
Chapter 2

Convex functions

2.1 Basic properties and examples

2.1.1 Definition

A function f : Rn → R is convex if dom f is a convex set and if for all x, y ∈ dom f , and
θ with 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (2.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and (y, f(y))
(i.e., the chord from x to y) lies above the graph of f (figure 2.1). A function f is strictly
convex if strict inequality holds in (2.1) whenever x �= y and 0 < θ < 1. We say f is concave
if −f is convex, and strictly concave if −f is strictly convex.

For an affine function we always have equality in (2.1), so all affine (and therefore also
linear) functions are both convex and concave. Conversely, any function that is convex and
concave is affine.

A function is convex if and only if it is convex when restricted to any line that intersects
its domain. In other words f is convex if and only if for all x ∈ dom f and all v, the function

(x, f(x))

(y, f(y))

Figure 2.1: Graph of a convex function. The chord (i.e., line segment) between
any two points on the graph lies above the graph.
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44 CHAPTER 2. CONVEX FUNCTIONS

h(t) = f(x + tv) is convex (on its domain, {t | x + tv ∈ dom f}). This property is very
useful, since it allows us to check whether a function is convex by restricting it to a line.

The analysis of convex functions is a well developed field, which we will not pursue in
any depth. One simple result, for example, is that a convex function is continuous on the
relative interior of its domain; it can have discontinuities only on its relative boundary.

2.1.2 Extended-valued extensions

It is often convenient to extend a convex function to all of Rn by defining its value to be ∞
outside its domain. If f is convex we define its extended-valued extension f̃ : Rn → R∪{∞}
by

f̃(x) =

{
f(x) x ∈ dom f,
+∞ x �∈ dom f.

The extension f̃ is defined on all Rn, and takes values in R ∪ {∞}. We can recover the
domain of the original function f from the extension f̃ as dom f = {x | f̃(x) < ∞}.

The extension can simplify notation, since we do not have to explicitly describe the
domain, or add the qualifier ‘for all x ∈ dom f ’ every time we refer to f(x). Consider, for
example, the basic defining inequality (2.1). In terms of the extension f̃ , we can express it
as: for 0 < θ < 1,

f̃(θx+ (1− θ)y) ≤ θf̃(x) + (1− θ)f̃(y)

for any x and y. Of course here we must interpret the inequality using extended arithmetic
and ordering. For x and y both in dom f , this inequality coincides with (2.1); if either is
outside dom f , then the righthand side is ∞, and the inequality therefore holds. As another
example of this notational device, suppose f1 and f2 are two convex functions on Rn. The
pointwise sum f = f1 + f2 is the function with domain dom f = dom f1 ∩ dom f2, with
f(x) = f1(x)+f2(x) for any x ∈ dom f . Using extended valued extensions we can simply say
that for any x, f̃(x) = f̃1(x)+ f̃2(x). In this equation the domain of f has been automatically
defined as dom f = dom f1∩dom f2, since f̃(x) = ∞ whenever x �∈ dom f1 or x �∈ dom f2.
In this example we are relying on extended arithmetic to automatically define the domain.

In this book we will use the same symbol to denote a convex function and its extension,
whenever there is no harm from the ambiguity. This is the same as assuming that all convex
functions are implicitly extended, i.e., are defined as ∞ outside their domains.

Example 2.1 Indicator function of a convex set. Let C ⊆ Rn be a convex set, and
consider the (convex) function IC with domain C and IC(x) = 0 for all x ∈ C. In other
words, the function is identically zero on the set C. Its extended valued extension is
given by

ĨC(x) =

{
0 x ∈ C
∞ x �∈ C

The convex function ĨC is called the indicator function of the set C.

We can play several notational tricks with the indicator function ĨC . For example the
problem of minimizing a function g (defined on all of Rn, say) on the set C is the same
as minimizing the function g + ĨC over all of Rn. Indeed, the function g + ĨC is (by
our convention) g restricted to the set C.

December 19, 2001



2.1. BASIC PROPERTIES AND EXAMPLES 45

y
x

f(y)
f(x) +∇f(x)T (y − x)

Figure 2.2: If f is convex and differentiable, then f(x) + ∇f(x)T (y − x) ≤ f(y)
for all x, y ∈ dom f .

In a similar way we can extend a concave function by defining it to be −∞ outside its
domain.

2.1.3 First order conditions

Suppose f is differentiable (i.e., its gradient ∇f exists at each point in dom f , which is
open). Then f is convex if and only if dom f is convex and

f(y) ≥ f(x) +∇f(x)T (y − x) (2.2)

holds for all x, y ∈ dom f . This inequality is illustrated in figure 2.2.
The affine function of y given by f(x)+∇f(x)T (y−x) is, of course, the first order Taylor

approximation of f near x. The inequality (2.2) states that for a convex function, the first
order Taylor approximation is in fact global underestimator of the function. Conversely, if
the first order Taylor approximation of a function is always a global underestimator of the
function, then the function is convex.

The inequality (2.2) shows that from local information about a convex function (i.e., its
derivative at a point) we can derive global information (i.e., a global underestimator of it).
This is perhaps the most important property of convex functions, and explains some of the
remarkable properties of convex functions and convex optimization problems.

Proof. To prove (2.2), we first consider the case n = 1, i.e., show that a differentiable
function f : R→ R is convex if and only if

f(y) ≥ f(x) + f ′(x)(y − x) (2.3)

for all x and y.

Assume first that f is convex. Then for all 0 < t ≤ 1 we have

f(x+ t(y − x)) ≤ (1 − t)f(x) + tf(y).
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46 CHAPTER 2. CONVEX FUNCTIONS

If we divide both sides by t, we obtain

f(y) ≥ f(x) +
f(x+ t(y − x)) − f(x)

t
,

and the limit as t → 0 yields (2.3).

To show sufficiency, assume the function satisfies (2.3) for all x and y. Choose any
x �= y, and 0 ≤ θ ≤ 1, and let z = θx+ (1 − θ)y. Applying (2.3) twice yields

f(x) ≥ f(z) + f ′(z)(x− z), f(y) ≥ f(z) + f ′(z)(y − z).

Multiplying the first inequality by θ, the second by 1 − θ, and adding them yields

θf(x) + (1 − θ)f(y) ≥ f(z),

which proves that f is convex.

Now we can prove the general case, with f : Rn → R. Let x, y ∈ Rn and consider
f restricted to the line passing through them, i.e., the function defined by g(t) =
f(ty + (1 − t)x), so g′(t) = ∇f(ty + (1 − t)x)T (y − x).

First assume f is convex, which implies g is convex, so by the argument above we have
g(1) ≥ g(0) + g′(0), which means

f(y) ≥ f(x) + ∇f(x)T (y − x).

Now assume that this inequality holds for any x and y, so if ty+(1− t)x ∈ dom f and
t̃y + (1 − t̃)x ∈ dom f , we have

f(ty + (1 − t)x) ≥ f(t̃y − (1 − t̃)x) + ∇f(t̃y − (1 − t̃)x)T (y − x)(t− t̃),

i.e., g(t) ≥ g(t̃) + g′(t̃)(t− t̃). We have seen that this implies that g is convex.

For concave functions we have the corresponding characterization: f is concave if and
only if dom f is convex and

f(y) ≤ f(x) +∇f(x)T (y − x)

for all x, y ∈ dom f .
Strict convexity can also be characterized by a first-order condition: f is strictly convex

if and only if dom f is convex and for x, y ∈ dom f , x �= y, we have

f(y) > f(x) +∇f(x)T (y − x). (2.4)

2.1.4 Second order conditions

We now assume that f is twice differentiable, i.e., its Hessian or second derivative ∇2f exists
at each point in dom f , which is open. Then f is convex if and only if dom f is convex and
its Hessian is positive semidefinite:

∇2f(x) � 0
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2.1. BASIC PROPERTIES AND EXAMPLES 47

for all x ∈ dom f . For a function on R, this reduces to the simple condition f ′′(x) ≥ 0 (and
dom f convex, i.e., an interval). (The general second order condition is readily proved by
reducing it to the case of f : R → R). Similarly, f is concave if and only dom f is convex
and ∇2f(x) � 0 for all x ∈ dom f .

Strict convexity can be partially characterized by second order conditions. If ∇2f(x) � 0
for all x ∈ dom f , then f is strictly convex. The converse, however, is not true: the function
f : R→ R given by f(x) = x4 is strictly convex but has zero second derivative at x = 0.

Example 2.2 Quadratic functions. Consider the quadratic function f : Rn → R,
with dom f = Rn, given by

f(x) = xTPx+ 2qTx+ r,

with P ∈ Sn, q ∈ Rn, and r ∈ R. Since ∇2f(x) = 2P for all x, f is convex if and only
if P � 0 (and concave if and only if P � 0).

For quadratic functions, strict convexity is easily characterized: f is strictly convex if
and only if P � 0 (and strictly concave if and only if P ≺ 0).

Remark 2.1 The separate requirement that dom f be convex cannot be dropped from
the first or second order characterizations of convexity and concavity. For example,
the function f(x) = 1/x2, with dom f = {x ∈ R | x �= 0}, satisfies f ′′(x) > 0 for all
x ∈ dom f , but is not a convex function.

2.1.5 Examples

We have already mentioned that all linear and affine functions are convex (and concave),
and have described the convex and concave quadratic functions. In this section we give a
few more examples of convex and concave functions. We start with some functions on R,
with variable x.

• Exponential. eax is convex on R.

• Powers. xa is convex on R++ when a ≥ 1 or a ≤ 0, and concave for 0 ≤ a ≤ 1.

• Powers of absolute value. |x|p, for p ≥ 1, is convex on R.

• Logarithm. log x is concave on R++.

• Negative entropy. x log x (either on R++, or defined as 0 for x = 0) is convex.

Convexity or concavity of these examples can be shown by verifying the basic inequal-
ity (2.1), or by checking that the second derivative is nonnegative or nonpositive. For
example, with f(x) = x log x we have

f ′(x) = log x+ 1, f ′′(x) = 1/x,

so that f ′′(x) > 0 for x > 0. This shows that the negative entropy function is (strictly)
convex.

We now give a few interesting examples of functions on Rn.
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48 CHAPTER 2. CONVEX FUNCTIONS

• Norms. Every norm on Rn is convex.

• Max function. f(x) = max{x1, . . . , xn} is convex on Rn.

• Quadratic-over-linear function. The function f(x, y) = x2/y, with dom f = {(x, y) ∈
R2|y > 0}, is convex.

• Log-sum-exp. The function f(x) = log (ex1 + · · ·+ exn) is convex on Rn. This function
can be interpreted as a smooth approximation of the max function, since

max{x1, . . . , xn} ≤ f(x) ≤ max{x1, . . . , xn}+ log n

for all x. (The second inequality is sharp when all components of x are equal.)

• Geometric mean. The geometric mean f(x) = (
∏n
i=1 xi)

1/n is concave on dom f =
Rn

++.

• Log determinant. The function f(X) = log detX−1 is convex on dom f = Sn++.

Convexity (or concavity) of these examples can be verified several ways, such as directly
verifying the inequality (2.1), verifying that the Hessian is positive semidefinite, or restricting
the function to an arbitrary line and verifying convexity of the resulting function of one
variable.

Norms

If f : Rn → R is a norm, and 0 ≤ θ ≤ 1, then

f(θx+ (1− θ)y) ≤ f(θx) + f((1− θ)y) = θf(x) + (1− θ)f(y),

since by definition a norm is homogeneous and satisfies the triangle inequality.

Max function

The function f(x) = maxi xi satisfies, for 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) = max
i

(θxi + (1− θ)yi)

≤ θmax
i

xi + (1− θ)max
i

yi

= θf(x) + (1− θ)f(y).

Quadratic-over-linear function

To show that the quadratic-over-linear function f(x, y) = x2/y is convex, we note that (for
y > 0),

∇2f(x, y) =
2

y3

[
y2 −xy
−xy x2

]
=

2

y3

[
y
−x

] [
y
−x

]T
� 0.
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2.1. BASIC PROPERTIES AND EXAMPLES 49

Log-sum-exp

The Hessian of the log-sum-exp function is

∇2f(x) =
1

(1T z)2

(
(1T z)diag(z)− zzT

)

where z = (ex1 , . . . , exn). To verify that ∇2f(x) � 0 we must show that vT∇2f(x)v ≥ 0 for
all v, i.e.,

vT∇2f(x)v =
1

(1T z)2


(∑

i

zi

)(∑
i

v2
i zi

)
−
(∑

i

vizi

)2

 ≥ 0.

But this follows from the Cauchy-Schwarz inequality (aTa)(bT b) ≥ (aT b)2 applied to the
vectors with components ai = vi

√
zi, bi =

√
zi.

Geometric mean

In a similar way we can show that the geometric mean f(x) = (
∏n
i=1 xi)

1/n is concave on
dom f = Rn

++. Its Hessian ∇2f(x) is given by

∂2f(x)

∂x2
k

= −(n− 1)
(
∏
i xi)

1/n

n2x2
k

,
∂2f(x)

∂xk∂xl
=

(
∏
i xi)

1/n

n2xkxl
(k �= l),

and can be expressed as

∇2f(x) = −
∏
i x

1/n
i

n2

(
ndiag(1/x2

1, . . . , 1/x
2
n)− qqT

)

where qi = 1/xi. We must show that ∇2f(x) � 0, i.e., that

vT∇2f(x)v = −
∏
i x

1/n
i

n2


n∑

i

v2
i /x

2
i −

(∑
i

vi/xi

)2

 ≤ 0

for all v. Again this follows from the Cauchy-Schwarz inequality (aTa)(bT b) ≥ (aT b)2, applied
to the vectors a = 1 and bi = vi/xi.

Log-determinant

For the function f(X) = log detX−1, we can verify convexity by considering an arbitrary
line, given by X = Z + tV , where Z, V ∈ Sn. We define g(t) = f(Z + tV ), and restrict g to
the interval of values of t for which Z + tV � 0. Without loss of generality, we can assume
that t = 0 is inside this interval, i.e., Z � 0. We have

g(t) = − log det(Z + tV )

= − log detZ1/2
(
I + tZ−1/2V Z−1/2

)
Z1/2

= −
n∑
i=1

log(1 + tλi)− log detZ
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50 CHAPTER 2. CONVEX FUNCTIONS

where λ1, . . . , λn are the eigenvalues of Z−1/2V Z−1/2. Therefore we have

g′(t) = −
n∑
i=1

λi
1 + tλi

, g′′(t) =
n∑
i=1

λ2
i

(1 + tλi)2
.

