MA2001-2 Cálculo en Varias Variables. Semestre 2010-1 Profesor: Marcelo Leseigneur Auxiliar: Víctor Verdugo

Taller 1

Martes 4 de Mayo de 2010

- **P1.** Sean E y F dos espacios vectoriales normados.
 - a) Considere $\Phi: \mathcal{L}(E,F) \times E \longrightarrow F$ definida por $\Phi(T,x) = T(x)$. Muestre que Φ es continua.
 - b) Sea $A: E \times E \longrightarrow \mathbb{R}$ bilineal, es decir para todo $x,y \in E$ las funciones $A(\cdot,y)$ y $A(x,\cdot)$ son lineales. Demuestre que A es continua si y solo si existe c>0 tal que para todo $x,y \in E$ se tiene

$$|A(x,y)| \le c||x|| ||y||$$

P2. Sea $E = C^1([0,1], R)$ el espacio de las funciones reales continuas definidas en [0,1], continuamente diferenciables en (0,1) y con derivada por un lado en los extremos del intervalo [0,1]. Se define la norma

$$||f|| = ||f||_{\infty} + ||f'||_{\infty}$$

- a) Pruebe que $\|\cdot\|$ es una norma, y que $(E,\|\cdot\|)$ es un espacio de Banach.
- b) Sea $T:\mathcal{C}^1([0,1],\mathbb{R})\longrightarrow\mathcal{C}([0,1],\mathbb{R})$ tal que T(f)=f'. Pruebe que

$$T: (\mathcal{C}^1([0,1],\mathbb{R}), \|\cdot\|) \longrightarrow (\mathcal{C}([0,1],\mathbb{R}), \|\cdot\|_{\infty})$$

es continua, y que

$$T: (\mathcal{C}^1([0,1],\mathbb{R}), \|\cdot\|_{\infty}) \longrightarrow (\mathcal{C}([0,1],\mathbb{R}), \|\cdot\|_{\infty})$$

no es continua.