UChile	Probabilidades y Estadística	Roberto Cortez
FCFM	$\mathbf{MA3403-4}$	Víctor Riquelme
DIM	Otoño'10	Julio Backhoff

Clase Auxiliar 6

- **P1)** Sean n urnas enumeradas, así como n bolitas. Suponga que la bolita i tiene probabilidad uniforme de aparecer en las urnas 1, 2, ..., i. Encontrar:
 - 1. Número esperado de urnas vacías.
 - 2. Varianza del número de urnas vacías
- **P2)** Sea $X \sim Gamma(\Theta, \lambda)$, con $\Theta, \lambda > 0$. Calcule su función generadora de momentos, y con ella todos sus momentos. Encuentre su media y varianza.
- P3) Encuentre la función densidad para las siguientesa variables aleatorias:
 - 1. $Y = \log(X)$, donde $X \sim exp(1)$
 - 2. $Y = e^X$, donde $X \sim unif([0, 1])$
- **P4)** Suponga que X es una Cauchy Standard (es decir, su densidad es $f(x) = \frac{1}{\pi(1+x^2)}$, $\forall x$). Muestre que entonces $Y = \frac{1}{X}$ también es Cauchy Standard.
- **P5)** Suponga que usted trabaja en el Banco de Talca, y sabe que el número de clientes DEL banco que llegan en una hora sigue una distribución $Poisson(\lambda)$ y que el número de clientes de OTROS bancos que llegan en una hora sigue una $Poisson(\mu)$. Su experiencia le ha mostrado que ambas cantidades son históricamente independientes. ¿Cuál es la distribución del total de clientes que llegan en una hora al banco?.