Since g′′(t) ≥ 0, we conclude that f is convex.

2.1.6 Sublevel sets

The α-sublevel set of a function f : Rn → R is defined as

Cα = {x ∈ dom f | f(x) ≤ α}.
Sublevel sets of a convex function are convex, for any value of α. The proof is immediate from
the definition of convexity: if x, y ∈ Cα, i.e., f(x) ≤ α, and f(y) ≤ α, then f(θx+(1−θ)y) ≤
α for 0 ≤ θ ≤ 1, and hence θx+ (1− θ)y ∈ Cα.

The converse is not true; a function can have all its sublevel sets convex, but not be a
convex function. For example, f(x) = −ex is not convex on R (indeed, it is strictly concave)
but all its sublevel sets are convex.

If f is concave, then its α-superlevel set, given by {x | f(x) ≥ α}, is convex.
Example 2.3 The geometric and arithmetic means of x ∈ Rn

++ are, respectively,

G(x) =

(
n∏
i=1

xi

)1/n

, A(x) =
1
n

n∑
i=1

xi.

The geometric-arithmetic mean inequality states that G(x) ≤ A(x).

Suppose 0 ≤ α ≤ 1, and consider the set

{x ∈ Rn
+ | G(x) ≥ αA(x)},

i.e., the set of vectors with geometric mean no more than a factor α smaller than
arithmetic mean. This set is convex, since it is the 0-superlevel set of the function
G(x) − αA(x), which is concave. In fact, the set is positively homogeneous, so it is a
convex cone.

2.1.7 Epigraph

The graph of a function f : Rn → R is defined as

{(x, f(x)) | x ∈ dom f},
which is a subset of Rn+1. The epigraph of a function f : Rn → R is defined as

epi f = {(x, t) | x ∈ dom f, f(x) ≤ t }.
(‘Epi’ means ‘above’ so epigraph means ‘above the graph’.) The definition is illustrated in
figure 2.3.

The link between convex sets and convex functions is via the epigraph: A function is
convex if and only if its epigraph is a convex set. Similarly, a function is strictly convex if
and only if its epigraph is a strictly convex set.
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x

t

epi f

Figure 2.3: The epigraph of a function f . The boundary, shown darker, is the
graph of f .

Example 2.4 Matrix fractional function. The function f : Rn × Sn → R, defined as

f(x, Y ) = xTY −1x

is convex on dom f = Rn × Sn++. (This generalizes the quadratic-over-linear function
x2/y, where x, y ∈ R, y > 0.)

One easy way to establish convexity of f is via its epigraph:

epi f =
{
(x, Y, t)

∣∣∣ Y � 0, xTY −1x ≤ t
}

=

{
(x, Y, t)

∣∣∣∣∣
[

Y x
xT t

]
� 0, Y � 0

}

The last condition is a linear matrix inequality in (x, Y, t), and therefore is convex.

A function is concave if and only if its hypograph, defined as

hypo f = {(x, t) | t ≤ f(x)},
is a convex set.

Many results for convex functions can be proved (or interpreted) geometrically using
epigraphs, and applying results for convex sets. For example, we can interpret the inequal-
ity (2.2) geometrically as follows:

(y, t) ∈ epi f =⇒ t ≥ f(x) +∇f(x)T (y − x)

⇐⇒
[ ∇f(x)

−1

]T [
y − x

t− f(x)

]
≤ 0.

This means that the hyperplane defined by (∇f(x),−1) supports epi f at the boundary
point (x, f(x)); see figure 2.4.
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epi f

(∇f(x),−1)

Figure 2.4: For a convex function f , the vector (∇f(x),−1) defines a supporting
hyperplane to the epigraph of f at x.

2.1.8 Jensen’s inequality and extensions

The basic inequality (2.1), i.e.,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y),

is sometimes called Jensen’s inequality. It is easily extended to convex combinations of more
than two points: If f is convex, x1, . . . , xk ∈ dom f and θ1, . . . , θk ≥ 0 with θ1+ · · ·+θk = 1,
then

f(θ1x1 + · · ·+ θkxk) ≤ θ1f(x1) + · · ·+ θkf(xk).

As in the case of convex sets, the inequality extends to infinite sums, integrals, and expected
values. For example, if p(x) ≥ 0 on S ⊆ dom f ,

∫
S p(x) dx = 1, then

f
(∫

S
p(x)x dx

)
≤
∫
S
f(x)p(x) dx

provided the integrals exist. In the most general case we can take any probability measure
with support in dom f . If x is a random variable such that x ∈ dom f with probability one,
and f is convex, then we have

f(E x) ≤ E f(x), (2.5)

provided the expectations exist. We can recover the basic inequality (2.1) from this general
form, by taking the random variable x to have support {x1, x2}, with Prob(x = x1) = θ,
Prob(x = x2) = 1 − θ. Thus the inequality (2.5) characterizes convexity: If f is not
convex, there is a random variable x, with x ∈ dom f with probability one, such that
f(E x) > E f(x).

All of these inequalities are now called Jensen’s inequality, even though the inequality
studied by Jensen was the very simple one

f((x+ y)/2) ≤ f(x) + f(y)

2
.
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Remark 2.2 We can interpret (2.5) as follows. Suppose x ∈ dom f ⊆ Rn and z is
any zero-mean random vector in Rn. Then we have

E f(x+ z) ≥ f(x).

Thus, randomization or dithering (i.e., adding a zero mean random vector to the
argument) cannot decrease the value of a convex function on average.

2.1.9 Inequalities

Many famous inequalities can be derived by applying Jensen’s inequality to some appropriate
convex function. (Indeed, convexity and Jensen’s inequality can be made the foundation of
a theory of inequalities.) As a simple example, consider the arithmetic-geometric mean
inequality: √

ab ≤ 1

2
(a+ b) (2.6)

for a, b ≥ 0. The function f(x) = − log x is convex; Jensen’s inequality with θ = 1/2 yields

f((a+ b)/2) = − log(a+ b)/2 ≤ − log a− log b

2
=

f(a) + f(b)

2
.

Taking the exponential of both sides yields (2.6).
As a less trivial example we prove Hölder’s inequality: for p > 1, 1/p+ 1/q = 1,

n∑
i=1

xiyi ≤
(

n∑
i=1

|xi|p
)1/p ( n∑

i=1

|yi|q
)1/q

.

By convexity of − log x, and Jensen’s inequality with general θ, we obtain the more general
arithmetic-geometric mean inequality

aθb1−θ ≤ θa+ (1− θ)b,

valid for a, b ≥ 0 and 0 ≤ θ ≤ 1. Applying this with

a =
|xi|p∑n
j=1 |xj|p

, b =
|yi|q∑n
j=1 |yj|q

, θ = 1/p,

yields ( |xi|p∑n
j=1 |xj|p

)1/p ( |yi|q∑n
j=1 |yj|q

)1/q

≤ |xi|p
p
∑n

j=1 |xj|p
+

|yi|q
q
∑n

j=1 |yj|q
.

Summing over i then yields the Hölder inequality.

2.2 Operations that preserve convexity

In this section we describe some operations that preserve convexity or concavity of functions,
or allow us to construct new convex and concave functions. We start with some simple
operations such as addition, scaling, and pointwise supremum, and then describe some more
sophisticated operations (some of which include the simple operations as special cases).
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2.2.1 Nonnegative weighted sums

Evidently if f is a convex function and α ≥ 0, then the function αf is convex. If f1 and f2

are both convex functions, then so is their sum f1 + f2. Combining nonnegative scaling and
addition, we see that the set of convex functions is itself a cone: a nonnegative weighted sum
of convex functions,

f = w1f1 + · · ·+ wmfm,

is convex. Similarly, a nonnegative weighted sum of concave functions is concave. A non-
negative, nonzero weighted sum of strictly convex (concave) functions is strictly convex
(concave).

These properties extend to infinite sums and integrals. For example if f(x, y) is convex
in x for each y ∈ A, and w(y) ≥ 0 for each y ∈ A, then the function g defined as

g(x) =
∫
A
w(y)f(x, y) dy

is convex in x.
The fact that convexity is preserved under nonnegative scaling and addition is easily

verified directly, or can be seen in terms of the associated epigraphs. For example, if w ≥ 0
and f convex, we have

epi(wf) =

[
I 0
0 w

]
epi f,

which is convex because the image of a convex set under a linear mapping is convex.

2.2.2 Composition with an affine mapping

Suppose f : Rn → R, A ∈ Rn×m, and b ∈ Rn. Define g : Rm → R by

g(x) = f(Ax+ b)

with dom g = {x | Ax+ b ∈ dom f}. Then if f is convex, so is g; if f is concave, so is g.
It is easy to directly establish the defining inequality (2.1). We can also establish the

result using epigraphs. Suppose f is convex, so epi f is convex. The epigraph of g is

epi g = {(x, t) | (x, y) ∈ A, (y, t) ∈ epi f for some y},
where A = {(x, y) | y = Ax+ b}. Hence epi g is the projection on the (x, t) subspace of the
set

{(x, t, y) | (x, y) ∈ A, (y, t) ∈ epi f},
which is the intersection of two convex sets. Hence, epi g is convex.

2.2.3 Pointwise maximum and supremum

If f1 and f2 are convex functions then their pointwise maximum f , defined by

f(x) = max{f1(x), f2(x)},
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with dom f = dom f1∩dom f2, is also convex. This property is easily verified: if 0 ≤ θ ≤ 1
and x, y ∈ dom f , then

f(θx+ (1− θ)y) = max{f1(θx+ (1− θ)y), f2(θx+ (1− θ)y)}
≤ max{θf1(x) + (1− θ)f1(y), θf2(x) + (1− θ)f2(y)}
≤ θmax{f1(x), f2(x)}+ (1− θ)max{f1(y), f2(y)}
= θf(x) + (1− θ)f(y),

which establishes convexity of f . It is easily shown that if f1, . . . , fm are convex, then their
pointwise maximum

f(x) = max{f1(x), . . . , fm(x)}
is also convex.

Example 2.5 Piecewise linear functions. The function

f(x) = max
i=1,...,L

{aTi x+ bi}

defines a piecewise linear (or really, affine) function (with L or fewer regions). It is
convex since it is the pointwise maximum of affine functions.

The converse can also be shown: any piecewise linear convex function with L or fewer
regions can be expressed in this form. (See exercise 2.34.)

Example 2.6 Sum of r largest components. For x ∈ Rn we denote by x[i] the ith
largest component of x, i.e., x[1], x[2], . . . , x[n] are the components of x sorted in de-
creasing order. Then the function

f(x) =
r∑
i=1

x[i],

i.e., the sum of the r largest elements of x, is a convex function. This can be seen by
writing it as

f(x) =
r∑
i=1

x[i] = max
1≤i1<i2<···<ir≤n

xi1 + · · · + xir

which is the pointwise maximum of n!/(r!(n− r)!) linear functions.

As an extension it can be shown that the function
∑r

i=1 wix[i] is convex, provided
w1 ≥ w2 ≥ · · · ≥ wn ≥ 0. (See exercise 2.20.)

The pointwise maximum property extends to the pointwise supremum over an infinite
set of convex functions. If for each y ∈ A, f(x, y) is convex in x, then the function g, defined
as

g(x) = sup
y∈A

f(x, y) (2.7)

is convex in x. Here the domain of g is (by our extended valued function convention)

dom g =

{
x

∣∣∣∣∣ (x, y) ∈ dom f for all y ∈ A, sup
y∈A

f(x, y) < ∞
}
.
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Similarly, the pointwise infimum of a set of concave functions is a concave function.
In terms of epigraphs, the pointwise supremum of functions corresponds to the intersec-

tion of epigraphs: with f , g, and A as defined in (2.7), we have

epi g =
⋂
y∈A

epi f(·, y).

Thus, the result follows from the fact that the intersection of a family of convex sets is
convex.

Example 2.7 Support function of a set. Let C ⊆ Rn, with C �= ∅. The support
function SC associated with the set C is defined as

SC(x) = sup{ xT y | y ∈ C }

(and, naturally, domSC = { x | supy∈C xT y < ∞ }).
For each y ∈ C, xT y is a linear function of x, so SC (which is the pointwise supremum
of a family of linear functions) is convex.

Example 2.8 Distance to farthest point of a set. Let C ⊆ Rn. The distance (in any
norm) to the farthest point of C,

f(x) = sup
y∈C

‖x− y‖,

is convex. To see this, note that for any y, the function ‖x− y‖ is convex in x. Since
f is the pointwise supremum of a family of convex functions (indexed by y ∈ C), it is
a convex function of x.

Example 2.9 Least-squares cost as a function of weights. Let a1, . . . , an ∈ Rm. In a
weighted least-squares problem we minimize the objective function

∑n
i=1 wi(aTi x− bi)2

over x ∈ Rm. We refer to wi as weights, and allow negative wi (which opens the
possibility that the objective function is unbounded below).

We define the (optimal) weighted least-squares cost as

g(w) = inf
x

n∑
i=1

wi(aTi x− bi)2

(which is −∞ if
∑

iwi(aTi x− bi)2 is unbounded below).

Then g is a concave function of w ∈ Rn, since it is the infimum of a family of linear
functions of w (indexed by x ∈ Rm).

In fact we can derive an explicit expression for g:

g(w) =

{ ∑n
i=1 wib

2
i

(
1 − wia

T
i F

†ai
)
, F =

∑n
i=1 wiaia

T
i � 0,

−∞ otherwise,

where X† is the pseudo-inverse of a matrix X. Concavity of g from this expression is
not obvious.
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Example 2.10 Maximum eigenvalue of a symmetric matrix. The function f(X) =
λmax(X), with dom f = Sm, is convex. To see this, we express f as

f(X) = sup
{
yTXy

∣∣∣ ‖y‖2 = 1
}
,

i.e., as the pointwise supremum of (an infinite number of) linear functions of X (i.e.,
yTXy) indexed by y ∈ Rm.

