Análisis de Fourier Auxiliar 1

Prof: Michał Kowalczyk Aux: Álvaro Hernández*

P.1. Sucesiones de Cauchy y Series

Una serie de números complejos $\{z_n\}_{n=0}^{\infty}$ se dice que es convergente si existe $z\in\mathbb{C}$ tal que

$$\lim_{n \to \infty} |z_n - z| = 0,$$

y decimos que z es un límite de la sucesión.

1.1 Demuestre que una sucesión de números complejos convergente tiene un único límite.

La sucesión $\{z_n\}_{n=0}^{\infty}$ se dice que es de Cauchy si para todo $\varepsilon > 0$ existe un natural N tal que

$$|z_n - z_m| < \varepsilon$$
 siempre que $n, m > N$.

1.2 Pruebe que una sucesión de números complejos converge si y sólo si es una sucesión de Cauchy.

Una serie $\sum_{n=1}^{\infty} z_n$ de números complejos se dice convergente si la sucesión formada por las sumas parciales

$$S_N = \sum_{n=1}^N z_n$$

converge. Sea $\{a_n\}_{n=1}^\infty$ una sucesión de números reales no negativos tal que la serie $\sum_{n=1}^\infty a_n$ converge.

1.3 Muestre que si z_n es una sucesión de números complejos tal que $|z_n| \le a_n$, entonces la serie $\sum_{n=1}^{\infty} z_n$ converge.

^{*}ahernandez@dim.uchile.cl

P.2. Exponencial Compleja

Para $z \in \mathbb{C}$ definimos la exponencial compleja por

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}.$$

- 2.1 Pruebe que la definición de arriba tiene sentido mostrando que la serie converge para cada complejo z. Además, muestre que la convergencia es uniforme sobre cada subconjunto acotado de \mathbb{C} .
- 2.2 Si z_1, z_2 son dos números complejos, pruebe que $e^{z_1}e^{z_2}=e^{z_1+z_2}$.

P.3. Integrales

3.1 Verifique que $f(x) = e^{inx}$ es períodica de período 2π y que

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{inx} dx = \begin{cases} 1 & \text{si } n = 0, \\ 0 & \text{si } n \neq 0. \end{cases}$$

3.2 Pruebe que si $n, m \ge 1$ se tiene

$$\frac{1}{\pi} \int_{-\pi}^{\pi} \cos nx \cos mx \, dx = \begin{cases} 1 & \text{si } n = m, \\ 0 & \text{si } n \neq m. \end{cases}$$

3.3 Pruebe que

$$\int_{-\pi}^{\pi} \sin nx \cos mx \, dx = 0 \text{ para todo } n, m$$

P.4. Derivadas

Suponga que f es una función definida en (a,b) dos veces diferenciable y con derivadas continuas. Muestre que cuando x y x+h pertenecen a (a,b) entonces se puede escribir

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + h^2\phi(h),$$

donde $\phi(h) \to 0$ cuando $h \to 0$. Deducir que

$$\frac{f(x+h)+f(x-h)-2f(x)}{h^2}\to f''(x) \text{ cuando } h\to 0.$$

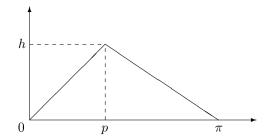


Figura 1: Posición inicial de la cuerda pulsada.

P.5. Laplaciano en coordenadas polares

Muestre que la expresión del laplaciano

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

en coordenadas polares está dado por la fórmula

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}.$$

Además pruebe que

$$\left|\frac{\partial u}{\partial x}\right|^2 + \left|\frac{\partial u}{\partial y}\right|^2 = \left|\frac{\partial u}{\partial r}\right| + \frac{1}{r^2}\left|\frac{\partial u}{\partial \theta}\right|^2.$$

P.6. La cuerda pulsada

En el caso de la cuerda pulsada, Figura 1, use la fórmula para los coeficientes de Fourier de seno para mostrar que

$$A_m = \frac{2h}{m^2} \frac{\sin mp}{p(\pi - p)}.$$

¿Para qué posición de p los segundos, cuartos, etc. armónicos se pierden?, ¿para los terceros, quintos, etc?

P.7. Simetrías de funciones simplifican los coeficientes de Fourier

En este ejercicio mostraremos como las simetrías de una función implican ciertas propiedades de los coeficientes de Fourier. Sea f una función 2π períodica integragle según Riemman definida en $\mathbb R$

 $7.1\,$ Muestre que la serie de Fourier de f puede escribirse como

$$f(\theta) \sim \hat{f}(0) + \sum_{n \ge 1} [\hat{f}(n) + \hat{f}(-n)] \cos n\theta + i[\hat{f}(n) - \hat{f}(-n)] \sin n\theta.$$

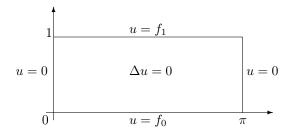


Figura 2: Problema de Dirichlet en un rectángulo.

- 7.2 Pruebe que si f es par entonces $\hat{f}(n) = \hat{f}(-n)$ y se obtiene una serie de cosenos.
- 7.3 Pruebe que si f es impar entonces $\hat{f}(n) = -\hat{f}(-n)$ y se obtiene una serie de senos.
- 7.4 Supongamos que $f(\theta + \pi) = f(\theta)$ para todo $\theta \in \mathbb{R}$, muestre que $\hat{f}(n) = 0$ para todo n impar.
- 7.5 Muestre que f es a valores reales si y sólo si $\overline{\hat{f}(n)} = \hat{f}(-n)$ para todo n.

P.8. Problema

Considere el problema de Dirichlet ilustrado en la Figura 2. Más precisamente, buscamos una solución del estado estacionario de la ecuación del calor $\Delta u=0$ en el rectángulo $R=\{(x,y): 0\leq x\leq \pi,\ 0\leq y\leq 1\}$, que es nula en los lados verticales de R y que

$$u(x,0) = f_0(x)$$
 y $u(x,1) = f_1(x)$,

donde f_0 y f_1 son datos iniciales que fijan la distribución de temperatura en los lados horizontales del rectángulo. Use separación de variables para mostrar que si f_0 y f_1 tienen una expansión de Fourier

$$f_0(x) = \sum_{k=1}^{\infty} A_k \sin kx$$
 y $f_1(x) = \sum_{k=1}^{\infty} B_k \sin kx$,

entonces

$$u(x,y) = \sum_{k=1}^{\infty} \left(\frac{\sinh k(1-y)}{\sinh k} A_k + \frac{\sinh ky}{\sinh k} B_k \right) \sin kx.$$

recordemos las definiciones de seno y coseno hiperbólico:

$$\sinh x = \frac{e^x - e^{-x}}{2}$$
 y $\cosh x = \frac{e^x + e^{-x}}{2}$.