Position of secondarian series in Accordinately =
$$\frac{1}{2} \operatorname{P}(X=K) = (1-p)^{K-1}p$$
 $\operatorname{P}(X=n+k|X > n) = \operatorname{P}(X=n+k|X > n) = \operatorname{P}(X=n+k) = (1)$
 $\operatorname{P}(X>n) = \operatorname{P}(X=n+k|X > n) = \operatorname{P}(X=n+k) = (1)$
 $\operatorname{P}(X>n) = \operatorname{P}(X=n+k|X > n) = \operatorname{P}(X=n+k) = (1-p)^{K-1}p$
 $\operatorname{P}(X>n) = \operatorname{P}(X=n+k|X > n) = \operatorname{P}(X=n+k) = (1-p)^{K-1}p$
 $\operatorname{P}(X>n) = \operatorname{P}(X=n+k|X > n) = \operatorname{P}(X=n+k) = (1-p)^{K-1}p$
 $\operatorname{P}(X=n+k|X > n) = \operatorname{P}(X=n+k) = (1-p)^{K-1}p$
 $\operatorname{P}(X=n+k) = \operatorname{P}(X=n+k)$
 $\operatorname{P}(X=n+k) = \operatorname{P}(X=n+k)$