Example 2.11 Norm of a matrix. Consider f(X) = ‖X‖2 with dom f = Rp×q,
where ‖ · ‖2 denotes the spectral norm or maximum singular value. Convexity of f
follows from

f(X) = sup{uTXv | ‖u‖2 ≤ 1, ‖v‖2 ≤ 1},
which shows it is the pointwise supremum of a family of affine functions of X.

As a generalization suppose ‖ · ‖a and ‖ · ‖b are norms on Rp and Rq, respectively.
Then the induced norm

‖X‖a,b = sup
v 	=0

‖Xv‖a
‖v‖b

is a convex function of X ∈ Rp×q, since it can be expressed as

f(X) = sup{uTXv | ‖u‖a∗ ≤ 1, ‖v‖b ≤ 1},

where ‖ · ‖a∗ is the dual norm of ‖ · ‖a.

These examples illustrate a good method for establishing convexity of a function, i.e., by
expressing it as the pointwise supremum of a family of affine functions. Except for a technical
condition, a sort of converse holds, i.e., (almost) every convex function can be expressed as
the pointwise supremum of a family of affine functions. As an example of a simple result, if
f : Rn → R is convex, with dom f = Rn, then

f(x) = sup{ g(x) | g affine, g(z) ≤ f(z) for all z }.
In other words, f is the pointwise supremum of the set of all affine global underestimators
of it. We give the proof of this result below, and leave the case where dom f �= Rn to the
exercises.

Proof. Suppose f is convex with dom f = Rn. The inequality

f(x) ≥ sup{ g(x) | g affine, g(z) ≤ f(z) for all z }

is clear, since if g is any affine underestimator of f , we have g(x) ≤ f(x). To establish
equality, we will show that for each x ∈ Rn, there is an affine function g, which is
global underestimator of f , and satisfies g(x) = f(x).

The epigraph of f is, of course, a convex set. Hence we can find a supporting hyperplane
to it at (x, f(x)), i.e., a ∈ Rn and b ∈ R with (a, b) �= 0 and

[
a
b

]T [
x− z

f(x) − t

]
≤ 0
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for all (z, t) ∈ epi f . This means that

aT (x− z) + b(f(x) − f(z) − s) ≤ 0 (2.8)

for all z ∈ dom f = Rn and all s ≥ 0 (since (z, t) ∈ epi f means t = f(z) + s for some
s ≥ 0). For the inequality (2.8) to hold for all s ≥ 0, we must have b ≥ 0. If b = 0, then
the inequality (2.8) reduces to aT (x − z) ≤ 0 for all z ∈ Rn, which implies a = 0 and
contradicts (a, b) �= 0. We conclude that b > 0, i.e., that the separating hyperplane is
not vertical.

Using the fact that b > 0 we rewrite (2.8) as

g(z) = f(x) + (a/b)T (x− z) ≤ f(z)

for all z. The function g is an affine underestimator of f , and satisfies g(x) = f(x).

2.2.4 Composition

In this section we examine conditions on h : Rk → R and g : Rn → Rk that guarantee
convexity or concavity of their composition f = h ◦ g : Rn → R, defined by

f(x) = h(g(x)), dom f = { x ∈ dom g | g(x) ∈ domh }.

Scalar composition

We first consider the case k = 1, so h : R → R and g : Rn → R. We can restrict ourselves
to the case n = 1 (since convexity is determined by the behavior of a function on arbitrary
lines that intersect its domain).

To discover the composition rules, we start by assuming that h and g are twice differen-
tiable, with dom g = domh = R. In this case, convexity of f reduces to f ′′ ≥ 0 (meaning,
f ′′(x) ≥ 0 for all x ∈ R).

The second derivative of the composition function f = h ◦ g is given by

f ′′(x) = (g′(x))2h′′(g(x)) + g′′(x)h′(g(x)). (2.9)

Now suppose, for example, that g is convex (so g′′ ≥ 0) and h is convex and nondecreasing
(so h′′ ≥ 0 and h′ ≥ 0). It follows from (2.9) that f ′′ ≥ 0, i.e., f is convex. In a similar way,
the expression (2.9) gives the results

f is convex if g is convex and h is convex and nondecreasing

f is convex if g is concave and h is convex and nonincreasing

f is concave if g is concave and h is concave and nondecreasing

f is concave if g is convex and h is concave and nonincreasing

(2.10)

which are valid when the functions g and h are twice differentiable and have domains that
are all of R.
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There are very similar composition rules in the general case n > 1, without assuming
differentiability of h and g, or that dom g = Rn and domh = R:

f is convex if g is convex, h is convex, and h̃ is nondecreasing

f is convex if g is concave, h is convex, and h̃ is nonincreasing

f is concave if g is concave, h is concave, and h̃ is nondecreasing

f is concave if g is convex, h is concave, and h̃ is nonincreasing

(2.11)

where h̃ denotes that extended value extension of h. The only difference between these
results, and the results (2.10), is that we require that the extended value extension function
h be nonincreasing or nondecreasing.

To understand what this means, suppose h is convex, so h̃ takes on the value +∞ outside
domh. To say that h̃ is nondecreasing means that for any x, y ∈ R, with x < y, we have
h̃(x) ≤ h̃(y). In particular, this means that if y ∈ dom f , then x ∈ dom f . In other words,
the domain of h extends infinitely in the negative direction; it is either R, or interval of the
form (−∞, a) or (−∞, a]. In a similar way, to say that h̃ is nonincreasing means that h is
nonincreasing and domh extends infinitely in the positive direction. When the function h
is concave, h̃ takes on the value −∞ outside domh, and h̃ is nonincreasing means that h is
nonincreasing and domh extends infinitely in the negative direction.

Example 2.12 • The function h(x) = log x, with domh = {x ∈ R | x > 0}, is
concave and satisfies h̃ nondecreasing.

• The function h(x) = x1/2, with domh = R+, is concave and satisfies the condi-
tion h̃ nondecreasing.

• The function h(x) = x3/2, with domh = R+, is convex but does not satisfy the
condition h̃ nondecreasing. For example, we have h̃(−1) = ∞, but h̃(1) = 1.

• The function h(x) = x3/2 for x ≥ 0, and h(x) = 0 for x < 0, with domh = R, is
convex and does satisfy the condition h̃ nondecreasing.

The composition results (2.11) can be proved directly, without assuming differentiability,
or using the formula (2.9). For example, suppose g is convex and h̃ is convex and non-
decreasing. Assume that x, y ∈ dom f , and 0 ≤ θ ≤ 1. Since x, y ∈ dom f , we have
that x, y ∈ dom g and g(x), g(y) ∈ domh. Since dom g is convex, we conclude that
θx+ (1− θ)y ∈ dom g, and from convexity of g, we have

g(θx+ (1− θ)y) ≤ θg(x) + (1− θ)g(y). (2.12)

Since g(x), g(y) ∈ domh, we conclude that θg(x)+(1−θ)g(y) ∈ domh, i.e., the righthand
side of (2.12) is in domh. Now we use the assumption that h̃ is nondecreasing, which means
that its domain extends infinitely in the negative direction. Since the righthand side of (2.12)
is in domh, we conclude that the lefthand side, i.e., g(θx+ (1− θ)y ∈ domh. This means
that θx+ (1− θ)y ∈ dom f . At this point, we have shown that dom f is convex.

Now using the fact that h̃ is nondecreasing and the inequality (2.12), we get

h(g(θx+ (1− θ)y)) ≤ h(θg(x) + (1− θ)g(y)). (2.13)
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From convexity of h, we have

h(θg(x) + (1− θ)g(y)) ≤ θh(g(x)) + (1− θ)h(g(y)). (2.14)

Putting (2.13) and (2.14) together, we have

h(g(θx+ (1− θ)y)) ≤ θh(g(x)) + (1− θ)h(g(y)).

which proves the composition theorem.

Example 2.13 • If g is convex then f(x) = exp g(x) is convex.

• If g is concave and positive, then log g(x) is concave.

• If g is concave and positive, then 1/g(x) is convex.

• If g is convex and nonnegative and p ≥ 1, then g(x)p is convex.

• If f is convex then − log(−f(x)) is convex on {x | f(x) < 0}.

Remark 2.3 The requirement that the monotonicity hold for the extended valued
extension h̃, and not just the function h, cannot be removed. For example, consider
the function g(x) = x2, with dom g = R, and h(x) = 0, with domh = [1, 2]. Here g
is convex, and h is convex and nondecreasing. But the function f = h ◦ g, given by

f(x) = 0, dom f = [−
√

2, 1] ∪ [1,
√

2]

is not convex, since its domain is not convex. Here, of course, the function h̃ is not
nondecreasing.

Vector composition

We now turn to the more complicated case when k ≥ 1. Suppose

f(x) = h(g1(x), . . . , gk(x))

with h : Rk → R, gi : R
n → R. Again without loss of generality we can assume n = 1.

As in the case k = 1, we start by assuming the functions are twice differentiable, with
dom g = R and domh = Rk, in order to discover the composition rules. We have

f ′′(x) = ∇h(g(x))T



g1(x)

′′
...

gk(x)
′′


+



g1(x)

′
...

gk(x)
′



T

∇2h



g1(x)

′
...

gk(x)
′


 . (2.15)

Again the issue is to determine conditions under which f(x)′′ ≥ 0 for all x (or f(x)′′ ≤ 0 for
all x for concavity). From (2.15) we can derive many rules, for example:

• If h is convex and nondecreasing in each argument, and gi are convex, then f is convex.

• If h is convex and nonincreasing in each argument, and gi are concave, then f is convex.
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• If h is concave and nondecreasing in each argument, and gi are concave, then f is
concave.

As in the scalar case, similar composition results hold in general, with n > 1, no assumption
of differentiability of h or g, and general domains. For the general results, the monotonicity
condition on h must hold for the extended valued extension h̃.

To understand the meaning of the condition that the extended valued extension h̃ be
monotonic, we consider the case where h : Rk → R is convex, and h̃ nondecreasing, i.e.,
whenever u � v, we have h̃(u) ≤ h̃(v). This implies that if v ∈ domh, then so is u; i.e.,
domh−Rk

+ = domh.

Example 2.14 • Let h(z) = z[1] + · · · + z[r], i.e., h is the sum of the r largest
components of z. Then h is convex and nondecreasing in each argument. Suppose
g1, . . . , gk are convex functions on Rn. Then the composition function f = h(g),
i.e., the pointwise sum of the r largest gi’s, is convex.

• h(z) = log
∑

i=1,...,k exp zi is convex and nondecreasing in each argument, so
log

∑
i=1,...,m exp gi is convex whenever gi are.

• For 0 < p ≤ 1, the function h(z) = (
∑
zpi )

1/p on Rn
+ is concave, and its extension

(which has the value −∞ for x �∈ Rn
+) nondecreasing in each component. So if gi

are convex and positive, we conclude that f(x) = (
∑
gi(x)p)1/p is concave.

• For p ≥ 1, the function h defined as

h(z) =

{
(
∑
zpi )

1/p for x ∈ Rn
+,

0 for x �∈ Rn
+,

is convex and nondecreasing. Therefore h(x) = (
∑
gi(x)p)1/p is convex if gi are

convex and positive.
(Note that to apply the composition rule in this case, we needed to extend h as
0 outside Rn

+.)

2.2.5 Minimization

We have seen that the maximum or supremum of an arbitrary family of convex functions is
convex. It turns out that some special forms of minimization also yield convex functions. If
f is convex in (x, y), and C is a convex nonempty set, then the function

g(x) = inf
y∈C

f(x, y) (2.16)

is convex in x. Here, of course, we take

dom g =
{
x

∣∣∣∣ inf
y∈C

f(x, y) > −∞
}

(which can be shown to be convex).
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We prove this by verifying Jensen’s inequality for x1, x2 ∈ dom g. Let ε > 0. Then there
are y1, y2 ∈ C such that f(xi, yi) ≤ g(xi) + ε for i = 1, 2. Now let θ ∈ [0, 1]. Then we have

g(θx1 + (1− θ)x2)) = inf
y∈C

f(θx1 + (1− θ)x2, y)

≤ f(θx1 + (1− θ)x2, θy1 + (1− θ)y2)

≤ θf(x1, y1) + (1− θ)f(x2, y2)

≤ θg(x1) + (1− θ)g(x2) + ε.

Since this holds for any ε > 0, we have

g(θx1 + (1− θ)x2) ≤ θg(x1) + (1− θ)g(x2).

The result can also be seen in terms of epigraphs. With f , g, and C defined as in (2.16),
we have

epi g = {(x, t) | ∃y, (x, y, t) ∈ epi f, y ∈ C}.
Thus epi g is convex, since it is the projection of a convex set on a subset of its components.

Example 2.15 Schur complement. Suppose the quadratic function

f(x, y) = xTAx+ 2xTBy + yTCy,

(where A and C are symmetric) is convex, i.e.,[
A B
BT C

]
� 0.

We can express g(x) = infy f(x, y) as

g(x) = xT (A−BC†BT )x,

where C† is the pseudo-inverse of C. By the minimization rule, g is convex, so we
conclude that A−BC†BT � 0.

(If C is invertible, i.e., C � 0, then the matrix A − BC−1BT is called the Schur

complement of C in the matrix

[
A B
BT C

]
.)

Example 2.16 Distance to a set. The distance of a point x to a set S ⊆ Rn is defined
as

dist(x, S) = inf
y∈S

‖x− y‖.
The function ‖x− y‖ is convex in (x, y), so if the set S is convex, the distance function
dist(x, S) is a convex function of x.

Example 2.17 Suppose h is convex. Then the function g defined as

g(x) = inf{h(y) | Ay = x}
is convex. To see this we define f by

f(x, y) =

{
h(y) if Ay = x
+∞ otherwise,

which is convex in (x, y). Then g is the minimum of f over y, and hence is convex. (It
is not hard to show directly that g is convex.)
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2.2.6 Perspective of a function

If f : Rn → R, then the perspective of f is the function g : Rn+1 → R defined by

g(x, t) = tf(x/t)

for t > 0. Its domain is, naturally,

dom g = {(x, t) | x/t ∈ dom f, t > 0}
(which is easily shown to be convex). If f is convex, then the perspective function g is
convex.

This can be proved several ways, for example, direct verification of the defining inequal-
ity (2.1) (see exercises). We give a short proof here using epigraphs and the perspective
mapping on Rn+1 described in §1.3.3 (which will also explain the name ‘perspective’). For
t > 0 we have

(x, t, s) ∈ epi g ⇐⇒ tf(x/t) ≤ s

⇐⇒ f(x/t) ≤ s/t

⇐⇒ (x/t, s/t) ∈ epi f.

