
sake of model simplicity, and in line with other works on
anaerobic digestion modeling, we shall consider the
following models for bacterial kinetics.

Acidogenic Bacteria

We consider Monod-type kinetics for the growth of
acidogenic bacteria; that is:

S

S1) = ————
Hl( 1) ulmde]-f-Ks]

(33)
where [lymax 18 the maximum bacterial growth rate, and
Ky, is the half-saturation constant associated with the
substrate Sj.

Methanogenic Bacteria

In order to emphasize the possible VFA accumulation,
we have considered Haldane kinetics for the methano-
genesis:
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S>
52

— (34)
Sz + K2 + 25

Hz(SZ) = Momax

where Homax 18 the maximum bacterial growth rate
without inhibition, and Kg, and K}, are the saturation
and inhibition constants associated with the substrate
S», respectively.

THE MODEL STRUCTURE

It is worth noting that the model has a cascade structure.
This will make its analysis and its use easier. In this
section, we take benefit of this structure to briefly de-
scribe the possible behavior of this model, and to discuss
the identifiability of its parameters. For the sake of
brevity, the mathematical developments are not detailed
here.

The Model Behavior

First, we remark that the system of the two Egs. (20)
and (23) can be run separately. It means that .S; and X;
are not influenced by the other variables (and, therefore,
by the parameters associated with the other equations).
This system corresponds to a classical chemostat model
(with Monod-type kinetics), with an equivalent mortal-
ity rate kq = (a—1)D (note that k4 < 0). The behavior of
such a system is well-known (Smith and Waltman,
1995). For constant influent conditions, two equilibria
exist in general. For appropriate values of the dilu-
tion rate, the nontrivial equilibrium is stable, and the
trivial equilibrium (washout: X; = 0, S; = Sy, is
unstable.

Note that Eq. (22) (mass balance of Z) is independent
of the other equations and can therefore be analyzed
separately: as it is a linear equation, it has only one
steady state, and this steady state is stable because D is
positive.

Similarly, the system composed of Egs. (20), (23),
(21), and (24) can also be considered independently. It
can also be noted that the system composed of Egs. (21)
and (24) is a chemostat model (with Haldane-type ki-
netics), with an influent flow rate DS», + kyui(§)X;.
The behavior of this model is also well-known (Smith
and Waltman, 1995). It has (in the general case) three
equilibria: the first one is the interesting operating point,
as it is nontrivial and locally stable; the second one is
nontrivial and unstable; and the third one is the locally
stable trivial equilibrium (washout: X7 = 0, S; = Sin).

Now, the behavior of the model can be briefly de-
scribed. Once the system composed of Egs. (20) and (23)
has converged, the variables of Egs. (21) and (24) will
also converge toward one of the two stable equilibria.
Finally the dynamical Eq. (25) will drive C toward an
equilibrium value.

The Identifiability of the Model Parameters

The first approach for identifying the parameters of a
model is to find the set of parameters that minimize a
global criterion based on the error between simulated
values and measurements. The minimization procedure
results in parameter values that give the best fit of the
model with the data. Nevertheless, generally speaking,
such a global approach poses two problems. The first
one is the uniqueness of the obtained parameter values
(nonuniqueness means that different sets of parameter
values result in an equivalent model behavior). This is
the so-called problem of structural identifiability of the
model. One has to prove from a theoretical point of view
that the parameters can be uniquely estimated from ideal
measurements. It is only when the uniqueness of the
parameters has been shown that it is meaningful to run
the global minimization procedure (see, e.g., Dochain
et al., 1995). The second problem, related to the prac-
tical identifiability of the system, may result from the
possible presence of local minima (see, e.g., Vanrolleg-
hem et al., 1995). The minimization algorithm may thus
often be trapped into local minima, and this leads to bad
parameter estimates. The importance of this phenome-
non is directly linked to the number of parameters to be
identified, to the informative content of the data, and to
the possibly high uncertainty associated with the mea-
surements.

