Análisis de Fourier Auxiliar 2

Prof: Michał Kowalczyk Aux: Álvaro Hernández

7 de abril de 2010

P.1. Criterio de Dirichlet para la convergencia de Series

Suponga que $\{a_n\}_{n=1}^N$ y $\{b_n\}_{n=1}^N$ son dos sucesiones finitas de números complejos. Sea $B_k = \sum_{n=1}^k b_k$ la suma parcial de la serie $\sum b_n$ con la convención de que $B_0 = 0$. Pruebe la siguiente fórmula de suma por partes

$$\sum_{n=M}^{N} a_n b_n = a_N B_N - a_M B_{M-1} - \sum_{n=M}^{N-1} (a_{n+1} - a_n) B_n.$$

A partir de esta fórmula deducir la prueba de de convergencia para series de Dirichlet: si las sumas parciales de la serie $\sum b_n$ son acotadas y si $\{a_n\}$ es una sucesión de números reales que decrece a cero, entonces $\sum a_n b_n$ converge.

P.2. A mayor suavidad, más rápido es el decaimiento de los coeficientes de Fourier

Suponga que f es una función 2π períodica y de clase C^k . Muestre que

$$\hat{f}(n) = \mathcal{O}\left(1/|n|^k\right)$$
 cuando $|n| \to \infty$

P.3. Convergencia en L^1 implica convergencia de los coeficientes de Fourier

Suponga que $\{f_k\}_{k=1}^{\infty}$ es una sucesión de funciones Riemman integrables sobre el intervalo [0, 1] tales que

$$\int_0^1 |f_k(x) - f(x)| dx \to 0 \text{ cuando } k \to \infty.$$

Muestre que $\hat{f}_k(n) \to \hat{f}(n)$ uniformemente en n cuando $k \to \infty$.

P.4. Convergente \Rightarrow Cesàro Sumable \Rightarrow Abel Sumable

El próposito de este ejercicio es mostrar que la sumabilidad según Abel es más fuerte que los métodos estandar de Cesàro.

- 4.1 Pruebe que si una serie de números complejos $\sum c_n$ converge a s entonces $\sum c_n$ es sumable Cesàro a s.
- 4.2 Dé un ejemplo de una serie que sea Cesàro sumable, pero no convergente.
- 4.3 Muestre que si la serie de números complejos $\sum_{n=1}^{\infty} c_n$ convenge a un límite finito s entonces la serie es sumable Abel a s. Para ello siga los pasos:
 - I. Muestre que si $s_{N+1} = c_0 + \dots + c_N$, $s_0 = 0$ entonces $\sum_{n=0}^{N} c_n r^n = (1-r) \sum_{n=0}^{N-1} s_{n+1} r^n + s_{N+1} r^N$.
 - II. Haciendo tender N a infinito muestre que $\sum c_n r^n = (1-r) \sum s_n r^n$.
 - III. Finalmente muestre que el lado derecho converge a cero cuando $r \to 1$.
- 4.4 Sin embargo existen series sumables Abel que no convergen.
- 4.5 Argumente de la manera similar para mostrar que si una serie $\sum_{n=1}^{\infty} c_n$ es Cesàro sumable a σ entonces es Abel sumable a σ . (Hint: notar que $\sum c_n r^n = (1-r)^2 \sum n \sigma_n r^n$,, donde σ_n es la n-ésima media de Cesàro de $\{c_n\}$)

- 4.6 Dé un ejemplo de una serie que sea Abel sumables pero no Cesàro sumable. (Hint: tratar con $c_n = (-1)^{n-1}n$. Notar que si $\sum c_n$ es Cesàro sumable entonces c_n/n tiende a cero.)
- 4.7 El teorema de Tauber que dice que bajo ciertas condiciones adicionales sobre los coeficientes c_n las flechas de arriba pueden invertirse
 - I. Si $\sum c_n$ es Cesàro sumable a σ y $c_n = o(1/n)$, i.e. $nc_n \to 0$, entonces $\sum c_n$ converge a σ (Hint: $s_n \sigma_n = [(n-1)c_n + \cdots + c_2]/n$.)
 - II. La afirmación anterior sigue siendo válida si se reemplaza Cesàro sumable por Abel sumable. (Hint: Estime la diferencia entre $\sum_{n=1}^{N} c_n$ y $\sum_{n=1}^{N} c_n r^n$ con r = 1 1/N.)