Therefore epi g is the inverse image of epi f under the perspective mapping that takes
(u, v, w) to (u, v)/w. It follows (see §1.3.3) that epi g is convex, so the function g is convex.

Example 2.18 The perspective of the convex function f(x) = xTx on Rn is

g(x, t) = t(x/t)T (x/t) =
xTx

t
,

which is convex in (x, t) for t > 0.

Example 2.19 f(x) = − log x on R++. Then

g(x, t) = −t log(x/t) = t log t− t log x

is convex (in (x, t)). For x = 1, this reduces to the negative entropy function.

From convexity of g we can establish convexity of several interesting related functions.
It follows that the Kullback-Leibler distance (or divergence) between x > 0 and t > 0,
given by

Dkl(x, t) = x log(x/t) − x+ t,

is convex. (Dkl also satisfies Dkl ≥ 0 and Dkl = 0 if and only if x = t; see exercises.)

It also follows that the function
n∑
i=1

(ti log ti − ti log x)

is convex in (x, t1, . . . , tn) (for x, ti > 0). Taking x = 1T t, we conclude that the
normalized negative entropy function,

n∑
i=1

ti log ti − (1T t) log(1T t) =
n∑
i=1

ti
1T t

log
ti
1T t

is convex. (Note that ti/1T t normalizes t to be a probability distribution; the normal-
ized entropy is the entropy of this distribution.)
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Example 2.20 Suppose f : Rm → R is convex, and A ∈ Rm×n, b ∈ Rm, c ∈ Rn,
and d ∈ R. We define

g(x) = (cTx+ d)f
(
(Ax+ b)/(cTx+ d)

)
with

dom g = {x | cTx+ d > 0, (Ax+ b)/(cTx+ d) ∈ dom f}.
Then g is convex.

2.3 The conjugate function

In this section we introduce an operation that will play an important role in later chapters.

2.3.1 Definition and examples

Let f : Rn → R. The function f � : Rn → R, defined as

f �(y) = sup
x∈dom f

(
yTx− f(x)

)
, (2.17)

is called the conjugate of the function f . The domain of the conjugate function consists of
y ∈ Rn for which the supremum is finite, i.e., for which the difference xTy−f(x) is bounded
above on dom f .

We see immediately that f � is a convex function, since it is the pointwise supremum of
a family of convex (indeed, affine) functions of y. This is true whether or not f is convex.
(Note that when f is convex, the subscript x ∈ dom f is not necessary, since by convention,
yTx− f(x) = −∞ for x �∈ dom f .)

We start with some simple examples, and then describe some rules for conjugating func-
tions. This allows us to derive an analytical expression for the conjugate of many common
convex functions.

Example 2.21 We derive the conjugate of some convex functions on R.

• Affine function. f(x) = ax+ b. As a function of x, yx− ax− b is bounded if and
only if y = a, in which case it is constant. Therefore the domain of the conjugate
function f� is the singleton {a}, and f�(a) = −b.

• Logarithm. f(x) = − log x, with dom f = R++. The function xy + log x is
unbounded above if y ≥ 0 and reaches its maximum at x = −1/y otherwise.
Therefore, dom f� = {y | y < 0} and f�(y) = − log(−y) − 1 for y < 0.

• Exponential. f(x) = ex. xy − ex is unbounded if y ≤ 0. For y > 0, xy − ex

reaches its maximum at x = log y, so we have f�(y) = y log y − y. For y = 0,
f�(y) = supx−ex = 0. In summary, dom f� = R+ and f�(y) = y log y − y (with
the interpretation 0 log 0 = 0).

• Negative entropy. f(x) = x log x, with dom f = R+ (and f(0) = 0). The
function xy − x log x is bounded above on R+ for all y, hence dom f� = R. It
attains its maximum at x = ey−1, and substituting we find f�(y) = ey−1.
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• Inverse. f(x) = 1/x on R++. For y > 0, yx − 1/x is unbounded above. For
y = 0 this function has supremum 0; for y < 0 the supremum is attained at
x = (−y)−1/2. Therefore we have f�(y) = −2(−y)1/2, with dom f� = R−.

Example 2.22 Strictly convex quadratic function. Consider f(x) = 1
2x

TQx, with
Q ∈ Sn+. The function xT y − 1

2x
TQx is bounded above as a function of x for all y. It

attains its maximum at x = Q−1y, so

f�(y) =
1
2
yTQ−1y.

Example 2.23 Log determinant. f(X) = log detX−1 on Sn++. The conjugate func-
tion is defined as

f�(Y ) = sup
X�0

TrXY + log detX.

The argument of the supremum is unbounded above unless Y ≺ 0; when Y ≺ 0 we can
find the maximizing X by setting the gradient with respect to X equal to zero:

∇X (TrXY + log detX) = Y +X−1 = 0

(see §B.3.2), which yields X = −Y −1. Therefore we have

f�(Y ) = log det(−Y )−1 − n

on dom f� = −Sn++.

Example 2.24 Indicator function. Let IS be the indicator function of a (not neces-
sarily convex) set S ⊆ Rn, i.e., IS(x) = 0 on dom IS = S. Its conjugate is

I�S(y) = sup
x∈S

yTx,

which is the support function of the set S.

Example 2.25 Log-sum-exp function. To derive the conjugate of f(x) = log
∑n

i=1 e
xi ,

we first determine the values of y for which the maximum over x of xT y − f(x) is
attained. By setting the gradient with respect to x equal to zero, we obtain the
condition

yi =
exi∑n
j=1 e

xj
, i = 1, . . . , n.

These equations are solvable for x if and only if y � 0 and 1T y = 1. By substituting
the expression for yi into in xT y− f(x) we obtain f�(y) =

∑
i yi log yi. This expression

for f� is still correct if some components of y are zero, as long as y � 0 and 1T y = 1,
and we interpret 0 log 0 as 0.

In fact the domain of f� is exactly given by 1T y = 1, y � 0. Suppose that a component
of y is negative, say, yk < 0. Then we can show that xT y − f(x) is unbounded above
by choosing xk = −t, and xi = 0, i �= k, and letting t go to infinity.

If y � 0 but 1T y �= 1, one chooses x = t1, so that

xT y − f(x) = t1T y − t− log n,
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which grows unboundedly as t → ∞.

In summary,

f�(y) =

{ ∑n
i=1 yi log yi if y � 0 and 1T y = 1

+∞ otherwise.

Example 2.26 Norm and norm squared. Let ‖ · ‖ be a norm on Rn, with dual norm
‖ · ‖∗. We will show that the conjugate of f(x) = ‖x‖ is

f�(y) =

{
0 ‖y‖∗ ≤ 1
∞ otherwise

in other words, the conjugate of a norm is the indicator function of the dual norm unit
ball. If ‖y‖∗ > 1, then by definition of the dual norm, there is a z ∈ Rn with ‖z‖ ≤ 1
and yT z > 1. Taking x = tz and letting t → ∞, we have

yTx− ‖x‖ = t(yT z − ‖z‖) → ∞,

which shows that f�(y) = ∞. Conversely, if ‖y‖∗ ≤ 1, then we have xT y ≤ ‖x‖‖y‖∗
for all x, which implies for all x, yTx − ‖x‖ ≤ 0. Therefore x = 0 is the value that
maximizes yTx− ‖x‖, with maximum value 0.

Now consider the function f(x) = (1/2)‖x‖2. We will show that its conjugate is
f�(y) = (1/2)‖y‖2∗. From yTx ≤ ‖y‖∗‖x‖, we conclude

yTx− (1/2)‖x‖2 ≤ ‖y‖∗‖x‖ − (1/2)‖x‖2

for all x. The righthand side is a quadratic function of ‖x‖, which has maximum value
(1/2)‖y‖2∗. Therefore for all x, we have

yTx− (1/2)‖x‖2 ≤ (1/2)‖y‖2
∗,

which shows that f�(y) ≥ (1/2)‖y‖2∗.

To show the other inequality, let x be any vector with yTx = ‖y‖∗‖x‖, scaled so that
‖x‖ = ‖y‖∗. Then we have, for this x,

yTx− (1/2)‖x‖2 = ‖y‖∗‖x‖ − (1/2)‖x‖∗ = (1/2)‖y‖2
∗.

This shows that f�(y) ≤ (1/2)‖y‖2∗.

Example 2.27 Revenue and profit functions. We consider a business or enterprise
that consumes n resources and produces a product that can be sold. We let r =
(r1, . . . , rn) denote the vector of resource quantities consumed, and S(r) denote the sales
revenue derived from the product produced (as a function of the resources consumed).
Now let pi denote the price (per unit) of resource i, so the total amount paid for
resources by the enterprise is pT r. The profit derived by the firm is then S(r) − pT r.
Let us fix the prices of the resources, and ask what is the maximum profit that can be
made, by wisely choosing the quantities of resources consumed. This maximum profit
is given by

M(p) = sup
r

(
S(r) − pT r

)
.
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The function M(p) gives the maximum profit attainable, as a function of the resource
prices. In terms of conjugate functions, we can express M as

M(p) = (−S)�(−p).

Thus the maximum profit (as a function of resource prices) is closely related to the
conjugate of gross sales (as a function of resources consumed).

2.3.2 Basic properties

Fenchel’s inequality

From the definition of conjugate function, we immediately obtain the inequality

f(x) + f �(y) ≥ xTy

for all x, y. This is called Fenchel’s inequality (or Young’s inequality if f is differentiable).
For example with f(x) = (1/2)xTQx, where Q ∈ Sn++, we obtain the inequality

xTy ≤ (1/2)xTQx+ (1/2)yTQ−1y.

Conjugate of the conjugate

The examples above, and the name ‘conjugate’, suggest that the conjugate of the conjugate
of a convex function is the original function. This is the case provided a technical condition
holds: if f is convex, and epi f is a closed set, then f �� = f . For example, if dom f = Rn,
then we have f �� = f , i.e., the conjugate of the conjugate of f is f again (see exercises).

This means that if f is convex and epi f is closed, then for each x there exists a y such
that Fenchel’s inequality is tight.

Differentiable functions

The conjugate of a differentiable function f is also called the Legendre transform of f . (To
distinguish the general definition from the differentiable case, the term Fenchel conjugate is
sometimes used instead of conjugate.)

Suppose f is convex and differentiable, with dom f = Rn. Any maximizer x� of xTy −
f(x) satisfies y = ∇f(x�), and conversely, if x� satisfies y = ∇f(x�), then x� maximizes
xTy − f(x). Therefore, if y = ∇f(x�), we have

f �(y) = x�T∇f(x�)− f(x�).

This allows us to determine f �(y) for any y for which we can solve the gradient equation
y = ∇f(z) for z.

We can express this another way. Let z ∈ Rn be arbitrary and define y = ∇f(z). Then
we have

f �(y) = zT∇f(z)− f(z).
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x

y

α

Sα

Figure 2.5: A quasiconvex function on R. For each α, the α-sublevel set Sα is
convex, i.e., an interval.

Scaling and composition with affine transformation

For a > 0 and b ∈ R, the conjugate of g(x) = af(x) + b is g�(y) = af �(y/a)− b.
Suppose A ∈ Rn×n is nonsingular and b ∈ Rn. Then the conjugate of g(x) = f(Ax + b)

is
g�(y) = f �(A−Ty)− bTA−Ty,

with dom g� = AT dom f �.

Sums of independent functions

If f(u, v) = f1(u) + f2(v), where f1 and f2 are convex functions with conjugates f �1 and f �2 ,
respectively, then

f �(w, z) = f �1 (w) + f �2 (z).

In other words, the conjugate of the sum of independent convex functions is the sum of the
conjugates. (‘Independent’ means they are functions of different variables.)

2.4 Quasiconvex functions

2.4.1 Definition and examples

A function f : Rn → R is called quasiconvex (or unimodal) if its domain and all its sublevel
sets

Sα = {x ∈ dom f | f(x) ≤ α}
are convex. This is illustrated in figure 2.5. A function is quasiconcave if −f is quasiconvex,
i.e., every superlevel set {x | f(x) ≥ α} is convex. A function that is both quasiconvex and
quasiconcave is called quasilinear.

Convex functions have convex sublevel sets, and hence are quasiconvex. But simple
examples, such as the one shown in figure 2.5, show that the converse is not true.
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Example 2.28 Some examples on R:

• Logarithm. log x on R++ is quasiconvex (and quasiconcave, hence quasilinear).

• Ceiling function. ceil(x) = min{z ∈ Z | z ≥ x} is quasiconvex (and quasiconcave).

These examples show that quasiconvex functions can be concave, or discontinuous (in-
deed, integer valued). We now give some examples on Rn.

Example 2.29 Length of a vector. We define the length of x ∈ Rn as the largest
index of a nonzero component, i.e.,

f(x) = max{ k ≤ n | xi = 0 for i = k + 1, . . . , n }.
This function is quasiconvex on Rn; its sublevel sets are subspaces.

Example 2.30 Consider f : R2 → R, with dom f = R2
+ and f(x1, x2) = x1x2. The

function is neither convex or concave since its Hessian

∇2f(x) =

[
0 1
1 0

]

is indefinite; it has one positive and one negative eigenvalue. The function f is quasi-
concave, however, since the superlevel sets{

x ∈ R2
+

∣∣∣ x1x2 ≥ α
}

are convex sets for all α.

Example 2.31 Linear-fractional function. The function

f(x) =
aTx+ b

cTx+ d
,

with dom f = {x | cTx+ d > 0}, is quasiconvex (and quasiconcave).

Its α-sublevel set is

Sα = {x | cTx+ d > 0, (aTx+ b)/(cTx+ d) ≤ α}
= {x | cTx+ d > 0, (a− αc)Tx+ b− αd ≤ 0},

which is convex.

Example 2.32 Distance ratio function. Suppose a, b ∈ Rn, and define

f(x) =
‖x− a‖2

‖x− b‖2
,

i.e., the ratio of the Euclidean distance to a to the distance to b. Then f is quasiconvex
on the halfspace {x | ‖x − a‖2 ≤ ‖x − b‖2}. To see this, we consider the α-sublevel
set of f , with α ≤ 1 since f(x) ≤ 1 on the halfspace {x | ‖x − a‖2 ≤ ‖x − b‖2}. This
sublevel set is the set of points satisfying

‖x− a‖2 ≤ α‖x− b‖2.