Let us now investigate the structural identifiability of
the model. The identifiability problem is a difficult one,
and the analysis may be easily cumbersome (Walter and
Pronzato, 1997). Here we take advantage of the cascade
structure of the model. In particular, the identifiability
of the parameters of the subsystem (20), (23) is a clas-
sical problem that has been extensively discussed in the
literature. If all the state variables are measured, the
parameters are identifiable (Chouakri et al., 1994;
Holmberg, 1982). We will detail the discussion later on
(in the static case) in the case where the biomass is not
measured.

The identifiability results also hold for the Haldane-
type model described by Egs. (21) and (24) [note that in
that case we can take benefit of the measurement of
am(®)]

From total inorganic carbon measurement and using
the relationship (13), we can derive kpa. Finally, the
identifiability of the parameters k4 and ks associated
with the last Eq. (25) follows straightforwardly.

Let us now consider the practical identifiability
question. Even if the parameters are identifiable, the
considered algorithms may converge toward several
values. For this reason, in the sequel we shall at the same
time describe the identification procedure and discuss
the uniqueness of the obtained parameters. With this
approach, we shall show that the identification algo-
rithm will provide a unique value, and that the corre-
sponding parameter is identifiable. We shall also show
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that, when no biomass measurements are available, the
yield coeflicients are not identifiable and one can obtain
only ratios of yield coefficients.

Principles for Identification

We have split the data set into one set for parameter
calibration and one set for parameter validation. One of
our primary goals was to have a model able to predict
properly the process steady states. Therefore, we have
selected a set of steady-state values for parameter cali-
bration. We have then used the data corresponding to
the other steady states and to the transients for model
validation.

Note that this approach is consistent and perfectly
valid from an identification point of view. The model
structure is typically composed of the combination of
hydrodynamics terms, liquid—gas terms, and conversion
(kinetic + yields) terms. The conversion and liquid—gas
transfer terms contain all the parameters to be cali-
brated, while the terms related to the hydrodynamics are
typically characterized by the (known) values of the in-
fluent and effluent flow rates.

In the next section, the steady-state values of the
model variables are computed with respect to the pa-
rameters, in order to be used later on in the model
identification procedure.

DETERMINATION OF THE MODEL STEADY
STATES

Steady-State Values of VFA, COD, and Alkalinity

At steady state, if we do not consider the washout steady
state (corresponding to X; = 0 or X, = 0), we have
from Egs. (20) and (21):

Hi(S1) = oD (35)

H2(S2) = oD (36)

If Wimax > oD, this implies from Eq. (33) that S}, the
steady-state value of S, is equal to:

oD

St=Kj——
! Himax — oD

(37)

The possible steady states for S, are solutions of Eq.
(36). The function p,(S,) starts growing from 0, reaches
a unique maximum, and then decreases to 0. Thus,
Eq. (36) admits two solutions (that can reduce to one)
only if:

oD < max[p(Sy)]

This implies, with the expression (34) of p,, that:

D < Homax \ Ki
T o VK +2vKsy

(38)

Then, the possible steady states for S, are solutions of
the following equation, deduced from Egs. (36) and (34):

S22 Homa
—= 1 ——=221)S, + Ks; =0 39
Krz+( D ) 2 + Ksa (39)

We denote S5 and ST2 the lowest and the largest solutions
of Eq. (39), respectively. We also denote &* and &' the
corresponding equilibria. Note that & corresponds to
a steady state in the inhibition phase of the methano-
genesis.

