

ECONOMETRÍA

Auxiliar 7

Profesor : Mattia Makovec Semestre : Otoño 2010

Auxiliar : Gonzalo Viveros A.

Pregunta 1

Considere el modelo de regresión lineal basado en k regresores:

$$y_i = x_i' \beta + \varepsilon_i, \quad i = 1, \dots, N.$$

Se hacen los siguientes supuestos: $\mathbb{E}[\varepsilon] = 0$ y $\mathbb{E}[\varepsilon \varepsilon'] = \Sigma$ matriz definida positiva. Sea $\widehat{\beta}_{MCO}$ el estimador de MCO del vector β $(k \times 1)$.

- a) Demuestre si $\widehat{\beta}_{_{MCO}}$ es insesgado y calcule su matriz y covarianzas.
- b) Sea a un vector de $k \times 1$ de términos constantes. Demuestre si $a'\widehat{\beta}_{MCO}$ es un estimador insesgado de $a'\beta$ y calcule la matriz de varianzas y covarianzas de $a'\beta$.

Pregunta 2

Considere el modelo lineal con solo una variable explicativa,

$$Y_t = \beta X_t + u_t,$$

donde la variable X_t es siempre positiva. Se definen los siguientes estimadores alternativos del parámetro unidimensional β :

$$\widehat{\beta}_{1} = \frac{\sum_{t=1}^{T} Y_{t}}{\sum_{t=1}^{T} X_{t}}; \qquad \widehat{\beta}_{2} = \frac{\sum_{t=1}^{T} X_{t} Y_{t}}{\sum_{t=1}^{T} X_{t}}; \qquad \widehat{\beta}_{3} = \frac{\sum_{t=1}^{T} X_{t} Y_{t}}{\sum_{t=1}^{T} X_{t}^{2}}; \qquad \widehat{\beta}_{4} = \frac{\sum_{t=1}^{T} \frac{Y_{t}}{X_{t}}}{T}.$$

Supongamos que en realidad no se cumplen las hipótesis del MLG porque falla el supuesto de homocedasticidad, ya que las perturbaciones (u_t) son independientes con media 0 y varianza $\sigma^2 \lambda_t$.

- a) Determine cual es el estimador lineal insesgado óptimo de β y calcule su esperanza y su varianza.
- b) ¿Es posible encontrar λ_t de manera que el estimador óptimo obtenido en (a) sea $\widehat{\beta}_i$? con i = 1, 2, 3, 4.

Pregunta 3

El archivo "Costes.xls" contiene datos sobre costos totales y producción para 100 empresas a lo largo del tiempo. Considere la siguiente función de costos totales de una empresa i en la muestra:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \varepsilon_i,$$

donde y_i es el coste total y x_i la producción de la empresa i.

- a) Obtenga el estimador de MCO de los parámetros de la función de costes totales y calcule los errores estándar.
- b) Represente gráficamente los residuos en función del output y comente los resultados.
- c) Contraste la hipótesis de homocedasticidad de las perturbaciones utilizando el contraste de White. Realice primero el contraste generando las variables que necesite y efectuando la regresión apropiada. A continuación utilice el comando que proporciona EVIEWS para realizar el contraste de White y compruebe que los resultados obtenidos son los mismos.
- d) Contraste si sería suficiente una especificación lineal para la función de costes totales.
- e) Suponga ahora que la varianza de las perturbaciones de la función de costes es $\sigma_t^2 = \sigma^2 \, x_t^2$ es el output. Calcule el estimador MCG de los parámetros de la función de costes.
- f) Utilizando lo resultados de la estimación MCG, represente gráficamente la curva de costes medios y marginales.
- g) Contraste si el supuesto sobre la varianza del apartado (f) es correcto.