Squaring both sides, and rearranging terms, we see that this equivalent to

(1 − α2)xTx− 2(a− α2b)Tx+ aTa− α2bT b ≤ 0.

This describes a convex set (in fact a Euclidean ball) if α ≤ 1.
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Example 2.33 Internal rate of return. Let x = (x0, x1, . . . , xn) denote a cash flow
sequence over n periods, where xi > 0 means a payment to us in period i, and xi < 0
means a payment by us in period i. We define the present value of a cash flow, with
interest rate r ≥ 0, to be

PV(x, r) =
n∑
i=0

(1 + r)−ixi.

(The factor (1 + r)−i is a discount factor for a payment by or to us in period i.)

Now we consider cash flows for which x0 < 0 and x0 + x1 + · · · + xn > 0. This means
that we start with an investment of |x0| in period 0, and that the total of the remaining
cash flow, x1 + · · · + xn, (not taking any discount factors into account) exceeds our
initial investment.

For such a cash flow, PV(x, 0) > 0 and PV(x, r) → x0 < 0 as r → ∞, so it follows that
for at least one r ≥ 0, we have PV(x, r) = 0. We define the internal rate of return of
the cash flow as the smallest interest rate r ≥ 0 for which the present value is zero:

IRR(x) = inf{r ≥ 0 | PV(x, r) = 0}.

Internal rate of return is a quasiconcave function. To see this, we note that

IRR(x) ≥ R ⇔ PV(x, r) ≥ 0 for 0 ≤ r ≤ R.

The lefthand side defines the R-superlevel set of IRR. The righthand side is the
intersection of the sets {x | PV(x, r) ≥ 0} indexed by r, over the range 0 ≤ r ≤ R. For
each r, PV(x, r) ≥ 0 defines a halfspace, so the righthand side defines a convex set.

2.4.2 Basic properties

The examples above show that quasiconvexity is a considerable generalization of convex-
ity. Still, many of the properties of convex functions hold, or have analogs, for quasiconvex
functions. For example, there is a variation on Jensen’s inequality that characterizes quasi-
convexity. A function f is quasiconvex if and only if for any x, y ∈ dom f and 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) ≤ max{f(x), f(y)}, (2.18)

i.e., the value of the function on a segment does not exceed the maximum of its values at
the endpoints. The inequality (2.18) is sometimes called Jensen’s inequality for quasiconvex
functions. This is illustrated in figure 2.6.

Example 2.34 Rank of positive semidefinite matrix. The function Rank(X) is qua-
siconcave on Sn+. This follows from the modified Jensen inequality (2.18),

Rank(X + Y ) ≥ max{Rank(X),Rank(Y )}

which holds for positive semidefinite X, Y ∈ Sn.
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x y

max{f(x), f(y)}

Figure 2.6: A quasiconvex function on R. The value of f between x and y is no
more than max{f(x), f(y)}.

c

Figure 2.7: A quasiconvex function on R. The function is nonincreasing for t ≤ c
and nondecreasing for t ≥ c.

Like convexity, quasiconvexity is characterized by the behavior of a function f on lines: f
is quasiconvex if and only if its restriction to any line intersecting its domain is quasiconvex.
We can give a simple characterization of quasiconvex functions onR. We consider continuous
functions, since stating the conditions in the general case is cumbersome. A continuous
function f : R→ R is quasiconvex if and only if at least one of following conditions holds:

• f is nondecreasing

• f is nonincreasing

• there is a point c ∈ dom f such that for t ≤ c (and t ∈ dom f), f is nonincreasing,
and for t ≥ c (and t ∈ dom f), f is nondecreasing.

The point c can be chosen as any point which is a global minimizer of f . Figure (2.7)
illustrates this.
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x ∇f(x)

f(z) ≤ f(x)

Figure 2.8: Three level curves of a quasiconvex function f are shown. The vector
∇f(x) defines a supporting hyperplane to the sublevel set {z | f(z) ≤ f(x)} at x.

2.4.3 Differentiable quasiconvex functions

Suppose f : Rn → R is differentiable. Then f is quasiconvex if and only if dom f is convex
and for all x, y ∈ dom f

f(y) ≤ f(x) =⇒ ∇f(x)T (y − x) ≤ 0. (2.19)

This is the analog of inequality (2.2), for quasiconvex functions.
The condition (2.19) has a simple geometric interpretation when∇f(x) �= 0. It states that

∇f(x) defines a supporting hyperplane to the sublevel set {y | f(y) ≤ f(x)}, as illustrated
in figure 2.8.

Now suppose f is twice differentiable. If f is quasiconvex, then for all x ∈ dom f , and
all y ∈ Rn, we have

yT∇f(x) = 0 =⇒ yT∇2f(x)y ≥ 0. (2.20)

For a quasiconvex function on R, this reduces to the simple condition

f ′(x) = 0 =⇒ f ′′(x) ≥ 0,

i.e., at any point with zero slope, the second derivative is nonnegative. For a quasiconvex
function on Rn, the interpretation of the condition (2.20) is a bit more complicated. As in
the case n = 1, we conclude that whenever ∇f(x) = 0, we must have ∇2f(x) � 0. When
∇f(x) �= 0, the condition (2.20) means that ∇2f(x) is positive semidefinite on the (n− 1)-
dimensional subspace ∇f(x)⊥. This implies that ∇2f(x) can have at most one negative
eigenvalue.

As a (partial) converse, if f satisfies

yT∇f(x) = 0 =⇒ yT∇2f(x)y > 0 (2.21)

for all x ∈ dom f and all y ∈ Rn, y �= 0, then f is quasiconvex. This condition is the same
as requiring ∇2f(x) to be positive definite for any point with ∇f(x) = 0, and for all other
points, requiring ∇2f(x) to be positive definite on the (n−1)-dimensional subspace ∇f(x)⊥.
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Proof. By restricting the function to an arbitrary line, it suffices to consider the
one-dimensional case.

We first show that if f : R → R is quasiconvex on an interval (a, b), then it must
satisfy (2.20), i.e., if f ′(c) = 0 with c ∈ (a, b), then we must have f ′′(c) ≥ 0. If
f ′(c) = 0 with c ∈ (a, b), f ′′(c) < 0, then for small positive ε we have f(c − ε) < f(c)
and f(c+ε) < f(c). It follows that the sublevel set {x | f(x) ≤ f(c)−ε} is disconnected
for small positive ε, and therefore not convex, which contradicts our assumption that
f is quasiconvex.

Now we show that if the condition (2.21) holds, then f is quasiconvex. Assume
that (2.21) holds, i.e., for each c ∈ (a, b) with f ′(c) = 0, we have f ′′(c) > 0. This means
that whenever the function f ′ crosses the value 0, it is strictly increasing. Therefore
it can cross the value 0 at most once. If f ′ does not cross the value 0 at all, then f is
either nonincreasing on nondecreasing on (a, b), and therefore quasiconvex. Otherwise
it must cross it exactly once, say at c ∈ (a, b). Since f ′′(c) > 0, it follows that f ′(t) ≤ 0
for a < t ≤ c, and f ′(t) ≥ 0 for c ≤ t < b. This shows that f is quasiconvex.

2.4.4 Operations that preserve quasiconvexity

Nonnegative weighted maximum

A nonnegative weighted maximum of quasiconvex functions, i.e.,

f = max{w1f1, . . . , wmfm},
with wi ≥ 0 and fi quasiconvex, is quasiconvex. The property extends to the general
pointwise supremum

f(x) = sup
y∈C

w(y)g(x, y)

where w(y) ≥ 0 and g(x, y) is quasiconvex in x for each y. This fact can be easily verified:
f(x) ≤ α if and only if

w(y)g(x, y) ≤ α, for all y ∈ C,

i.e., the α-sublevel set of f is the intersection of the α-sublevel sets of the functions w(y)g(x, y)
in the variable x.

Example 2.35 Generalized eigenvalue. The largest generalized eigenvalue of a pair of
symmetric matrices (X,Y ), with Y � 0, is defined as

λmax(X,Y ) = sup
u 	=0

uTXu

uTY u
= sup{λ | det(λY −X) = 0}.

This function is quasiconvex on dom f = Sn × Sn++.

To see this we note that

λmax(X,Y ) = sup
u 	=0

uTXu

uTY u
.

For each u �= 0, the function uTXu/uTY u is linear fractional, hence quasiconvex, so
λmax is the supremum of a family of quasiconvex functions.
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Composition

If h : Rn → R is quasiconvex and g : R → R is nondecreasing, then f(x) = g(h(x)) is
quasiconvex.

The composition of a quasiconvex function with an affine or linear-fractional transforma-
tion yields a quasiconvex function. If g is quasiconvex, then f(x) = g(Ax+b) is quasiconvex,
and f̃(x) = g((Ax+ b)/(cTx+ d)) is quasiconvex on the set{

x
∣∣∣ cTx+ d > 0, (Ax+ b)/(cTx+ d) ∈ dom g

}
.

Minimization

If g(x, y) is quasiconvex jointly in x and y and C is a convex set, then the function

f(x) = inf
y∈C

g(x, y)

is quasiconvex.

Proof. From the definition of f , f(x) ≤ α if and only if for any ε > 0 there exists a
y ∈ C with g(x, y) ≤ α + ε. Let x1 and x2 be two points in the α-sublevel set of f .
Then for any ε > 0, there exists y1, y2 ∈ C with

g(x1, y1) ≤ α+ ε, g(x2, y2) ≤ α+ ε,

and since g is quasiconvex in x and y, we also have

g(θx1 + (1 − θ)x2, θy1 + (1 − θ)y2) ≤ α+ ε,

for 0 ≤ θ ≤ 1. Hence f(θx1 + (1 − θ)x2) ≤ α.

2.4.5 Representation via family of convex functions

In the sequel, it will be convenient to represent the sublevel sets of a quasiconvex function f
(which are convex) via inequalities of convex functions. We seek a family of convex functions
φt : R

n → R, indexed by t ∈ R, with

f(x) ≤ t ⇔ φt(x) ≤ 0, (2.22)

i.e., the t-sublevel set of the quasiconvex function f is the 0-sublevel set of the convex function
φt. Evidently φt must satisfy the property that for all x ∈ Rn, φt(x) ≤ 0 =⇒ φs(x) ≤ 0 for
s ≥ t. This is satisfied if for each x, φt(x) is a nonincreasing function of t, i.e., φs(x) ≤ φt(x)
whenever s ≥ t.

To see that such a representation always exists, we can take

φt(x) =

{
0 f(x) ≤ t,
∞ otherwise.

i.e., φt is the indicator function of the t-sublevel of f . Obviously this representation is not
unique; for example if the sublevel sets of f are closed, we can take

φt(x) = dist (x, {z | f(z) ≤ t}) .
We are usually interested in a family φt with nice properties, such as differentiability.
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Example 2.36 Convex over concave function. Suppose p is a convex function, q is a
concave function, with p(x) ≥ 0 and q(x) > 0 on a convex set C. Then the function f
defined by f(x) = p(x)/q(x), on C, is quasiconvex.

Here we have
f(x) ≤ t ⇐⇒ p(x) − tq(x) ≤ 0,

so we can take φt(x) = p(x) − tq(x) for t ≥ 0. For each t, φt is convex and for each x,
φt(x) is decreasing in t.

2.5 Log-concave and log-convex functions

2.5.1 Definition

A function f : Rn → R is logarithmically concave or log-concave if f(x) > 0 for all x ∈ dom f
and log f is concave. It is said to be logarithmically convex or log-convex if log f is convex.
Thus f is log-convex if and only if 1/f is log-concave. It is convenient to allow f to take on
the value zero, in which case we take log f(x) = −∞. In this case we say f is log-concave if
the extended-valued function log f is concave.

From the composition rules we know that eh is convex if h is convex, so a log-convex
function is convex. Similarly, a concave function is log-concave. It is also clear that a
log-convex function is quasiconvex and a log-concave function is quasiconcave.

Example 2.37 Some simple examples are:

• Affine function. The function f(x) = aTx+ b is log-concave on {x|aTx+ b > 0}.
• Powers. f(x) = xa, on R++ is log-convex for a ≤ 0 and log-concave for a ≥ 0.

• Exponentials. f(x) = eax is log-convex and log-concave.

• The cumulative distribution function for a Gaussian density,
1√
2π

∫ x

−∞
e−u

2/2 du,

is log-concave (see exercise 2.54).

• Gamma function. Γ(x) =
∫ ∞

0
ux−1e−u du is log-convex for x ≥ 1 (see exer-

cise 2.53).

• Determinant. detX is log concave on Sn++.

Example 2.38 Log-concave density functions. Many common probability density
functions are log-concave. Two examples are the multivariate normal distribution,

f(x) =
1√

(2π)n detΣ
e−

1
2
(x−x̄)T Σ−1(x−x̄)

(where x̄ ∈ Rn and Σ ∈ Sn++), and the exponential distribution on Rn
+,

f(x) =

(
n∏
i=1

λi

)
e−λ

T x
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(where λ � 0). Another example is the uniform distribution over a convex set C,

f(x) =

{
1/α x ∈ C
0 x �∈ C

where α is the Lebesgue measure of C. In this case log f takes on the value −∞ outside
C, and − logα on C, hence is concave.

As a more exotic example consider the Wishart distribution, defined as follows. Let
x1, . . . , xp ∈ Rn be independent Gaussian random vectors with zero mean and co-
variance Σ ∈ Sn, with p > n. The random matrix X =

∑p
i=1 xix

T
i has the Wishart

density
f(X) = a (detX)(p−n−1)/2 e−

1
2
TrΣ−1X ,

with dom f = Sn++, and a is a positive constant. The Wishart density is log-concave,
since

log f(X) = log a+
p− n− 1

2
log detX − 1

2
TrΣ−1X

is a concave function of X.

2.5.2 Properties

Twice differentiable log-convex/concave functions

Suppose f is twice differentiable, and dom f is convex. Then f is log-convex if and only if
for all x ∈ dom f ,

f(x)∇2f(x) � ∇f(x)∇f(x)T ,

and log-concave if and only if for all x ∈ dom f ,

f(x)∇2f(x) � ∇f(x)∇f(x)T .