The computation of the equilibrium for Z is
straightforward from Eq. (22):

Z"=Zn (40)

Steady State of the Biomasses
Using Eqgs. (23) and (35), we get:

1 k
XT:otikl(Shnisl) (41)
From Egs. (24), (35), (36), and (41), we have two pos-
sible values for X5:

1 . ko ]
X; - Ot_k3 (S2m - Sz +k_1(Slm - S1)> (42)
1

k
X; (Szin — S; -‘r—z(Slin - ST)) (43)

~ ks &

Steady State of Gaseous Flow Rates

The value of the methane gas flow rate at steady state in
the noninhibitory phase is readily obtained from Egs.
(12) and (36):

ay = keaDX; (44)

The computation of the carbon gas flow rate is a bit
more complicated. Let us first consider Egs. (13) and
(25) at steady state, which give the amount of total in-
organic carbon C" at steady state:

¢ =kLa(CO; — KuPg) = D(Ciy — C*) 4 kqoDX;
+ ksaDX; (45)

We compute C* with the expression (19), and using Eq.
(19), we obtain:

1
CO; = 7D (kLaKHPE + D\'l*) (46)

kra+

with

V' = Cin — Z" + S5 + k40X + ksoX;
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The relationship (46) between CO; and P, can then
be injected in Eq. (14). This gives:

KyPZ — o Pc+ Py =0 (47)
where
kpa+ D
o* = KyPr + \|J* + ikédz\/’zﬁ
kLa

We know from Eq. (17) that only the lower root is
physically admissible. Thus:

* ok — 4K Pl
pL=2 ® Py (48)

2Ku

The steady-state values CO; and ¢ can then be directly
derived from Egs. (46) and (14), respectively.

The steady-state values associated with &7 can be
computed by using a similar procedure, and simply by
replacing the symbol * by 1 in Egs. (44) to (48).

IDENTIFICATION PROCEDURE
Introduction

The model developed in the preceding sections includes
thirteen parameters that have to be identified from ex-
perimental data. This identification step is very impor-
tant to guarantee a large validity of the model.

To circumvent these structural and practical identifi-
ability problems, we have chosen an approach based on
the following two points. First of all, we have decoupled
the estimation into three groups of parameters: the ki-
netic parameters (Wimax> Ksi» Homax» Ks2, K, o), the

transfer coefficient (kpa), and the yield coefficients (k;, i

= 1 to 6). The motivation for this decoupling lies in the
(already mentioned) difficult task of kinetics modeling
that usually generates a large uncertainty in bioprocess
dynamical models (see also Bastin and Dochain, 1990).
We designed therefore the identification procedure
in order to estimate each group of parameter inde-
pendently. The second important point of the identifi-
cation procedure is the following: We focus on the
steady states and we adjust the parameters using linear
least-square regressions so as to impose that the model
predicts correctly the equilibria reached by the process.
The capacity of the model to properly reproduce the
transients will then be judged during the validation
phase.

During the modeling and identification of the process,
we have measured as many process variables as possible
(at least for steady-state conditions). We denote S|, S,
Z, C, pH, gc, and gy the mean values of these quanti-
ties, measured during a steady-state period. Note that
theseJr values correspond to one of the two equilibria &~
or &'.

Identification Procedure of the Kinetic Parameters
From Eq. (35), we have the following relationship:

1 o o 1
—= + Ksi =
Himax Himax S

(49)

This relationship can be used with the measurements of
the equilibrium values of S;, S|, to estimate the para-
meters o/plmax and Kg; via a linear regression. Un-
fortunately, the parameters o and pjpn.« cannot be
distinguished from this relationship. We chose therefore
to select values of . from classical bibliographical
results (Ghosh and Pohland, 1974).
Equation (36) provides the following relationship:

1 o a 1 1 o

Homax S> K Homax ( )

Linear regression then gives the values of the following
parameters: o/fbmax, Ks2, and Kpp. Using the estimated
value of o obtained in the previous step, we then get foyax-

Identification Procedure of the k;a

To estimate the value of the liquid—gas transfer coeffi-
cient ky a, we use the relationship (13). The dissolved CO,
concentration can be computed from the measurement of
the total inorganic carbon if we use Egs. (3) and (5):

CO, = (51)
L+ iy
or equivalently:
CO; = Cf(pKs, pH) (52)
where pKy, = —log;o(K}) and f'is the function:
1
fpKp, pH) = ———— (53)

1+ 10PH /K

Then, we get the following expression obtained from
Eqgs. (13) and (52):

gc = kpaCf(pKy, pH) — kpaKy Pc (54)

