Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Escuela de Ingeniería

Auxiliar 3

MA1101 - Introducción al Álgebra

Profesor: María Leonor Varas Auxiliares: Roberto Castillo, Javiera Urrutia Viernes 23 de Abril de 2010

P1.-

Sean $f, g: A \to A$, funciones. Probar que si g es biyectiva, entonces se tiene:

- 1. f es inyectiva $\Leftrightarrow f \circ g$ es inyectiva
- 2. f es sobreyectiva $\Leftrightarrow g \circ f$ es sobreyectiva

P2.-

Sea $f: X \to Y$ una función. Pruebe que $\forall A, B \subseteq X$

$$f(A)\backslash f(B) \subseteq f(A\backslash B)$$

Muestre además que si f es inyectiva, entonces

$$f(A)\backslash f(B) = f(A\backslash B)$$

Utilice esto para probar lo mismo cambiando \ por Δ

P3.-

Se define F como el conjunto de las funciones sobreyectivas $f: D_{a,b} \subseteq \mathbb{R} \to f(D_{a,b})$ de la forma $f(x) = \frac{ax+b}{bx+a}$ donde a y b son constantes reales no nulas y $D_{a,b}$ es el mayor conjunto donde f está bien definida.

- 1. Encuentre $D_{a,b}$
- 2. Encuentre condiciones para a y b de modo que f sea biyectiva.
- 3. Si f es invertible, encuentre f^{-1} y muestre que $f^{-1} \in F$

P4.-

Considere el conjunto $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R} : f \text{ biyectiva } \}$. Se define la función $\Psi : \mathcal{F} \times \mathcal{F} \to \mathcal{F}$ dada por:

$$\Psi(f, q) = (f \circ q)^{-1}$$

- 1. Justifique que dados $f, g \in \mathcal{F}, \Psi(f, g) \in \mathcal{F}$
- 2. Pruebe que Ψ es sobreyectiva, pero no inyectiva.
- 3. Demuestre que $\forall (f,g) \in \mathcal{F} \times \mathcal{F}$,

$$\Psi(\Psi(f,g),\Psi(g^{-1},f^{-1})) = Id_{\mathbb{R}}$$

4. Sean $f_1, g_1, f_2, g_2 \in \mathcal{F}$ definidas por $f_1(x) = 2x + 3$, $g_1(x) = x^3$, $f_2(x) = 5x^3 + 4$, $g_2(x) = \frac{x}{2}$. Además considere el conjunto $A = \{(f_1, g_1), (f_2, g_2)\}$. Encuentre $\Psi(A)$.