Solución

Pregunta 1

Modelo:

$$y_i = x_i' \beta + \varepsilon_t, \qquad i = 1, \dots, N.$$
 (1)

Supuestos:

$$\mathbb{E}[\varepsilon] = 0$$
 y $\mathbb{E}[\varepsilon \varepsilon'] = \Sigma$, definida positiva.

a) $p.d.: \widehat{\beta}_{\scriptscriptstyle MCO}$ es insesgado, determinar la matriz de varianzas-covarianzas.

La demostración de insesgadez es equivalente a la realizada en casos anteriores de forma matricial, ya que el problema de heterocedasticidad no influye en la estimación por MCO. Lo que cambia es la matriz de varianzas-covarianzas de los estimadores, donde ahora ya no es la mínima:

$$\begin{split} \mathbb{V}(\,\widehat{\boldsymbol{\beta}}_{\scriptscriptstyle MCO}\,) &= \mathbb{V}\big(\boldsymbol{\beta} + (X'X)^{-1}(X'\varepsilon)\big) \\ &= (X'X)^{-1}X'\,\mathbb{V}(\,\varepsilon\,)\,X\,(X'X)^{-1} \\ &= (X'X)^{-1}X'\,\boldsymbol{\Sigma}\,X\,(X'X)^{-1}. \end{split}$$

- b) $p.d.: a'\widehat{\beta}_{MCO}$ es un estimador insesgado de $a'\beta$, y determinar su matriz de Varianza-Covarianzas.
 - Esperanza:

$$\mathbb{E}[a'\,\widehat{\beta}_{\scriptscriptstyle MCO}\,] = a'\,\mathbb{E}[\,\widehat{\beta}_{\scriptscriptstyle MCO}\,] = a'\,\beta,$$

por tanto, $a' \widehat{\beta}_{\scriptscriptstyle MCO}$ es un estimador insesgado de $a' \beta$

• Matriz de Varianza-Covarianzas:

$$\mathbb{V}(\,a'\,\widehat{\beta}_{\scriptscriptstyle{MCO}}\,) \ = \ a'\,\mathbb{V}(\,\widehat{\beta}_{\scriptscriptstyle{MCO}}\,)\,a \ = \ a'\,(X'X)^{-1}X'\,\Sigma\,X\,(X'X)^{-1}a.$$

Pregunta 2

Modelo:

$$Y_t = \beta X_t + u_t, \qquad t = 1, \dots, T. \tag{2}$$

Supuestos:

$$X_t > 0, \quad \forall t.$$

Errores:

$$\mathbb{E}[u_t] = 0, \quad \text{y} \quad \mathbb{V}(u_t) = \sigma^2 \lambda_t \quad \text{(heterocedasticidad)}.$$

a) Estimador lineal Insesgado Óptimo de β .

La idea es transformar el modelo original con el objeto de encontrar un modelo que cumpla con todos los supuestos de MCO.

Se sabe que:

$$\mathbb{V}(u_t) = \sigma^2 \lambda_t \iff \mathbb{V}\left(\frac{u_t}{\sqrt{\lambda_t}}\right) = \sigma^2$$

$$\Rightarrow \mathbb{V}(u_t^*) = \sigma^2, \quad \text{con } u_t^* = \frac{u_t}{\sqrt{\lambda_t}}.$$

Por tanto, la transformación ha realizar en el modelo para que este sea homocedástico, consiste en multiplicar el modelo (2) por $1/\sqrt{\lambda_t}$, *i.e.*,

$$Y_t = \beta X_t + u_t \Rightarrow \frac{Y_t}{\sqrt{\lambda_t}} = \beta \frac{X_t}{\sqrt{\lambda_t}} + \frac{u_t}{\sqrt{\lambda_t}}$$
$$\Rightarrow Y_t^* = \beta X_t^* + u_t^*,$$

que cumple con los supuestos de MCO.