From the measurements of pH, C, flow rate, and
partial pressure of CO, at steady state, we can now use
the following regression to estimate kya (with Ky = 16
mmol/L per atm):

gc = kra| Cf(pKy, pH) — Ku Pc] (55)
This regression leads to an estimate of kya.
Identification Procedure of the Yield Coefficients

Ratio

The identification of the yield coefficients is performed
in two steps. In the first step, four ratios of yield coef-
ficients:
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ke ky ks k
_6 ) _27 —57 —4 (56)
ks ki ks ky
are identified. Then, in a second step, we use the mea-
surements of the VSS to obtain an approximation of
each yield coefficient.
We first consider the methane gas flow rate, which we
compute by combining Eqs. (42) and (44):
ke _ k _
qM :D—( Szin—Sz +—2(S]in_Sl) (57)
k3 ki
From this regression, we get the ratio of yield coeffi-
cients kg/ks and ky/k;.
From the consideration of the CO, flow rate (45),
using Egs. (41) and (42), we obtain:

~ ks ksk -
qgc ZD[Cin -C+ (k_?—'—k_jk_?) (Stin — S1)
k _
+ 2 (520 - 50)] (58)
3
We rewrite this equation as follows:

dc = - ks qwm
— = (Cin — C) = —(Stin — —— 9
) (C Q) x (S S1) +k6 D (59)

This regression gives the values of k4/k; and ks/kg.

Determination of the Yield Coefficients

In this second step, we show how to estimate each yield
coefficient. It turns out that the yield coefficients are not
identifiable if we do not measure the biomasses. Indeed,
it can be verified that if we rescale the biomass by the
factors A; and A,

X, = nX (60)

X, =X, (61)

then the biomass rescaling can be compensated by the
following parameter rescaling:

ki ks ky
K=— k==, k== 62
1 7\‘1 ) 2 7\‘1 ) 4 7\’1 ( )
ks ks ke
o I I
k3 - XZ ’ kS 7¥2 ’ k() }&2 (63)

The numerical simulation of the model with the yield
coefficients k; and &’ will give the same values for all the
model variables (except for the variables X; and X, that
are not measured). The yield coefficients are not iden-
tifiable if no measurements of the biomass is available;
this is consistent with the study of Chappell and God-
frey (1992), who proved a similar result when only the
biomass is measured.

This means that all the variables but the biomasses
depend only on the ratio of yield coefficients. The values
of the yield coefficients themselves (and not of their ra-
tio) are then needed only if we want to have an estimate
of the biomasses in the fermenter.

For that purpose, we need additional information and
measurements related to the biomasses. We propose first
to use the ratio v of acidogenic and methanogenic bac-
teria. This information is quite qualitative and can be
determined despite the heterogeneity between the liquid
and the solid phases. We propose also to use the VSS
concentration as a (rough) indicator of the total biomass
X, + Xo.

From Egs. (41) and (42) we have:

v X1 Sin=S,
Xi+Xo ok VSS

(64)

If we assume that v remains approximately constant, we
finally have an estimate of ki:

_ 1 Sin =S,

: VSS

o (65)

The value of v has been taken from the literature (v =
0.2) (Sanchez et al., 1994).
Now, if we consider Egs. (41) and (42), we have:

/\71 k3 Slin—gl
VTR I kMS St eih s 3
1+ A2 1(S21n S2)+(/¢l+k1)(slln Sl)
(66)
and thus:

v [(Sin—S ks

ks =k —_— 4= 67

} 1]_V<SlinSl+kl) (7)

An estimate of k3 can then be found from Eq. (67). The
ratios identified in the previous step can now be used to
derive estimates of k», k4, ks, and k.

Note that these values have to be considered with care
because of the uncertainty of the VSS measurements, the
uncertainty of the ratio of methanogenic and acidogenic
bacteria, and, last but not least, the uncertainty of the
correlation between the total biomass and the VSS.