Multiplication, addition, and integration

Log-convexity and log-concavity are evidently closed under multiplication and positive scal-
ing.

Simple examples show that the sum of log-concave functions is not, in general, log-
concave. Log-convexity, however, is preserved under sums. Let f and g be log-convex
functions, i.e., F = log f and G = log g are convex. From the composition rules for convex
functions, it follows that

log (expF + expG) = log(f + g)

is convex. Therefore the sum of two log-convex functions is log-convex.
More generally, if f(x, y) is log-convex in x for each y ∈ C then

∫
C
f(x, y) dy

is log-convex.
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Example 2.39 Laplace transform of nonnegative function and the moment and cu-
mulant generating functions. Suppose p : Rn → R satisfies p(x) ≥ 0 for all x. The
Laplace transform of p,

P (z) =
∫
p(x)e−z

T x dx,

is log-convex on Rn. (Here domP is, naturally, {z | P (z) < ∞}.)
Now suppose p is a density, i.e., satisfies

∫
p(x) dx = 1. The function M(z) = P (−z)

is called the moment generating function of the density. It gets its name from the
fact that the moments of the density can be found from the derivatives of the moment
generating function, evaluated z = 0, e.g.,

∇M(0) = E v, ∇2M(0) = E vvT ,

where v is a random variable with density p.

The function logM(z), which is convex, is called the cumulant generating function for
p, since its derivatives give the cumulants of the density. For example, the first and
second derivatives of the cumulant generating function, evaluated at zero, are the mean
and covariance of the associated random variable:

∇ logM(0) = E v, ∇2 logM(0) = E(v −E v)(v −E v)T .

Integration of log-concave functions

In some special cases log-concavity is preserved by integration. If f : Rn × Rm → R is
log-concave, then

g(x) =
∫
f(x, y) dy (2.23)

is a log-concave function of x (on Rn). (The integration here is over Rm.) A proof of this
result is not simple; see the notes and references.

This result has many important consequences, some of which we describe in the rest of
this section. It implies, for example, that marginal distributions of log-concave probability
densities are log-concave. It also implies that log-concavity is closed under convolution, i.e.,
if f and g are log-concave on Rn, then the convolution

(f ∗ g)(x) =
∫
f(x− y)g(y) dy

(To see this, note that g(y) and f(x− y) are log-concave in (x, y), hence the product f(x−
y)g(y) is; then the result (2.23) applies.)

Suppose C ⊆ Rn is a convex set and w is a random vector in Rn with log-concave
probability density p. Then the function

f(x) = Prob(x+ w ∈ C)

is log-concave in x. To see this, express f as

f(x) =
∫
g(x+ z)p(z) dz
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where g is defined as

g(u) =

{
1 u ∈ C
0 u �∈ C

(which is log-concave) and apply (2.23).

Example 2.40 The cumulative distribution function (CDF) of a probability density
function f : Rn → R is defined as

F (x) = Prob(w � x)

where w is a random variable with density f . If f is log-concave, then F is log-concave.
We have already encountered a special case: the CDF a Gaussian random variable,

f(x) =
1√
2π

∫ x

−∞
e−t

2/2 dt,

is log-concave. (See example 2.37 and exercise 2.54.)

Example 2.41 Yield function. Let x ∈ Rn denote the nominal or target value of a
set of parameters of a product that is manufactured. Variation in the manufacturing
process causes the parameters of the product, when manufactured, to have the value
x+w, where w ∈ Rn is a random vector that represents manufacturing variation, and
is usually assumed to have zero mean. The yield of the manufacturing process, as a
function of the nominal parameter values, is given by

Y (x) = Prob(x+ w ∈ S)

where S ⊆ Rn denotes the set of acceptable parameter values for the product, i.e., the
product specifications.

If the density of the manufacturing error w is log-concave (for example, Gaussian) and
the set S of product specifications is convex, then the yield function Y is log-concave.
This implies that the α-yield region, defined as the set of nominal parameters for which
the yield exceeds α, is convex. For example, the 95% yield region

{x | Y (x) ≥ 0.95} = {x | log Y (x) ≥ log 0.95}
is convex, since it is a superlevel set of the concave function log Y .

Example 2.42 Volume of polyhedron. Let A ∈ Rm×n. Define

Pu = { x ∈ Rn | Ax � u }.
Then volPu is a log-concave function of u.

To prove this, note that the function

Ψ(x, u) =

{
1 Ax � u
0 otherwise

is log-concave. By (2.23), we conclude that∫
Ψ(x, u) dx = volPu

is log-concave.
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2.6 Convexity with respect to generalized inequalities

We now consider generalizations of the notions of monotonicity and convexity, using gener-
alized inequalities instead of the usual ordering on R.

2.6.1 Monotonicity with respect to a generalized inequality

Suppose K ⊆ Rn is a proper cone with associated generalized inequality �K . A function
f : Rn → R is called K-nondecreasing if

x �K y =⇒ f(x) ≤ f(y),

and K-increasing if
x �K y, x �= y =⇒ f(x) < f(y).

We define K-nonincreasing and K-decreasing functions in a similar way.

Example 2.43 A function f : Rn → R is nondecreasing with respect to Rn
+ if and

only if
x1 ≤ y1, . . . , xn ≤ yn ⇒ f(x) ≤ f(y)

for all x, y. This is the same as saying that f , when restricted to any component xi
(i.e., xi is considered the variable while xj for j �= i are fixed), is nondecreasing.

Example 2.44 Matrix monotone functions. A function f : Sn → R is called ma-
trix monotone (increasing, decreasing) if it is monotone with respect to the positive
semidefinite cone.

Some examples of matrix monotone functions of the variable X ∈ Sn:
• TrWX, where W ∈ Sn, is matrix nondecreasing if W � 0, and matrix increasing

if W � 0 (it is matrix nonincreasing if W � 0, and matrix decreasing if W ≺ 0).

• TrX−1 is matrix decreasing on the set of positive definite matrices.

• detX is matrix increasing on the set of positive semidefinite matrices.

Gradient conditions for monotonicity

Recall that a differentiable function f : R → R is nondecreasing if and only if f ′(x) ≥ 0
for all x ∈ dom f , and increasing if f ′(x) > 0 for all x ∈ dom f (but the converse is not
true). These conditions are readily extended to the case of monotonicity with respect to a
generalized inequality. A differentiable function f is K-nondecreasing if and only if

∇f(x) �K∗ 0 (2.24)

for all x ∈ dom f . Note the difference with the simple scalar case: the gradient must be
nonnegative in the dual inequality. For the strict case, we have the following: If

∇f(x) �K∗ 0 (2.25)

for all x ∈ dom f then f is K-increasing. As in the scalar case, the converse is not true.
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Proof. First, assume that f satisfies (2.24) for all x, but is not K-nondecreasing, i.e.,
there exist x, y with x �K y and f(y) < f(x). By differentiability of f there exists a
t ∈ [0, 1] with

d

dt
f(x+ t(y − x)) = ∇f(x+ t(y − x))T (y − x) < 0.

Since y − x ∈ K this means

−∇f(x+ t(y − x)) �∈ K∗,

which contradicts our assumption that (2.24) is satisfied everywhere. In a similar way
it can be shown that (2.25) implies f is K-increasing.

It is also straightforward to see that it is necessary that (2.24) hold everywhere. As-
sume (2.24) does not hold for x = z. By the definition of dual cone this means there
exists a v ∈ K with

∇f(z)T v < 0.

Now consider h(t) = f(z + tv) as a function of t. We have h′(0) = ∇f(z)T v < 0, and
therefore there exists t > 0 with h(t) = f(z + tv) < h(0) = f(z), which means f is not
K-nondecreasing.

2.6.2 Convexity with respect to a generalized inequality

Definition and examples

Suppose K ⊆ Rm is a proper cone with associated generalized inequality �K . We say
f : Rn → Rm is K-convex if for all x, y, and 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) �K θf(x) + (1− θ)f(y).

The function is strictly K-convex if

f(θx+ (1− θ)y) ≺K θf(x) + (1− θ)f(y).

for all x �= y and 0 < θ < 1. These definitions reduce to ordinary convexity and strict
convexity when m = 1 (and K = R+).

Example 2.45 Convexity with respect to componentwise inequality. A function f :
Rn → Rm is convex with respect to componentwise inequality (i.e., the generalized
inequality induced by Rm

+ ) if and only if for all x, y and 0 ≤ θ ≤ 1,

f(θx+ (1 − θ)y) � θf(x) + (1 − θ)f(y),

i.e., each component fi is a convex function. The function f is strictly convex with
respect to componentwise inequality if and only if each component fi is strictly convex.

December 19, 2001



2.6. CONVEXITY WITH RESPECT TO GENERALIZED INEQUALITIES 81

Example 2.46 Matrix convexity. Suppose f is a symmetric matrix valued function,
i.e., f : Rn → Sm. f is convex with respect to matrix inequality (i.e., the positive
semidefinite cone) if

f(θx+ (1 − θ)y) � θf(x) + (1 − θ)f(y)

for any x and y, and for θ ∈ [0, 1]. This is sometimes called matrix convexity. An
equivalent definition is that the scalar function zT f(x)z is convex for all vectors z.
(This is often a good way to prove matrix convexity). A matrix function is strictly
matrix convex if

f(θx+ (1 − θ)y) ≺ θf(x) + (1 − θ)f(y)

when x �= y and 0 < θ < 1 or, equivalently, if zT fz is strictly convex for every z �= 0.

Some examples:

• f(X) = XXT whereX ∈ Rn×m is convex, since for fixed z the function zTXXT z =
‖XT z‖2

2 is a convex quadratic function of the components of X. For the same
reason, f(X) = X2 is convex on Sn.

• The functions Xp is matrix convex on the set of positive definite matrices for
1 ≤ p ≤ 2 or −1 ≤ p ≤ 0, and matrix concave for 0 ≤ p ≤ 1.

• The function f(X) = eX is not convex on the space of symmetric matrices.

Many of the results for convex functions have extensions to K-convex functions. As a
simple example, a function is K-convex if and only if its restriction to any line in its domain
is K-convex. In the rest of this section list a few results for K-convexity that we will use
later; more results are explored in the exercises.

Dual characterization of K-convexity

A function f is K-convex if and only if for every w �K∗ 0, the (real-valued) function wTf
is convex (in the ordinary sense); f is strictly K-convex if and only if for every nonzero
w �K∗ 0 the function wTf is strictly convex. (These follow directly from the definitions and
properties of dual inequality.)

Differentiable K-convex functions

A differentiable function f is K-convex if and only if for all x, y ∈ dom f ,

f(y) �K f(x) +Df(x)(y − x).

(Here Df(x) ∈ Rm×n is the derivative or Jacobian matrix of f at x; see §B.3.2.)
The function f is strictly K-convex if for all x, y ∈ dom f with x �= y,

f(y) �K f(x) +Df(x)(y − x).

(As in the scalar case, a function can be strictly K-convex without satisfying this inequality
everywhere.)
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Composition theorem

If g : Rn → Rp is K-convex, h : Rp → R is convex, and h̃ (the extended-value extension of
h) is K-nondecreasing, then h(g(x)) is convex. This generalizes the fact that a nondecreasing
convex function of a convex function is convex. The condition that h̃ be K-nondecreasing
implies that domh−K = domh.

Proof. The function g is K-convex. Therefore, g(θx1 + (1 − θ)x2) �K θg(x1) + (1 −
θ)g(x2). The function h is K-increasing, and convex. Therefore

h(g(θx1 + (1 − θ)x2)) ≤ h(θg(x1) + (1 − θ)g(x2))
≤ θh(g(x1)) + (1 − θ)h(g(x2)).

Example 2.47 The quadratic matrix function g : Rm×n → Sn defined by

g(X) = XTAX +BTX +XTB + C,

where A ∈ Sm, B ∈ Rm×n, and C ∈ Sn, is convex when A � 0.

The function h : Sn → R defined by h(Y ) = − log det(−Y ) is convex and increasing
on domh = {Y ∈ Sn | Y ≺ 0}.
By the composition theorem, we conclude that

f(X) = − log det(−(XTAX +BTX +XTB + C))

is convex on

dom f =
{
X ∈ Rm×n

∣∣∣ XTAX +BTX +XTB + C ≺ 0
}
.

(This generalizes the fact that − log(−(ax2+bx+c)) is convex on {x ∈ R | ax2+bx+c <
0}, provided a ≥ 0.)
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Exercises

Definition of convexity

Exercise 2.1. Functions and epigraphs. When is the epigraph of a function a halfspace? When is
the epigraph of a function a convex cone? When is the epigraph of a function a polyhedron?

Exercise 2.2. Suppose f is convex, dom f = Rn, and bounded above on Rn. Show that it is
constant.

Exercise 2.3. Let f : R→ R be a convex function with dom f = R. Suppose a < x < b.

(a) Show that

f(x) ≤ b− x

b− a
f(a) +

x− a

b− a
f(b).

(b) Show that
f(x) − f(a)

x− a
≤ f(b) − f(a)

b− a
≤ f(b) − f(x)

b− x
.

Draw a sketch that illustrates this inequality.

(c) Suppose now f is differentiable. Show that

f ′(a) ≤ f(b) − f(a)
b− a

.

Exercise 2.4. Expressing a convex function as the pointwise supremum of a family of affine func-
tions. Let f : Rn → R be a convex function. Define f̃ : Rn → R as

f̃(x) = sup{g(z) | g affine, g(z) ≤ f(z) for all z}.
The function f̃ is the pointwise supremum of all affine functions that are global underesti-
mators of f . Show that f(x) = f̃(x) for x ∈ int dom f .

Exercise 2.5. Second order conditions for a function restricted to an affine set. When is a twice
differentiable function f : Rn → R convex when restricted to the affine set A = {Fz+g | z ∈
Rm}? What if the set is described as A = {x | Ax = b}?

Exercise 2.6. An extension of Jensen’s inequality. One interpretation of Jensen’s inequality is:
randomization or dithering hurts, i.e., raises the average value of a convex function: For f
convex and v a zero mean random variable, we have E f(x0 + v) ≥ f(x0). This leads to the
following conjecture: the larger the variance of v, the larger should be E f(x0 + v).

(a) Show this is false in general. In other words find zero mean random variables v and w,
with var(v) > var(w), a convex function f , and a point x0, such that E f(x0 + v) <
E f(x0 + w).

