Control 1 MA3403-3, 2010/1

Profesor Servet Martínez, Profesores auxiliares: Gonzalo Contador - Gonzalo Mena

- **P1** Notemos por $(\Omega, \mathcal{B}, \mathbb{P})$ un espacio de probabilidad.
- (i) Sean $A, B \in \mathcal{B}$. El evento $(A \cap B^c) \cup (B \cap A^c)$ es que exactamente uno de los eventos A ó B ocurre. Pruebe que la probabilidad de tal evento es

$$\mathbb{P}(A) + \mathbb{P}(B) - 2\mathbb{P}(A \cap B).$$

(ii) Sean $A, B, C \in \mathcal{B}$. Muestre que

$$\mathbb{P}(A \cup B \cup C) = 1 - \mathbb{P}(A^c | B^c \cap C^c) \mathbb{P}(B^c | C^c) \mathbb{P}(C^c) .$$

- **P2** (i) Sea I_n un conjunto de n elementos. Considere el conjunto producto $I_n \times I_n$. Sea $k \leq n$. Seleccione un subconjunto de $I_n \times I_n$ de k elementos de manera uniforme (es decir se sacan k parejas $(i_1, i'_1), ..., (i_k, i'_k)$ sin reposición). Cúal es la probabilidad que los k elementos escogidos tengan las primera y segunda componentes iguales, es decir Probabilidad $\{i_1 = i'_1, ..., i_k = i'_k\}$?
- (ii) Sean I_n y J_m dos conjuntos **disjuntos** de tamanõs n y m respectivamente, y suponga n < m. Del conjunto $R = (I_n \times I_n) \cup (J_n \times J_n)$ se saca un elemento al azar, es decir se escoge de manera uniforme una pareja $(r, r') \in R$. Suponga que ambas coordendas son distintas $r \neq r'$. Cúal es la probabilidad que $(r, r') \in I_n^2$?
- **P3** (i) Entre 3 ciudades A, B y C hay exactamente dos caminos que van desde A a B y ambas no pasan por C; y dos carreteras que van desde B a C y ambas no pasan por A. No hay otras carreteras, luego solo se puede ir de A a C usando una carretera para ir de A a B y enseguida otra para ir de B a C. Un evento catastrófico bloquea cada uno de las 4 carreteras con probabilidad $p \in (0,1)$ de manera independiente. Cúal es la probabilidad que haya exacatamente un camino bloqueado entre A y B y uno bloqueado entre B y C, dado que se puede ir desde A hasta C?
- (ii) Suponga que tiene 4 cartas A, B, C, D, de iguales características salvo quizás por la pintura que llevan en sus dos lados: las cartas A y B son idénticas y tienen ambos lados rojos, la carta C tiene ambos lados negros, y la carta D un lado rojo y uno negro. Las 4 cartas son mezcladas aleatoriamente y una de ellas es escogida al azar y puesta en el suelo. Si el lado visible de esa carta resultó ser rojo: cuál es la probabilidad de que el lado de atrás sea negro?
- **P4** Sea $(\Omega, \mathcal{B}, \mathbb{P})$ un espacio de probabilidad y sean $(B_n : n \ge 1) \subset \mathcal{B}$ una sucesión de eventos. Defina la sucesión $A_m := \bigcup_{n>m} B_n$ para $m \ge 1$. Observe

que la sucesión de conjuntos $(A_m: m \geq 1)$ es decreciente con m. Asuma la hipotesis,

$$\sum_{n=1}^{\infty} \mathbb{P}(B_n) < \infty. \tag{1}$$

- (ii) Pruebe que $\mathbb{P}(A_m) \leq \sum_{n \geq m} \mathbb{P}(B_n)$ y que $\lim_{m \to \infty} \mathbb{P}(A_m) = 0$.
- (ii) Concluya que $\mathbb{P}(\bigcap_{m=1}^{\infty} A_m) = 0$.

Nota: Este resultado es el Lema de Borel Cantelli.

Ud. debe hacer sólo 3 problemas: los problemas 1 y 2 son obligatorios y debe elegir un problema entre el 3 y el 4.

Tiempo: 3 horas.

Nota: Todos los problemas tienen el mismo valor (2.0 punto) y al interior de cada problema las partes tienen igual valor.