Sensitivity Analysis

In this section, we study the sensitivity of the model to
its parameters. Note that there does not exist any
methodology to discuss the parameter sensitivity in
general: The usual methods refer to parameter sensitiv-
ity for a given system trajectory (i.e., in reference to a
given set of parameters, initial conditions, and influent
flow rates). Therefore, it is of great importance to cor-
rectly choose the reference simulation from which the
sensitivity analysis is performed. This results in fact
from an iterative approach, where the “‘best parameter
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values” serve as a basis to run the sensitivity analysis.
The classical choice is to consider the sensitivity coeffi-
cient o/ of the variable y to the parameter p defined by
o = dy/dp (Walter and Pronzato, 1997). These quan-
tities are computed by running the adjoint dynamical
system. The drawback of this method is that it gives an
idea of the sensitivity for small parameter variations. In
order to explore the effect of large parameter variation,
we use the following criterion for experiment from time
0 to tg

v — l/t’y(P + Ap, xo, u,7) — y(p, X0, U, T) g
Y l/ 0 y(pax()aua T)

where y(p, xg, u, ) denotes the simulated value at time t©
of the variable y associated with the parameter p, the
initial condition x(, and the input u.

In the sequel, we have focused the discussion on the
sensitivity of the four following quantities to parameter
variations: S, S5, ¢c, and ¢y

The results are presented in Fig. 3. Note first that the
cascade model structure has a strong influence on the
parameter sensitivity. Indeed, the only parameters in-
fluencing S; are Wimax, Ksi, k1, and o. The parameters
influencing S, are those influencing S; plus Homax, Kso,
K1y, k>, and k3. These parameters (plus kg) also influence
gm- Finally, all the parameters act on gc. Neverthe-
less, the influence of the parameters only related to S
is much lower on S, and on the gaseous flow rates.
Similarly, the parameters influencing S, have less effect
on gc.

From this study, it results that the parameters that
played the main role are o (because it modifies the dy-
namics of the whole model) and k5 (which has a strong
influence on the gaseous flow rates). Note that the small
values of pomax and Kpp also strongly change the model
predictions: with low value the equilibrium S5 becomes
less and less stable.

The parameters k», k4, kra, Ks, and Kg, have little
influence on the model, and therefore they will be less
precisely estimated.

Finally, it can be noted that sensitivity analysis (in %)
for the ratio of yield parameters k;/k; is the same as that
of k; (in %).

Identification of Parameter Values from
Experimental Data

As already mentioned, the data have been split in two
sets. The first set, composed of a set of values obtained
at equilibrium (after a sufficiently long time after the
dilution rate and the wastewater composition has been
changed), has been used for the calibration, and the
remaining set of data is kept for the validation. The
steady-state values are averaged over the considered
period, then the obtained averaged values are used for
the regressions. The characteristics of the influent during

Table II. Mean influent characteristics used for steady-state identifi-
cation.

D (d™ COD;, (g/L) VFA, (mmole/L) pHin
0.34 9.5 93.6 5.12
0.35 10 73.68 4.46
0.35 4.8 38.06 4.49
0.36 15.6 112.7 4.42
0.26 10.6 72.98 4.42
0.51 10.7 71.6 4.47
0.53 9.1 68.78 5.30

the considered periods are presented in Table II. The
estimated standard deviation for some parameters is
quite high. However, this value is probably overesti-
mated if we keep in mind the relatively small number of
equilibria (seven points) from a statistical point of view.
Note also that the deviations are particularly high for
two classes of parameters. First, the estimates of the
kinetic coefficients suffer from the already mentioned
lack of reliability of the kinetic expression used. Indeed,
the fact that the expressions retained for the biological
kinetics are only rough approximations results in high
variability of the corresponding parameter values. The
other group of parameters for which the estimates seem
to be less precise are the ratio of parameter related to &
(ky/ky and ky/k;). This is probably due to the fact that
the composition of the substrate S; is changing
throughout the experiment. As a consequence, the yield
coefficient associated to its degradation (i.e., k;) may
fluctuate during the considered period. As we shall see in
the sequel, in spite of this apparent uncertainty, the
model correctly fits the data.