(b) The conjecture is true when v and w are scaled versions of each other. Show that
E f(x0 + av) is monotonic increasing in a ≥ 0, when f is convex and v is zero mean.

Exercise 2.7. Show that a continuous function f : Rn → R is convex if and only if for every line
segment, its average value on the segment is less than or equal to the average of its values
on the endpoints of the segment: for every x, y ∈ Rn,∫ 1

0
f(x+ λ(y − x)) dλ ≤ f(x) + f(y)

2
.
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Exercise 2.8. Convexity of inverse. Suppose f : R → R is increasing and convex on its domain
(a, b). Let g denote its inverse, i.e., the function with domain (f(a), f(b)) with g(f(x)) = x
for a < x < b. What can you say about convexity or concavity of g?

Exercise 2.9. Suppose f : R→ R is convex. Show that its “running average”, i.e.,

F (x) =
1
x

∫ x

0
f(t) dt

(with F (0) = 0) is also convex.

Exercise 2.10. Interpolation with a convex function. Suppose you are given k points x1, . . . ,
xk ∈ Rn, and k numbers y1, . . . , yk ∈ R. When does there exist a convex function f such
that f(xi) = yi, i = 1, . . . , k? Describe the condition geometrically.

Also consider the following extension: you are given not only xi ∈ Rn and yi ∈ R but also
gi ∈ Rn. Under what conditions does there exist a convex function f such that f(xi) = yi,
∇f(xi) = gi i = 1, . . . , k? Describe the conditions geometrically.

In both cases, you do not have to give all the details of how to construct such a function
when the conditions hold.

Exercise 2.11. Level sets of convex, concave, quasiconvex, and quasiconcave functions. Some level
sets of a function f are shown below. The curve labeled 1 shows {x | f(x) = 1}, etc.

1

2
3

Could f be convex (concave, quasiconvex, quasiconcave)? Explain your answer. Repeat for
the level curves shown below.

1 2 3 4 5 6
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Exercise 2.12. Monotone mappings. A function ψ : Rn → Rn is called monotone if for all
x, y ∈ Rn,

(ψ(x) − ψ(y))T (x− y) ≥ 0.

(Note that ‘monotone’ as defined here is not the same as the definition given in §2.6.1.
Unfortunately both meanings are widely used, so you have to figure out from context which
is meant.)

Suppose that f is a differentiable convex function on Rn. Show that the function ψ(x) =
∇f(x) is monotone.

Is the converse true, i.e., is every monotone mapping the gradient of a convex function?

Exercise 2.13. Suppose f, g : Rn → R, f is convex, g is concave, dom f = dom g = Rn, and for
all x, g(x) ≤ f(x). In other words, the concave function g is an underestimator of the convex
function f .

Show that there exists an affine function h such that for all x, g(x) ≤ h(x) ≤ f(x). In other
words: we can fit an affine function between the concave and the convex function.

Exercise 2.14. Kullback-Leibler divergence and information inequality. Let p ∈ Rn and q ∈ Rn

be two discrete probability distributions (i.e., two vectors satisfying p � 0, q � 0, 1T p = 1,
and 1T q = 1). The relative entropy or Kullback-Leibler divergence between p and q is defined
as

Dkl(p, q) =
n∑
i=1

pi log(pi/qi).

(a) Show that Dkl(p, q) is jointly convex in p and q.

(b) Prove the information inequality: Dkl(p, q) ≥ 0 for all probability distributions p and q.
Hint. The Kullback-Leibler divergence can be expressed as

Dkl(p, q) = f(p) − f(q) + ∇f(p)T (q − p)

where f(p) =
∑n

i=1 pi log pi is the negative entropy of p.

Exercise 2.15. Suppose that f : Rn → R is convex and symmetric, i.e., f(Px) = f(x) for every
permutation P . Show that f always has a minimizer of the form α1.

Examples

Exercise 2.16. A family of concave utility functions. For 0 < α ≤ 1 let

uα(x) =
xα − 1
α

,

with domuα = R+. We also define u0(x) = log x (with domu0 = R++).

(a) Show that for x > 0, u0(x) = limα→0 uα(x).

(b) Show that uα are concave, monotone increasing, and all satisfy uα(1) = 0.

These functions are often used in economics to model the benefit or utility of some quantity
of goods or money. Concavity of uα means that the marginal utility (i.e., the increase in
utility obtained for a fixed increase in the goods) decreases as the amount of goods increases.
In other words, concavity models the effect of satiation.
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Exercise 2.17. For each of the following functions determine whether it is convex, concave, qua-
siconvex, quasiconcave, log-convex, or log-concave.

(a) f(x) = ex − 1 on R+.

(b) f(x1, x2) = x1x2 on x1, x2 > 0.

(c) f(x1, x2) = 1/x1x2 on x1, x2 > 0.

(d) f(x1, x2) = x1/x2 on x1, x2 > 0.

(e) f(x1, x2) = x2
1/x2 on x2 > 0.

(f) f(x1, x2) = xα1 x
1−α
2 , where 0 ≤ α ≤ 1, on x1, x2 > 0.

Exercise 2.18. Show that the following functions are concave on Rn
+.

(a) f(x) =
(∑n

i=1 x
1/2
i

)2
. Generalize to f(x) =

(∑
i cix

1/2
i

)2
and f(x) = (

∑
i cix

p
i )

1/p where
ci > 0 and 0 < p < 1.

(b) Harmonic mean. f(x) = (
∑n

i=1 1/xi)
−1.

Exercise 2.19. Show that the function f(X) = TrX−1 is convex on dom f = Sn++.
Hint. Adapt the proof of convexity of log detX−1 in §2.1.5.

Exercise 2.20. Nonnegative weighted sums and integrals.

(a) Show that f(x) =
∑r

i=1 αix[i] is a convex function of x, where α1 ≥ α2 ≥ · · · ≥ αr ≥ 0,
and x[i] denotes the ith largest component of x.
(You can use the fact that f(x) =

∑r
i=1 x[i] is convex on Rn.)

(b) Let T (x, ω) denote the trigonometric polynomial

T (x, ω) = x1 + x2 cosω + x3 cos 2ω + · · · + xn cos(n− 1)ω.

Show that the function

f(x) = −
∫ 2π

0
log T (x, ω) dω

is convex on { x ∈ Rn | T (x, ω) > 0, 0 ≤ ω ≤ 2π }.
Exercise 2.21. Composition with an affine function. Show that the following functions are convex.

(a) f(x) = ‖Ax− b‖, where A ∈ Rm×n, b ∈ Rm, and x ∈ Rn.

(b) f(x) = − (det(A0 + x1A1 + · · · + xnAn))1/m on { x | A0 + x1A1 + · · · + xnAn � 0 }
where Ai ∈ Sm.

(c) f(X) = Tr (A0 + x1A1 + · · · + xnAn)
−1 on { x | A0 + x1A1 + · · · + xnAn � 0 } where

Ai ∈ Sm.
(Use the fact that TrX−1 is convex on Sm++; see exercise 2.19.)

Exercise 2.22. Pointwise maximum and supremum. Show that the following functions are convex.

(a) f(x) = maxi=1,...,k ‖A(i)x− b(i)‖, where A(i) ∈ Rm×n, b(i) ∈ Rm and x ∈ Rn.

(b) f(x) =
∑r

i=1 |x|[i] on Rn, where |x| denotes the vector with |x|i = |xi| (i.e., |x| is the
absolute value of x, componentwise), and |x|[i] is the ith largest component of |x|. (In
other words, |x|[1], |x|[2], . . . , |x|[n] are the absolute values of the components of x, sorted
in decreasing order.)
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Exercise 2.23. Composition rules. Show that the following functions are convex.

(a) f(x) = − log(− log(
∑m

i=1 e
aT

i x+bi)).

(You can use the fact that log
∑

i e
yi is convex.)

(b) f(x, u, v) = −√
uv − xTx on dom f = { (x, u, v) | uv ≥ xTx, u, v ≥ 0 }.

(Use the fact that xTx/u is convex in (x, u) for u > 0, and that −√
xy is convex on

{ (x, y) ∈ R2 | x, y ≥ 0 }.
(c) f(x, u, v) = − log(uv − xTx) on dom f = { (x, u, v) | uv ≥ xTx, u, v ≥ 0 }.
(d) f(x, t) = −(tp − ‖x‖pp)1/p where p > 1 and dom f = {(x, t) | t ≥ ‖x‖p}.

(You can use the fact that ‖x‖pp/up−1 (p > 1) is convex in (x, u) for u > 0, and that
−x1/py1−1/p is convex on { (x, y) ∈ R2 | x, y ≥ 0 }.)

(e) f(x, t) = − log(tp − ‖x‖pp) where p > 1 and dom f = {(x, t) | t > ‖x‖p}.
Exercise 2.24. Perspective of a function.

(a) Show that for p > 1,

f(x, t) =
|x1|p + · · · + |xn|p

tp−1
=

‖x‖pp
tp−1

is convex on {(x, t) | t > ‖x‖p}.
(b) Show that

f(x) =
‖Ax+ b‖2

2

cTx+ d

is convex on { x | cTx+ d > 0 }, where A ∈ Rm×n, b ∈ Rm, c ∈ Rn and d ∈ R.

Exercise 2.25. Products and ratios of convex functions. In general the product or ratio of two
convex functions is not convex. However, there are some results that apply to functions on
R. Prove the following.

(a) If f and g are convex, both increasing (or decreasing), and positive functions on an
interval, then fg is convex.

(b) if f , g are concave, positive, with one increasing and the other decreasing then fg
concave.

(c) if f convex, increasing, positive, g concave, decreasing, positive, then f/g convex.

Exercise 2.26. Some functions on the probability simplex. Let x be a real-valued random variable
which takes values in {a1, . . . , an} where a1 < a2 < · · · < an, with Prob(x = ai) = pi,
i = 1, . . . , n. For each of the following functions of p on the probability simplex {p ∈
Rn

+ | 1T p = 1}, is it convex, concave, quasiconvex, quasiconcave? If the function is positive,
is it log-convex or log-concave?

(a) Ex

(b) Prob(x ≥ α)

(c) Prob(α ≤ x ≤ β)

(d)
∑

i pi log pi (the negative entropy of the distribution)

(e) varx
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(f) Quartile(x) = inf{α | Prob(x ≤ α) ≥ 0.25}.
(g) the size of the smallest set A ⊆ {a1, . . . , an} with probability ≥ 90% (By size we mean

the number of elements in A.)

(h) the minimum width interval that contains 90% of the probability, i.e.,

inf {β − α | Prob(x ∈ [α, β]) ≥ 0.9} .

Exercise 2.27. More functions of eigenvalues. Let λ1 ≥ λ2 · · · ≥ λn denote the eigenvalues of a
matrix X ∈ Sn. We have already seen several functions of the eigenvalues that are convex or
concave functions of X, for example:

• λ1 is convex; λn is concave

• λ1 + · · · + λn = TrX is linear

• for X � 0, (
∏n
i=1 λi)

1/n = (detX)1/n and
∑n

i=1 log λi = log detX are concave

In this problem we explore some more functions of eigenvalues, by exploiting variational
characterizations.

(a) Sum of k largest eigenvalues. Use the variational characterization

k∑
i=1

λi = sup{TrV TXV | V ∈ Rn×k, V TV = I },

to show that
∑k

i=1 λi is convex.

(b) Geometric mean of k smallest eigenvalues. For X � 0, we have


 n∏
i=n−k+1

λi




1/k

= inf{
(
TrV TXV

)
/k | V ∈ Rn×k, detV TV = 1 }.

Use this to show that
(∏n

i=n−k+1 λi
)1/k is a concave functions of X.

(c) Log of product of k smallest eigenvalues. For X � 0, we have

n∏
i=n−k+1

λi = inf{ detdiag V TXV | V ∈ Rn×k, V TV = I }.

Use this to show that
∑n

i=n−k+1 log λi(X) is a concave function of X.

Exercise 2.28. Another composition rule. Prove the following, which generalizes the composition
rules given in §2.2.4.
Suppose

f(x) = h(g1(x), g2(x), . . . , gk(x))

where h : Rk → R, gi : Rn → R. If h is convex and for each i, either h is nondecreasing
in the ith argument and gi is convex, or, hi is nonincreasing in the ith argument and gi is
concave, and gi are convex, then f is convex.
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Exercise 2.29. A composition rule based on copositivity. A matrix A ∈ Sn is copositive if xTAx ≥
0 for all x � 0. In general it is difficult computational task to check whether a matrix is
copositive, but a simple sufficient condition is that A is the sum of a positive semidefinite
matrix and an elementwise nonnegative matrix.

Establish the following composition theorem: Consider

f(x) = h(g1(x), g2(x), . . . , gk(x))

where h : Rk → R, gi : Rn → R. You can assume that domh = Rk and dom gi = Rn, so
you don’t have to worry about the issue of dom f .

Suppose h is monotone nondecreasing in each component, ∇2h(z) is copositive for all z ∈
domh, each gi is convex and nondecreasing. Then f is convex.

Exercise 2.30. Largest homogenous lower bound. Let f be a convex function. Define the function
g as

g(x) = inf
α>0

f(αx)
α

.

(a) Show that g is the largest homogeneous lower bound on f : if h is homogeneous (i.e.,
satisfies h(αx) = αh(x) for α ≥ 0) and h(x) ≤ f(x) for all x, then we have h(x) ≤ g(x)
for all x.

(b) Show that g is convex.

Exercise 2.31. Convex hull or envelope of a function. The convex hull or convex envelope of a
function f : Rn → R is defined as

g(x) = inf{t | (x, t) ∈ Coepi f}.
Geometrically, the epigraph of g is the convex hull of the epigraph of f .

Show that g is the largest convex function that is less than or equal to f . In other words,
show that if h is convex and satisfies h(x) ≤ f(x) for all x, then h(x) ≤ g(x) for all x.

Exercise 2.32. The Minkowski function. Let C be a closed convex set. We define the Minkowski
function for C as

MC(x) = inf{t > 0 | t−1x ∈ C}.
(a) Draw a picture giving a geometric interpretation of how to find MC(x).

(b) Show that MC is homogeneous, i.e., MC(αx) = αMC(x) for α > 0.

(c) What is domMC? (Recall that inf ∅ = +∞.)