Con esto, el estimador MCG viene dado por:

$$\widehat{\beta}_{MCG} = (X^{*\prime}X^{*})^{-1}(X^{*\prime}Y^{*})$$

$$= \frac{\sum X_{t}^{*}Y_{t}^{*}}{\sum X_{t}^{*^{2}}}$$

$$= \frac{\sum \frac{X_{t}Y_{t}}{\lambda_{t}}}{\sum \frac{X_{t}^{2}}{\lambda_{t}}}.$$

- Insesgadez: Reescribiendo $\widehat{\beta}_{\scriptscriptstyle MCG},$

$$\widehat{\beta}_{MCG} = \frac{\sum \frac{X_t Y_t}{\lambda_t}}{\sum \frac{X_t^2}{\lambda_t}}$$

$$= \frac{\sum \frac{X_t (\beta X_t + u_t)}{\lambda_t}}{\sum \frac{X_t^2}{\lambda_t}}$$

$$= \beta + \frac{\sum \frac{X_t u_t}{\lambda_t}}{\sum \frac{X_t^2}{\lambda_t}}.$$

Esperanza:

$$\mathbb{E}[\widehat{\beta}_{MCG}] = \mathbb{E}\left[\beta + \frac{\sum \frac{X_t u_t}{\lambda_t}}{\sum \frac{X_t^2}{\lambda_t}}\right]$$
$$= \beta + \frac{\sum \frac{X_t \mathbb{E}[u_t]}{\lambda_t}}{\sum \frac{X_t^2}{\lambda_t}}$$
$$= \beta.$$

Por tanto, el estimador $\mathbb{E}[\widehat{\beta}_{\scriptscriptstyle MCG}]$ es insesgado.

• Varianza:

$$\mathbb{V}(\widehat{\beta}_{MCG}) = \mathbb{V}\left(\beta + \frac{\sum \frac{X_t u_t}{\lambda_t}}{\sum \frac{X_t^2}{\lambda_t}}\right)$$
$$= \sigma^2 \frac{\sum \frac{X_t^2}{\lambda_t}}{\left(\sum \frac{X_t^2}{\lambda_t}\right)^2}.$$

- b) ¿Es posible encontrar λ_i tal que: $\widehat{\beta}_{MCG} = \widehat{\beta}_i$?, i=1,2,3,4.
 - Para $\widehat{\beta}_1$: Si $\lambda_t = X_t$, entonces $\widehat{\beta}_{MCG} = \widehat{\beta}_1$.
 - Para $\widehat{\beta}_2$: No existe un λ_t tal que $\widehat{\beta}_{MCG} = \widehat{\beta}_2$.
 - Para $\widehat{\beta}_3$: Si $\lambda_t = 1$, entonces $\widehat{\beta}_{MCG} = \widehat{\beta}_3$.
 - Para $\widehat{\beta}_4$: Si $\lambda_t = X_t^2$, entonces $\widehat{\beta}_{MCG} = \widehat{\beta}_4$.

Pregunta 3 (EVIEWS)

- a) Estimación por MCO
 - 1. Generar variables relevantes:

genr output2=output^2
genr output3=output^3

2. Estimación MCO:

Quick ← Estimate Equation coste c output output2 output3

- b) Gráfico: Output v/s Residuos
 - 1. Seleccionar las variables output y resid con Ctrl.
 - 2. View \hookrightarrow Show output resid
 - 3. View \hookrightarrow Graph \hookrightarrow Scatter \hookrightarrow Simple Scatter
- c) Contrastar si el modelo es Homocedástico (Test de White)

$$\mathrm{H}_0:\sigma_t^2 = \sigma^2, \quad \forall t \qquad \mathrm{v/s} \qquad \mathrm{H}_1:\sigma_t^2 \neq \sigma^2, \ \mathrm{para\ alg\'un}\ t$$

Generando el Estadístico

1. Generar las variables relevantes:

genr resid2=resid^2
genr output4=output^4
genr output5=output^5
genr output6=output^6

2. Estimación MCO:

Quick
→ Estimate Equation
resid2 c output output2 output3 output4 output5 output6

3. Ver el \mathbb{R}^2 de este modelo. El estadístico de White es $\mathbb{N}\mathbb{R}^2$.

Utilizando el Comando

- Abrir ventana del Modelo Estimado en (a), luego:
 View → Residual Tests → White Heteroskedasticity (cross terms)
- 2. Ver Estadístico Chi-Cuadrado y se obtiene lo mismo en comparación a lo anterior realizado.

d) ¿Suficiente una especificación lineal para la función de costos totales?

