Auxiliar 4 - Cálculo Avanzado y Aplicaciones

Escuela de Ingeniería, Universidad de Chile Lunes 19 de Abril 2010

Profesor Cátedra: Jaime H. Ortega - Rodrigo Lecaros Profesores Auxiliares: Pía Francisca Leyton - Matías Godoy Campbell

Pregunta 1. Sea Γ una curva simple, cerrada y regular por trozos contenida en el plano XY. Suponga que Γ está parametrizada en coordenadas polares:

$$x(\theta) = r(\theta)\cos\theta, \quad y(\theta) = r(\theta)\sin\theta \quad \theta \in [0, 2\pi]$$

donde $r:[0,2\pi]\to\mathbb{R}^+$ es \mathcal{C}^1 y periódica. Sea Ω la región encerrada por Γ . Demuestre que:

$$A(\Omega) = \frac{1}{2} \int_0^{2\pi} r(\theta)^2 d\theta$$

Pregunta 2. Calcule el gradiente de:

$$f(x, y, z) = \frac{\arccos\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)}{x^2 + y^2 + z^2}$$

Pregunta 3.

a) Dados $\vec{F} \in \mathcal{C}^2(\Omega, \mathbb{R}^3)$, $q \in \mathcal{C}^1$ pruebe la identidad:

$$div(g\vec{F}) = \nabla g \cdot \vec{F} + g div(\vec{F})$$

Muestre que para todo $f, g \in \mathcal{C}^2(\Omega')$ con $\Omega \cup \partial \Omega \subset \Omega'$ se tiene la identidad de Green:

$$\iiint_{\Omega} (g\Delta f + \nabla f \cdot \nabla g) dV = \iint_{\partial \Omega} g\nabla f \cdot d\vec{S}$$

b) Sea S la superficie del casquete esférico $x^2+y^2+z^2=4$, que se encuentra en la región $z\geq 1$ y que se orienta según la normal superior (exterior a la esfera). Calcule el flujo de $\nabla\times\vec{F}$ a través de S donde $\vec{F}(x,y,z)=(e^z-x^2y)\hat{i}+(z+xy^2)\hat{j}+y^2\sqrt{1+z^4}\hat{k}$

Pregunta 4. Se define el campo eléctrico generado por una carga Q como $\vec{E}(\vec{r}) = \frac{Q}{4\pi\epsilon_0} \frac{\vec{r}}{||\vec{r}||^3}$.

- a) Calcule el flujo de campo eléctrico generado por una carga Q en el orígen, a través del manto del cilindro de ecuación: $x^2+y^2=a^2$ con a>0
- a) Generalicemos el resultado anterior, sea Ω una región simple sólida en \mathbb{R}^3 y S su frontera. Demuestre que:

$$\iint_{S} \vec{E} \cdot d\vec{S} = \begin{cases} 0 & \text{si } (0,0,0) \not\in \Omega \\ \frac{Q}{\epsilon_{0}} & \text{si } (0,0,0) \in \Omega \end{cases}$$

Este resultado se conoce como el Teorema de Gauss

Pregunta 5. La presión a una profundidad h en un estanque es $p(h) = p_0 + \rho_0 g h$ con ρ_0 la densidad del líquido, p_0 la presión atmosférica y g la aceleración de gravedad. La fuerza neta experimentada por un cuerpo Ω sumergido en el líquido viene dada por:

$$\vec{F} = \iint_{\partial\Omega} p\hat{n}dS$$

Calcule $\vec{F} \cdot \hat{e}$ para $\hat{e} = \hat{i}, \hat{j}, \hat{k}$ y deduzca el *Principio de Arquímides*:

$$\vec{F} = \rho_0 g \operatorname{Vol}(\Omega) \hat{k}$$

Pregunta 6. Sea $\Omega \subset \mathbb{R}^3$ un abierto conexo por caminos de frontera regular $\partial \Omega = \Sigma_1 \cup \Sigma_2$. Considere la ecuación del calor en régimen estacionario con condiciones de borde mixtas:

$$(ECM) \begin{cases} \Delta u = 0 & \text{en } \Omega \\ u = T_0 & \text{sobre } \Sigma_1 \\ \frac{\partial u}{\partial \hat{n}} = -\alpha u & \text{sobre } \Sigma_2 \end{cases}$$

donde $\alpha > 0$ y $T_0 \ge 0$ son constantes conocidas.

a) Pruebe que en el caso $T_0 = 0$ se tiene $u \equiv 0$ en todo Ω . Indicación: Pruebe que en este caso se tiene:

$$\iiint_{\Omega}||\nabla u||^2dV+\alpha\iint_{\Sigma_2}u^2dA=0$$

- b) Deduzca que la ecuación (ECM) posee a lo más una solución.
- c) Resuelva (ECM) para el caso $\Omega = \{ \vec{r} \in \mathbb{R}^3 : a < ||\vec{r}|| < b \}$ con $0 < a < b, \Sigma_1 = S(0, a), \Sigma_2 = S(0, b)$

Indicación: Suponga que la solución tiene simetría esférica.