(d) When do we have MC(x) = 0?

(e) Show that MC is a convex function.

Exercise 2.33. Support function calculus. Recall that the support function of a set C ⊆ Rn is
defined as SC(y) = sup{yTx | x ∈ C}. On page 56 we showed that SC is a convex function.

(a) Let A denote the closure of the convex hull of B. Show that SA = SB.

(b) Show that SA+B = SA + SB.

(c) Show that SA∪B = SA + SB.

(d) Let A and B be convex and closed. Show that A ⊆ B if and only if SA(x) ≤ SB(x) for
all x.
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Exercise 2.34. Representation of piecewise linear convex functions. In this problem you will show
that any piecewise linear convex function can be expressed as the maximum of a finite number
of affine functions. (This is the converse of the result in example 2.5.) Suppose f : Rn → R,
with dom f = Rn, is piecewise linear. This means the following: we have a partition

Rn = X1 ∪X2 ∪ · · · ∪XL,

where intXi �= ∅ and intXi ∩ intXj for i �= j, and f is given by f(x) = aTi x+ bi for x ∈ Xi.
We assume that aTi x+ bi = aTj x+ bj whenever x ∈ Xi ∩Xj .

Assume now that f is convex. Show that f can be expressed as the maximum of a finite set
of affine functions.

Hint: define f̃ as f̃(x) = maxi=1,...,L{aTi x+ bi}, and then show that f = f̃ .

Conjugate functions

Exercise 2.35. Derive the conjugates of the following functions.

(a) Max function. f(x) = maxi xi on Rn.

(b) Sum of largest elements. f(x) =
∑r

i=1 x[i] on Rn.

(c) Piecewise linear function on R. f(x) = maxi=1,...,m aix+bi onR. (You can assume that
the ai are sorted in increasing order, i.e., a1 ≤ · · · ≤ am, and that none of the functions
aix+ bi is redundant, i.e., for each k there is at least one x where f(x) = akx+ bk.)

(d) Power function. f(x) = xp on R++, where p > 1. Repeat for p < 0.

(e) Geometric mean. f(x) = −(
∏
xi)1/n on Rn

+.

Exercise 2.36. Show that the conjugate of f(X) = TrX−1 with dom f = Sn++ is given by

f�(Y ) = −2Tr(−Y )1/2

with dom f� = −Sn++ (i.e., dom f� = {Y ∈ Sn | Y ≺ 0}).
Exercise 2.37. Conjugate of conjugate. Show that if f is convex with closed epigraph, then

f�� = f , i.e., the conjugate of the conjugate of f is f itself.

Exercise 2.38. Conjugate of convex plus affine function. Define g(x) = f(x) + cTx+ d, where f
is convex. Express g� in terms of f� (and c, d).

Exercise 2.39. Conjugate of perspective. Let f : Rn → R be convex, and let F : Rn+1 → R be
its perspective function, defined by F (x, t) = tf(x/t) for t > 0. Express the conjugate of F
in terms of the conjugate of f .

Exercise 2.40. Conjugate and minimization.

(a) Let f(x, z) be convex in (x, z) and define g(x) = infz f(x, z). Express the conjugate g�
in terms of f�.

(b) Let f be convex, and define h(x) = infu{f(u) | Au+ b = x}. Express h� in terms of f�
(and A, b).
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Exercise 2.41. Gradient and Hessian of conjugate function. Suppose f : Rn → R is convex
and twice differentiable. Suppose ỹ and x̃ are related by ỹ = ∇f(x̃), and that the gradient
mapping ∇f : Rn → Rn is invertible near x̃. In other words, for each y near ỹ, there is a
unique x near x̃ such that y = ∇f(x).

(a) Show that ∇f�(ỹ) = x̃

(b) Show that ∇2f�(ỹ)∇2f(x̃) = I.

Exercise 2.42. Young’s inequality. Let f be an increasing function on R, with f(0) = 0, and let
g be its inverse. Define F and G as

F (x) =
∫ x

0
f(a) da, G(y) =

∫ y

0
g(a) da.

Show that F and G are conjugates.

Give a simple graphical interpretation of Young’s inequality

xy ≤ F (x) +G(y).

Quasiconvex functions

Exercise 2.43. Approximation width. Let f0, . . . , fn : R+ → R be given functions. We consider
the problem of approximating f0 as a linear combination of f1, . . . , fn. For x ∈ Rn, we say
that f = x1f1 + · · · + xnfn approximates f0 with tolerance ε > 0 over the interval [0, T ] if
|f(t) − f0(t)| ≤ ε for 0 ≤ t ≤ T . Now we choose a fixed tolerance ε > 0 and define the
approximation width as the largest T such that f approximates f0 over the interval [0, T ]:

W (x) = sup{ T | |x1f1(t) + · · · + xnfn(t) − f0(t)| ≤ ε for 0 ≤ t ≤ T }.
Show that W is quasiconcave function of x.

Exercise 2.44. First-order condition for quasiconvexity. Prove the first-order condition for qua-
siconvexity given in §2.4.3: A differentiable function f : Rn → R, with dom f convex, is
quasiconvex if and only if for all x, y ∈ dom f ,

f(y) ≤ f(x) =⇒ ∇f(x)T (y − x) ≤ 0.

Hint. It suffices to prove the result for a function onR; the general result follows by restriction
to an arbitrary line.

Exercise 2.45. Second-order conditions for quasiconvexity. In this problem we derive alternate
representations of the second-order conditions for quasiconvexity given in §2.4.3.
(a) Consider the necessary condition: for all x ∈ dom f

yT∇f(x) = 0 =⇒ yT∇2f(x)y ≥ 0.

Show that this condition can be expressed in the following two equivalent ways.

• for all x ∈ dom f , there exists a λ(x) ≥ 0 such that

∇2f(x) + λ(x)∇f(x)∇f(x)T ≥ 0.
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• for all x ∈ dom f , the matrix [
∇2f(x) ∇f(x)
∇f(x)T 0

]

has at most one negative eigenvalue.

(b) Consider the sufficient condition: for all x ∈ dom f

yT∇f(x) = 0 =⇒ yT∇2f(x)y > 0.

Show that this condition can be expressed in the following two equivalent ways.

• for all x ∈ dom f , there exists a λ(x) ≥ 0 such that

∇2f(x) + λ(x)∇f(x)∇f(x)T > 0

• for all x ∈ dom f , the matrix [
∇2f(x) ∇f(x)
∇f(x)T 0

]

has one nonpositive and n positive eigenvalues.

Exercise 2.46. Use the first and second order conditions for quasiconvexity given in §2.4.3 to
verify quasiconvexity of the function f(x) = −x1x2, with dom f = R2

++.

Exercise 2.47. Quasilinear functions with domain Rn. A function on R that is quasilinear (i.e.,
quasiconvex and quasiconcave) is monotone, i.e., either nondecreasing or nonincreasing. In
this problem we consider a generalization of this result to functions on Rn.

Suppose the function f : Rn → R is quasilinear and dom f = Rn. You can assume that f
is continuous. Show that it can be expressed as f(x) = g(aTx), for g : R → R is monotone
and a ∈ Rn. In other words: a quasilinear function wih domain Rn must be a monotone
function of a linear function. (The converse is also true.)

Log-concave and log-convex functions

Exercise 2.48. Logistic function. Show that the function ex/(1 + ex), which is sometimes called
the logistic function, is log-concave.

Exercise 2.49. Harmonic mean. The harmonic mean of x1, . . . , xn > 0 is defined as

H(x) =
1

1/x1 + · · · + 1/xn
.

Show that the harmonic mean is log-concave.

Exercise 2.50. Subtracting a constant from a log-concave function. Show that if f : Rn → R is
log-concave and a ≥ 0, then the function g = f − a is log-concave, where dom g = {x ∈
dom f | f(x) > a}.

Exercise 2.51. Let p be a polynomial of x ∈ R, with all its roots real. Show that it is log-concave
on any interval on which it is positive.
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Exercise 2.52. Let y ∈ Rn be a random variable with a log-concave probability density. Assume
gi(x, y), i = 1, . . . , r, are concave functions on Rm ×Rn. Then

h(x) = Prob(g1(x, y) ≥ 0, . . . , gr(x, y) ≥ 0)

is log-concave in x. A special case is

h(x) = Prob(g1(x) ≥ y1, . . . , gr(x) ≥ yr)

where gi(x) is concave, and yi have log-concave denisities. with a log-concave probability
distribution.

Exercise 2.53. Log-convexity of moment functions. Suppose f : R+ → R is nonnegative. For
x ≥ 0 define

M(x) =
∫ ∞

0
uxf(u) du.

When x is a positive integer, and f is a probability distribution (i.e., with integral one),
M(x) is the xth moment of the distribution. Show that M is a log-convex function.
Hint: for each u ≥ 0, ux is log-convex on R++.
Use this to show that the Gamma function,

Γ(x) =
∫ ∞

0
ux−1e−u du,

is log-convex for x ≥ 1.

Exercise 2.54. Log-concavity of Gaussian CDF. The cumulative distribution function of a Gaus-
sian random variable,

f(x) =
1√
2π

∫ x

−∞
e−t

2/2 dt,

is log-concave. This follows from the general result that the convolution of two log-concave
functions is log-concave. In this problem we guide you through a simple self-contained proof
that f is log-concave. Recall that f is log-concave if and only if f ′′(x)f(x) ≤ (f ′(x))2 for all
x.

(a) Verify that f is log-concave for x ≥ 0. That leaves us the hard part, which is to show
that f is log-concave for x < 0.

(b) Verify that for any t and x we have t2/2 ≥ −x2/2 + xt.

(c) Using part (b) show that e−t2/2 ≤ ex
2/2−xt. Conclude that∫ x

−∞
e−t

2/2 dt ≤ ex
2/2
∫ x

−∞
e−xt dt.

(d) Use part (c) to verify that f ′′(x)f(x) ≤ (f ′(x))2 for x ≤ 0.

Exercise 2.55. Log-concavity of the CDF of a log-concave probability density. In this problem
we extend the result of exercise 2.54. Let g(t) = exp(−h(t)) be a differentiable log-concave
probability density function, and let

f(x) =
∫ x

−∞
g(t) dt =

∫ x

−∞
e−h(t) dt

be its cumulative distribution. We will show that f is log-concave, i.e., it satisfies f ′′(x)f(x) ≤
(f ′(x))2.
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(a) Express the derivatives of f in terms of the function h. Verify that f is log-concave if
h′(x) ≥ 0.

(b) Assume that h′(x) < 0. Use the inequality

h(t) ≥ h(x) + h′(x)(t− x)

(which follows from convexity of h), to show that

∫ x

−∞
e−h(t) dt ≤ e−h(x)

−h′(x) .

Use this inequality to verify that f is log-concave.

Exercise 2.56. Log-concave measures. A probability measure π on Rn is log-concave if

π((1 − θ)C1 + θC2) ≥ π(C1)1−θπ(C2)θ

for all convex subsets C1 and C2 of Rn and all θ ∈ [0, 1].

Show that when the measure π is given by a density p, i.e., π(A) =
∫
A p(x)dx, then it is

log-concave if and only if the density p is a log-concave function.

Exercise 2.57. More log-concave densities. Show that the following densities are log-concave.

(a) The gamma density, defined by

f(x) =
αλ

Γ(λ)
xλ−1e−αx

on R+. The parameters λ and α satisfy λ ≥ 1, α > 0.

(b) The multivariate hyperbolic density:

f(x) = ce−α(δ+(x−x̄)T Σ−1(x−x̄))1/2
+βT (x−x̄).

Here Σ ∈ Sn++, β ∈ Rn, and α and c are positive constants.

(c) The Dirichlet density:

f(x) =
Γ(λ)

Γ(λ1) · · ·Γ(λn+1)
xλ1−1

1 · · ·xλn−1
n

(
1 −

n∑
i=1

xi

)λn+1−1

with domain
dom f = {x ∈ Rn

+ | 1Tx ≤ 1}.
The parameter λ satisfies λ � 1.

Exercise 2.58. Show that the function

f(x) =
∏n
i=1 xi∑n
i=1 xi

is log-concave on Rn
++.
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Convexity with respect to a generalized inequality

Exercise 2.59. Show that the function f(X) = X−1 is matrix convex on the positive definite
cone.

Exercise 2.60. Second order conditions for K-convexity. Let K ⊆ Rm be a convex cone that
induces a generalized inequality. Show that a twice differentiable function f : Rn → Rm is
K-convex if for all x ∈ dom f and all y ∈ Rn,

∑
i,j=1,...,n

∂2f

∂xi∂xj
yiyj �K 0,

i.e., the second derivative is a K-nonnegative bilinear form. (Here ∂2f/∂xi∂xj ∈ Rm, with
components ∂2fk/∂xi∂xj , for k = 1, . . . ,m; see §B.3.2.)

Exercise 2.61. Sublevel sets and epigraph of K-convex functions. Let K ⊆ Rm indice a general-
ized inequality, and let f : Rn → Rm. For α ∈ Rm, the α-sublevel set of f (with respect to
the generalized inequality �K) is defined as

Cα = { x ∈ Rn | f(x) �K α }.
The epigraph of f , with respect to �K , is defined as the set

epiKf = { (x, t) ∈ Rn+m | f(x) �K t }.
Show the following:

(a) If f is K-convex, then its sublevel sets are convex.

(b) f is K-convex if and only if epiKf is a convex set.

Exercise 2.62. Pointwise maximum of K-convex functions. The pointwise maximum of two (or
more) K-convex functions is K-convex, but the situation is far trickier here than in the scalar
case. Recall that a, b ∈ Rm need not, in general, have a maximum with respect to K; in
other words, there need not exist a c ∈ Rm such that a �K c, b �K c, and

a �K d, b �K d =⇒ c �K d.

Therefore the pointwise maximum of f1 and f2, given by

f(x) = max
K

{f1(x), f2(x)},

is defined only if for each x the points f1(x) and f2(x) have a maximum.

Show that when the pointwise maximum of two K-convex functions f1, f2 does exist, it is
K-convex.

Exercise 2.63. Minimization and K-convexity. Suppose g(x, y) is K-convex, jointly in x and y,
and C is a convex set. Suppose for each x, the set

{g(x, y) | y ∈ C}
has a minimum element (with respect to K), which we denote as f(y). Show that f is
K-convex.
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