Tables III and IV summarize the obtained kinetic
parameters and yield coeflicient ratio values. Table V
then gives the values obtained for all the yield coeffi-
cients.

Table III. Estimates of the kinetic parameters.

Parameter Meaning Unit Value SD?*

Mimax Maximum acidogenic d! 1.2°
biomass growth rate

Ks) Half-saturation constant g/L 7.1 5.0
associated with S

Homax Maximum methanogenic d! 0.74 0.9
biomass growth rate

Ks» Half-saturated constant mmol/l 9.28 13.7
associated with S,

K> Inhibition constant mmol/l 256 320
associated with S,

ol Proportion of dilution mmol/l 0.5 0.4
rate for bacteria

kra Liquid/gas transfer rate d! 19.8 3.5

4SD = standard deviation.
°From Ghosh and Pohland (1974).
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Figure 3. Sensitivity for the model parameters. The mean changes of S;, S,, qc, and gy are represented with respect to the deviation of the
nominal value of the considered parameter.

MODEL VALIDATION

The simulation results are presented in Figs. 4, 5, and 6.
The periods of time considered for the calibration step
are shown on the figures. The initial conditions used to
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initiate the simulation have been estimated by comput-
ing the equilibrium obtained with the initial values of
influent concentrations and pH.

The model correctly reproduces the behavior of the
system for the considered period, in spite of the fact that
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Table IV. Estimates of the yield coefficient ratios.

Ratio Unit Value SD?*
k2/ky mmol/g 2.72 2.16
k6/ks3 1.62 0.12
k5/ks; 1.28 0.13
k4/k, mmol/g 1.18 3.02

#SD = standard deviation.

it has been calibrated only using steady-state measure-
ments.

Indeed, Fig. 4 shows that the continuously measured
variables (i.e., gasecous flow rate and pH) are well pre-
dicted. It is worth noting that these simulations also
correctly reproduce the effect of the disturbances induced
by pump failures (around day 45). We remark also that
the pH predictions match quite well the direct measure-
ments, although pH measurements have not been used to
calibrate the model parameters. However, the model
predicts a more severe pH drop during the destabiliza-
tion phase (days 21-25). This may be due to an under-
estimation of the buffer capacity (i.e., the alkalinity of the
system). It can be noticed that during the destabilization
period, the gases are underestimated by the model.

The model simulations are also in good agreement
with the offline data (Fig. 5). Even if S is a variable that
stands for the various components of the COD that can
be rather different along the experiment, the adequacy
between model and measurements is good. The peak of
S| measured around day 50 is not represented by the
model. However, this peak is difficult to explain from a
biochemical viewpoint, because it does not correspond
to an increase of the organic loading rate. Moreover, it
does not coincide with an increase of volatile fatty acid.
The reaction of the model to the overloading produced
on day 68 seems to be slower than the process, so that
the accumulation starts less rapidly in the model.

Similar conclusions can be drawn for the volatile fatty
acids for which the model predictions match fairly well
the measurements. The fact that the model reacts less
rapidly than the process for overloading can also be
noticed around day 68.

For the simulations of alkalinity and total inorganic
carbon, there exists a bias compared to the data. This is
probably due to the uncertainty attached to the uncer-
tain measurement of the influent alkalinity. Indeed, the

Table V. Estimates of the yield coefficients.

Parameter Meaning Unit Value  SD*
ki Yield for COD degradation 42.14 18.94
ko Yield for VFA production  mmol/g 116.5 113.6
k3 Yield for VFA consumption mmol/g 268 52.31

k4 Yield for CO, production
ks Yield for CO, production
ke Yield for CH,4 production

mmol/g 50.6 143.6
mmol/g  343.6 75.8
mmol/g  453.0 90.9
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Figure 4. Comparison between simulation results and measurements
for the gaseous flow rates and the pH. The periods considered for the
calibration step are represented on the time axis.

influent total alkalinity titration is less precise, because
the pH in the influent is low.

