Crecientes

 \nearrow Una función f es creciente en A si para todo x, y ∈ A,

$$x < y \Rightarrow f(x) \leq f(y)$$

✓ Una función f es estrictamente creciente en A si para todo $x, y \in A$,

$$x < y \Rightarrow f(x) < f(y)$$

Una función f es decreciente en A si para todo $x, y \in A$,

$$x < y \Rightarrow f(x) \ge f(y)$$

✓ Una función f es estrictamente decreciente en A si para todo $x, y \in A$,

Crecimiento

- *f* es creciente, estrictamente creciente, decreciente o estrictamente decreciente, si lo es en su dominio.
- Una función f es monótona en A si es creciente en A o es decreciente en A.
- Una función *f* es estrictamente monótona en *A* si es estrictamente creciente en *A* o estrictamente decreciente en *A*.

Acotamiento

- Una función f es acotada superiormente si existe $M \in \mathbb{R}$ tal que para todo $y \in dom(f)$, $M \ge f(y)$.
- Una función f es acotada inferiormente si existe $m \in \mathbb{R}$ tal que para todo $y \in dom(f)$, $m \leq f(y)$.
- Una función f tiene periodo p > 0 si

$$\forall y \in dom(f), f(y) = f(y + p)$$

Álgebra: af

Constante por una función

Para $a \in \mathbb{R}$, $a \neq 0$ y f una función se define af como la función con dominio dom(f) y que a cada x asocia

$$(af)(x) = a \cdot f(x)$$

	f	par	impar	inyectiva	periódica
Г		↓	₩		
	af	par	impar	inyectiva	periódica

Álgebra: af

Constante por una función

Para $a \in \mathbb{R}$, $a \neq 0$ y f una función se define af como la función con dominio dom(f) y que a cada x asocia

$$(af)(x) = a \cdot f(x)$$

f	< 0	> 0	7	>	$f \leq M$	$m \le f$
<i>a</i> > 0	\Rightarrow	₩	₩	₩	₩	₩
af	< 0	> 0	7	/	af ≤ aM	am ≤ af

f	< 0	> 0	7	>	$f \leq M$	$m \le f$
<i>a</i> < 0	\	\	#	#	#	#
af	> 0	< 0	/	7	aM ≤ af	af ≤ am

Álgebra: f + g

Suma de funciones

Para f y g funciones se define f+g como la función con dominio $dom(f)\cap dom(g)$ y que a cada x asocia

$$(f+g)(x)=f(x)+g(x)$$

f	par	impar	7	>	> 0	< 0	$f \leq M$	$m \le f$
g	par	impar	7	>	> 0	< 0	$g \leq M'$	$m' \leq g$.
	#	#	₩	₩	₩	₩	#	#
f+g	par	impar	7	>	> 0	< 0	$f+g\leq M+M'$	$m+m'\leq f+g$

Álgebra: $f \cdot g$

Producto de funciones

Para f y g funciones se define $f \cdot g$ como la función con dominio $dom(f) \cap dom(g)$ y que a cada x asocia

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

	f . a	f		
	$t \cdot g$	par	impar	
	par	par	impar	
$\mid g \mid$	impar	impar	par	

f	. a	f				
f · g		> 0	= 0	< 0		
	> 0	> 0	= 0	< 0		
g	= 0	= 0	= 0	= 0		
	< 0	< 0	= 0	> 0		

Álgebra: f · g

Producto de funciones

Para f y g funciones se define $f \cdot g$ como la función con dominio $dom(f) \cap dom(g)$ y que a cada x asocia

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

f	y ≥ 0	$\searrow y \ge 0$	$0 \le f \le M$
g	y ≥ 0	$\searrow y \ge 0$	$0 \le g \le M'$
	#		#
$f \cdot g$	y ≥ 0	√ y ≥ 0	$0 \le fg \le MM'$

Álgebra: $\frac{1}{f}$

Función Recíproca

Para una función f se define $\frac{1}{f}$ como la función con dominio $dom(f)\setminus\{x:f(x)=0\}$ y que a cada x asocia

$$\frac{1}{f}(x) = \frac{1}{f(x)}$$

f	par	impar	< 0	> 0	$/\!\!/ y > 0$	$\searrow y > 0$	$0 < m \le f \le M$
	\Rightarrow	\Rightarrow	\Leftarrow				
$\frac{1}{f}$	par	impar	< 0	> 0	$\searrow y > 0$	/ y > 0	$1/M \le 1/f \le 1/m$

Álgebra: $\frac{f}{g}$

Función Cuociente

Para f y g funciones se define $\frac{f}{g}$ como la función con dominio $dom(f) \cap dom(g) \setminus \{x : f(x) = 0\}$ y que a cada x asocia

$$\frac{g}{f}(x) = \frac{g(x)}{f(x)}$$

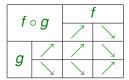
Álgebra: composición

Composición

Para f y g funciones se define $f \circ g$ como la función con dominio $g^{-1}(dom(f))$ y que a cada x asocia

$$(f\circ g)(x)=f(g(x))$$

	$f \circ a$	f		
	$f \circ g$	par	impar	
~	par	par	par	
g	impar	par	impar	



Álgebra: composición

Composición

Para f y g funciones se define $f \circ g$ como la función con dominio $g^{-1}(dom(f))$ y que a cada x asocia

$$(f\circ g)(x)=f(g(x))$$

f	inyectiva	> 0	< 0	*	$f \leq M$	$m \le f$
g	inyectiva	*	*	periódica	*	*
		\	#			
$f \circ g$	inyectiva	> 0	< 0	periódica	$f \circ g \leq M$	$m \leq f \circ g$

Para una expresión f(x) estudiamos:

- Dominio: $\{x \in \mathbb{R} : f(x) \in \mathbb{R}\}.$
- Ceros y signos: f(x) = 0, f(x) > 0 y f(x) < 0.
- Simetrías: f par: $\forall x$, f(x) = f(-x); f impar $\forall x$, f(-x) = -f(x).
- Crecimiento: f (estrictamente) creciente y/o (estrictamente) decreciente.
- Acotamiento: *f* acotada superior y/o inferiormente.
- Periodicidad: Existe p > 0 con $\forall x, f(x + p) = f(x)$.
- Inyectividad: $\forall x, y, f(x) = f(y) \Rightarrow x = y$.
- Sobreyectividad: $\forall y$, existe x, y = f(x).
- Biyectividad:
- Búsqueda de una función inversa:

Ejemplo: la asignación f(x) = 2x.

Dominio, ceros y signos, simetrías, crecimiento, acotamiento, inyectividad, sobreyectividad, biyectividad, inversa.

- ? ..
 - •

 - •

 - 0

 - •
 - •

Ejemplo: la asignación $f(x) = x^2$.

Dominio, ceros y signos, simetrías, crecimiento, acotamiento, inyectividad, sobreyectividad, biyectividad, inversa.

- ? ..
 - •

 - •
 - 0
 - 0
 - •
 - •
 - •
 - •

Ejemplo: la asignación
$$f(x) = b\sqrt{1 - (x/a)^2}$$
, $a, b > 0$

Dominio, ceros y signos, simetrías, crecimiento, acotamiento, inyectividad, sobreyectividad, biyectividad, inversa.