P.5. Kernel de Fejér

Pruebe que el kernel de Fejér está dado por

$$F_N(x) = \frac{1}{N} \frac{\sin^2(Nx/2)}{\sin^2(x/2)}.$$

Hint: Recuerde que $NF_N(x) = \sum_{n=0}^{N-1} D_n(x)$, donde $D_n(x)$ es el kernel de Dirichlet. Luego si $\omega = e^{ix}$ entonces

$$NF_N(x) = \sum_{n=0}^{N-1} \frac{\omega^{-n} - \omega^{n+1}}{1 - \omega}.$$

P.6. Funciones Riemman integrables con discontinuidades en un denso numerable

Uno puede construir funciones Riemman integrables en [0,1] que tanga un conjunto denso de discontinuidades como sigue:

6.1 Sea f(x) = 0 cuando x < 0 y f(x) = 1 si $x \ge 0$. Elija una sucesión $\{r_n\}$ en [0,1] que sea densa numerable. Entonces la función

$$F(x) = \sum_{n=1}^{\infty} \frac{1}{n^2} f(x - r_n)$$

es Riemman integrables y tiene discontinuidad en r_n para todo n. (Hint: F monótona y acotada)

6.2 Luego considere

$$F(x) = \sum_{n=1}^{\infty} \frac{1}{3^n} g(x - r_n)$$

donde $g(x) = \sin 1/x$ si $x \neq 0$ y g(0) = 0. Entonces F es integrable, descontinua en cada r_n y no es monótona en cada subintervalo de [0,1]. Hint: use el hecho que $3^{-k} > \sum_{n > k} 3^{-n}$

6.3 El ejemplo original de Riemman es la función

$$F(x) = \sum_{n=1}^{\infty} \frac{(nx)}{n^2}$$

donde (x) = x para $x \in (-1/2, 1/2]$ y extendida a \mathbb{R} períodicamente, esto es (x+1) = (x). Se puede mostrar que F es discontinua en x = m/2n para $n, m \in \mathbb{Z}$ con m impar y $n \neq 0$.

P.7. El kernel de Dirichlet no es un buen kernel

Sea D_N el kernel de Dirichlet

$$D_N(\theta) = \sum_{k=-N}^{N} e^{ik\theta} = \frac{\sin((N+1/2)\theta)}{\sin\theta/2},$$

y defina

$$L_N = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_N(\theta)| \, d\theta.$$

7.1 Pruebe que

$$L_N \ge c \log N$$

para alguna constante c > 0. Para ello siga los siguientes pasos:

I. Muestre que

$$|D_N(\theta)| \ge c \frac{\sin((N+1/2)\theta)}{|\theta|}$$

II. Cambie de variables y muestre que

$$L_{N} \ge c \int_{\pi}^{N\pi} \frac{|\sin \theta|}{|\theta|} d\theta + \mathcal{O}(1).$$

III. Escriba la integral como una suma $\sum_{k=1}^{N-1} \int_{k\pi}^{(k+1)\pi} y$ finalmente use el hecho que $\sum_{k=1}^{n} 1/k \ge c \log n$.

Una estimación más cuidadosa da

$$L_N = \frac{4}{\pi^2} \log N + \mathcal{O}(1)$$

7.2 Pruebe lo siguiente como una consecuencia: para cada $n \ge 1$ existe una función continua f_n tal que $|f_n| \le 1$ y $|S_n(f_n)(0)| \ge c' \log n$. Hint: la función g_n que es igual a 1 cuando D_n es positivo y -1 cuando D_n en negativo tiene la propiedad deseada, pero no es continua. Aproxime g_n en norma integral (en el sentido del Lema 3.2 del texto) con funciones continuas h_k con $|h_k| \le 1$.