Finally, the comparison between the measured VSS
and the simulated total biomass (i.e., X; + X>) is pre-
sented in Fig. 6. The main trends of the data are re-
spected even if the correlation between VSS and biomass
is probably poor. The peak of VSS during the destabi-
lization period is probably not due to a biomass increase.

The main quality of the model is its ability to predict
the destabilization of the plant. This was not obvious,
because only equilibrium data have been used for the
model calibration and the data obtained during the de-
stabilization phases were not used. The quality of the
model justifies its integration in an online monitoring
procedure, in order to early detect a possible destabili-
zation (Bernard et al., 1999). The model is also used to
derive a robust control algorithm that is insensitive to
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Figure 5. Comparison between simulation results and measurements
for COD, VFA, alkalinity, and total inorganic carbon. The periods
considered for the calibration step are underlined.
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Figure 6. Comparison between measured VSS and simulated total
biomass (X; + X;). The periods considered for the calibration step are
underlined.

the main modeling uncertainties and that avoids the
plant destabilization (Bernard et al., 2001).

CONCLUSION

In this paper, we have built, identified, and validated a
model for an anaerobic treatment plant. The four fol-
lowing points are important, because they guarantee
that our model can be useful to monitor and control the
anaerobic process.

1. It is based on mass-balance considerations. The
modeling uncertainty due to the variability of the
biological kinetics is concentrated in the reaction
rates terms.

2. An identification procedure privileging the steady-
state predictions has been developed which allows
identification of all the parameters of the model and
understanding of the role played by the parameters
in the process dynamics.

3. Experiments have been designed, covering a wide
range of experimental conditions, in order to develop
and validate the model. This diversity is obtained via
various organic loading rates (given by various dilu-
tion rates and various influent COD concentrations),
but it also results from a wide range of substrate
compositions, because the vinasses used during the
experiment do not all have the same origin.

4. The validation of the model has been performed for
a broad set of transient conditions. The model that
was identified during steady states proves to be effi-
cient in dynamical conditions, in particular during
the destabilization phases.

This paper includes results of the project AMOCO, which is
supported by the Agriculture & Fisheries program (FAIR) of
the European Community (Contract ERB-FAIR-CT96-

1198). It also presents research results of the Belgian Pro-
gramme on Inter-University Poles of Attraction, initiated by
the Belgian State, Prime Minister’s office for Science, Tech-
nology, and Culture. The scientific responsibility rests with its

authors.
NOMENCLATURE
B bicarbonate concentration (mmol/L)
C, Ciy total inorganic carbon concentration (mmol/L)
D dilution rate (d~1)
djdt time derivative
ki yield for substrate degradation
ks yield for VFA production (mmol/g)
k3 yield for VFA consumption (mmol/g)
ky yield for CO, production (mmol/g)
ks yield for CO, production (mmol/g)
ke yield for CH4 production (mmol/g)
K,, K,  equilibrium constants (mol/L)
Ky Henry’s constant (mmol/L per atm)
kra liquid—gas transfer constant (d~')
Ky, inhibition constant (mmol/L)
Ks half-saturation constant (g/L)
Ks» half-saturation constant (mmol/L)
Pc CO, partial pressure (atm)
Pr total pressure (atm)
qc carbon dioxide flow rate (mmol/L per d)
qm methane flow rate (mmol/L per d)
r, r, r, reaction rates (d7')
S1, Siin  organic substrate concentration (g/L)
S>, Soin volatile fatty acids concentration (mmol/L)
X, concentration of acidogenic bacteria (g/L)
X5 concentration of methanogenic bacteria (g/L)
Z, Zin total alkalinity (mmol/L)
Zy anion concentration (mmol/L)
o fraction of bacteria in the liquid phase
v mean fraction of acidogenic bacteria
W specific growth rate of acidogenic bacteria (d~!)
Mimax maximum acidogenic bacteria growth rate (d~!)
Lo specific growth rate of mathanogenic bacteria (d~!)
Momax maximum methanogenic bacteria growth rate (d=!)
& vector of the process variables
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