Como el modelo es heteroscedástico, se debe ajustar nuevamente la función de costos, pero con la corrección del error a través de la matriz de varianzas-covarianzas de White.

Una vez ajustado el modelo correcto,

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \varepsilon_i,$$
 (3)

que tiene la misma forma al modelo original, el test de hipótesis es:

$$H_0: \beta_3 = 0 \quad \land \quad \beta_4 = 0 \qquad v/s \qquad H_1: \beta_3 \neq 0 \quad \lor \quad \beta_4 \neq 0$$

resolviéndose con el estadístico de Wald.

1. Estimación MCO, con corrección

 $Quick \hookrightarrow Estimate Equation$

Options, seleccionar: Heteroskedasticity consistent coefficient covariance / White coste c output output2 output3

2. Prueba de Hipótesis

En la ventana del modelo,

 $View \hookrightarrow Coefficient Tests \hookrightarrow Wald - Coefficient Restrictions$

$$c(3)=0, C(4)=0$$

e) Calcular el estimador MCG de los parámetros de la función de costes totales

Bajo el supuesto que $\sigma_t^2 = \sigma^2 x_t^2$, entonces:

$$\mathbb{V}(\varepsilon_t) = \sigma^2 x_t^2 \Rightarrow \mathbb{V}\left(\frac{\varepsilon_t}{x_t}\right) = \sigma^2$$
$$\Rightarrow \mathbb{V}(\widetilde{\varepsilon}_t) = \sigma^2,$$

vale decir, si multiplicamos el modelo (3) por $1/x_t$, se tendría un modelo homocedástico, debido a que el error de este nuevo modelo seria igual a una constante. Luego, el modelo transformado queda como:

$$\frac{y_t}{x_t} = \frac{\beta_0}{x_t} + \beta_1 + \beta_2 x_t + \beta_3 x_t^2 + \frac{\varepsilon_t}{x_t}.$$
 (4)

Observación: Al estimar los parámetros por MCO del modelo (4) que es homocedástico, se consideran <u>estos</u> parámetros en el modelo (3) manteniendo el mismo orden, i.e., la estimación de β_0 en (4) se reemplaza en β_0 en el modelo (3), y así para los otros parámetros. De esta manera se obtiene la estimación MCG en el modelo (3).

1. Generar las variables relevantes:

genr tc=1/output

genr tcoste=coste/output

2. Estimación MCG:

 $Quick \hookrightarrow Estimate Equation$

tcoste tc c output output2

f) Gráfico: Costos Medios y Costos Marginales

Recordar que el EVIEWS guarda en la variable c los últimos parámetros estimados.

1. Generar las variables relevantes:

```
genr Cmed = (c(1) + c(2)*output + c(3)*output2 + c(4)*output3)/output
genr Cmarg = c(2) + 2*c(3)*output + 3*c(4)*output2
```

2. Seleccionar las 3 variables relevantes con Ctrl:

```
View \hookrightarrow Show
En la ventana, poner output primero: output cmarg cmed
View \hookrightarrow Graph \hookrightarrow Scatter \hookrightarrow Simple Scatter
```

g) Ver Homocedasticidad del modelo en (e)

- Abrir ventana del Modelo Estimado en (e):
 View → Residual Tests → White Heteroskedasticity (cross terms)
- 2. Analizar el estadístico de la prueba y el *p*-valor.