MA2601-5 Ecuaciones Diferenciales Ordinarias

Profesor: Michal Kowalczyk. Auxiliar: Felipe Maldonado.

Método de Frobenius

22 de mayo de 2010

Definición

Analiticidad

Una función analítica es una función que puede ser localmente expandida en series de Taylor (series de potencias). Groseramente hablando, funciones analíticas son una familia más amplia que la de las funciones polinomiales, pero que aún preserva ciertas propiedades de estos.

Definición

Punto singular regular:

Consideremos la siguiente ecuación:

$$y'' + p(x)y' + q(x) = 0 (1)$$

Un punto x_0 se dice singular regular si:

- i) p(x), o q(x) no son analíticas en x_0 (singular).
- ii) $(x-x_0)p(x)$ y $(x-x_0)^2q(x)$ son analíticas en x_0 (regular).

Teorema

Teorema de Frobenius

Si $x = x_0$ es un punto singular regular de la ecuación (1), entonces existe al menos una solución en serie de la forma:

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{n+r},$$
(2)

En donde r es una constante por determinar. Esta serie converge al menos en un intervalo del tipo $0 < x - x_0 < R$.

Ejemplo

Serie de potencias en torno a un punto singular regular

 $x_0 = 0$ es un punto singular regular de la ecuación diferencial:

$$3xy'' + y' - y = 0 (3)$$

Proponemos por el teorema anterior una solución del tipo $y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{n+r}$, obteniendo lo siguiente:

$$3xy'' + y' - y = 3\sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{n+r-1} + \sum_{n=0}^{\infty} (n+r)a_n x^{n+r-1} - \sum_{n=0}^{\infty} a_n x^{n+r}$$

$$= \sum_{n=0}^{\infty} (n+r)a_n x^{n+r-1} [3n+3r-3+1] - \sum_{n=0}^{\infty} a_n x^{n+r}$$

$$= x^r \left(r(3r-2)a_0 x^{-1} + \sum_{n=1}^{\infty} (n+r)(3n+3r-2)a_n x^{n-1} - \sum_{n=0}^{\infty} a_n x^n \right)$$

$$= x^r \left(r(3r-2)a_0 x^{-1} + \sum_{k=0}^{\infty} (k+1+r)(3k+3r+1)a_{k+1} x^k - \sum_{k=0}^{\infty} a_k x^k \right)$$

$$= x^r \left(r(3r-2)a_0 x^{-1} + \sum_{k=0}^{\infty} \left[(k+1+r)(3k+3r+1)a_{k+1} - a_k \right] x^k \right) = 0,$$

Sigue que por igualdad de series (igualar la serie de la izquierda con la serie nula), se tiene que cada uno de los coeficientes que acompañan a x^i , $\forall i > -1$ deben ser 0. Obtenemos de esta manera:

$$r(3r - 2)a_0 = 0 (4)$$

$$(k+1+r)(3k+3r+1)a_{k+1} - a_k = 0, \quad \forall k > 0$$
(5)

De (4) no se gana nada con que a_0 sea 0, por lo que se tiene que r(3r-2)=0. De donde $r_1=\frac{2}{3}$, y $r_2=0$.

Por otro lado de (5), se tiene que:

$$a_{k+1} = \frac{a_k}{(k+1+r)(3k+3r+1)}, \quad \forall k \ge 1$$
 (6)

Luego para r_1 tenemos que (6) nos queda como:

$$a_{k+1} = \frac{a_k}{(k+1+\frac{2}{3})(3k+2+1)} = \frac{a_k}{(\frac{3k+3+2}{3})(3k+3)} = \frac{a_k}{(3k+5)(k+1)}, \quad \forall k \ge 1$$
 (7)

Y para r_2 , (6) se transforma en:

$$a_{k+1} = \frac{a_k}{(k+1+0)(3k+0+1)} = \frac{a_k}{(k+1)(3k+1)}, \quad \forall k \ge 1$$
 (8)

Al iterar (7), se obtiene:

$$a_{1} = \frac{a_{0}}{(5)(1)}$$

$$a_{2} = \frac{a_{1}}{(8)(2)} = \frac{a_{0}}{2!(5)(8)}$$

$$a_{3} = \frac{a_{2}}{(11)(3)} = \frac{a_{0}}{3!(5)(8)(11)}$$

$$\vdots$$

$$a_{n} = \frac{a_{0}}{n!(5)(8)(11)\cdots(3n+2)}, \quad \forall n \ge 1$$

Al iterar (8), se obtiene:

$$a_{1} = \frac{a_{0}}{(1)(1)}$$

$$a_{2} = \frac{a_{1}}{(2)(4)} = \frac{a_{0}}{2!(1)(4)}$$

$$a_{3} = \frac{a_{2}}{(3)(7)} = \frac{a_{0}}{3!(1)(4)(7)}$$

$$\vdots$$

$$a_{n} = \frac{a_{0}}{n!(1)(4)(7)\cdots(3n-2)}, \quad \forall n \geq 1$$

Finalmente hemos obtenidos 2 soluciones (l.i.) de la ecuación (3), que vienen dadas por:

$$y_1 = a_0 x^{\frac{2}{3}} \left[1 + \sum_{n=1}^{\infty} \frac{1}{n!(5)(8)(11)\cdots(3n+2)} x^n \right]$$
 (9)

$$y_2 = a_0 x^0 \left[1 + \sum_{n=1}^{\infty} \frac{1}{n!(1)(4)(7)\cdots(3n-2)} x^n \right]$$
 (10)

Y por lo tanto la solución general sería $y(x) = C_1y_1 + C_2y_2$.

Fuente: Dennis G. Zill, Ecuaciones Diferenciales.