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Abstract

This thesis consists of three chapters exploring predictability of stock returns.

In the first chapter, I suggest a new approach to analysis of stock return predictability.
Instead of relying on predictive regressions, I employ a state space framework. Acknowl-
edging that expected returns and expected dividends are unobservable, I use the Kalman
filter technique to extract them from the observed history of realized dividends and returns.
The suggested approach explicitly accounts for the possibility that dividend growth can be
predictable. Moreover, it appears to be more robust to structural breaks in the long-run
relation between prices and dividends than the conventional OLS regression. I show that
for aggregate stock returns the constructed forecasting variable provides statistically and
economically significant predictions both in and out of sample. The likelihood ratio test
based on a simulated finite sample distribution of the test statistic rejects the hypothesis of
constant expected returns at the 1% level.

In the second chapter, I analyze predictability of returns on value and growth portfolios and
examine time variation of the value premium. As a major tool, I use the filtering technique
developed in the first chapter. I construct novel predictors for returns and dividend growth
on the value and growth portfolios and find that returns on growth stocks are much more
predictable than returns on value stocks. Applying the appropriately modified state space
approach to the HML portfolio, I build a novel forecaster for the value premium. Consistent
with rational theories of the value premium, the expected value premium is time-varying
and countercyclical.

In the third chapter, based on the joint work with Igor Makarov, I develop a dynamic
asset pricing model with heterogeneously informed agents. I focus on the general case in
which differential information leads to the problem of "forecasting the forecasts of others"
and to non-trivial dynamics of higher order expectations. I prove that the model does not
admit a finite number of state variables. Using numerical analysis, I compare equilibria
characterized by identical fundamentals but different information structures and show that
the distribution of information has substantial impact on equilibrium prices and returns.
In particular, asymmetric information might generate predictability in returns and high
trading volume.

Thesis Supervisor: Jiang Wang
Title: Professor of Finance
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Chapter 1

Filtering Out Expected Dividends

and Expected Returns

1.1 Introduction

After two decades of active academic research, there is still no consensus on time variability

of expected aggregate stock returns. On the one hand, many studies have documented that

returns are predictable.1 On the other hand, there is an extensive literature that casts

doubt on the possibility of predicting returns, arguing that there is no reliable statistical

evidence for it.2

The standard approach to analysis of time variation in expected returns is to run OLS

regressions of realized returns on forecasting variables. Although there exist many variables

that have been argued to predict returns3 , the dividend-price ratio is the most popular of

them. Indeed, all variation of the dividend-price ratio must come from the variation of

expected returns, if dividend growth is unpredictable.4 However, the regression approach

to testing predictability has several drawbacks.

First of all, there is a set of econometric problems, which has received much attention in

the literature. These problems are primarily caused by two facts. First, the dividend-price

'See Fama and French (1988,1989), Campbell and Shiller (1988), Campbell (1991), Hodrick (1992),
Nelson and Kim (1992), Cochrane (1992), Lewellen (2004), Cochrane (2006) among others.

2See Goetzmann and Jorion (1993,1995), Lanne (2002), Valkanov (2003), Ferson, Sarkissian, and Simin
(2003), Torous, Valkanov, and Yan (2004), Goyal and Welch (2005), Boudoukh, Richardson, and Whitelaw
(2005) among others.

3Goyal and Welch (2005) provide one of the most comprehensive lists.
4See Cochrane (2005) for a textbook exposition of this argument.



ratio, like many other suggested predictors, is highly autocorrelated. Second, there is a con-

temporaneous negative correlation between innovations in returns and the dividend-price

ratio, which makes the forecaster predetermined, but not exogenous. As demonstrated by

Mankiw and Shapiro (1986), Stambaugh (1986, 1999) and others, in this case the OLS esti-

mates of the regression slope are significantly biased upward in finite samples. As a result,

the regression rejects the null hypothesis of no predictability too often. Moreover, in finite

samples the t-statistic of the slope coefficient has a non-standard distribution, invalidating

all tests based on the conventional quantiles. There is vast econometric literature on how

to make inferences and test hypotheses in this case. 5

Besides econometric problems, there are other important issues that could diminish

the predictive power of the dividend-price ratio. Although it is widely recognized that

the dividend-price ratio does not predict dividend growth, there is some evidence that the

expected dividend growth is time varying. Lettau and Ludvigson (2005) demonstrate that

the cointegration residual cdyt of consumption, dividends and labor income predicts U.S.

stock dividend growth at horizons from one to six years. Ang and Bekaert (2005) report

robust cash flow predictability by earnings yields at horizons of up to one year. Ribeiro

(2004) uses labor income to identify predictable variation in dividends. Predictability of

dividend growth is important because it can have a significant impact on the ability of

the dividend-price ratio to predict stock returns.6 Fama and French (1988), Kothari and

Shanken (1992), Goetzmann and Jorion (1995) pointed out that, when expected dividend

growth is time varying, the dividend-price ratio is a noisy proxy for expected returns. Hence,

the errors-in-variables problem arises and creates a downward bias in the slope coefficient.

Moreover, as emphasized by Menzly, Santos, and Veronesi (2004) and Lettau and Ludvigson

(2005), if expected returns are positively correlated with expected dividend growth, then

the contribution of expected returns to variation of dividend-price ratio can be partially

offset by variation in expected dividend growth. This effect also reduces the ability of

the dividend-price ratio to forecast returns. Thus, the predictability of dividends could

partially explain weak statistical evidence of the predictability of returns and calls for a

testing procedure that accounts for the possibility of time variation in expected dividend

5See, for example, Cavanagh, Elliott and Stock (1995), Lanne (2002), Torous, Valkanov and Yan (2004),
Campbell and Yogo (2006), Jansson and Moreira (2006) and many others.

6Time varying expected dividend growth rate is a key feature of asset pricing models with the long-run
risk. See Bansal and Yaron (2004), Hanson, Heaton, and Li (2005), and others.



growth. 7

Lastly, there is a growing concern that the standard linear predictive relation between

returns and the dividend-price ratio is not stable over time. Lettau and Van Nieuwerburgh

(2005) argue that there are statistically detectable shifts in the mean of the dividend-price

ratio and these shifts are responsible for the poor forecasting power of the ratio. This means

that the ex-ante robustness to this type of structural break is a highly desirable property

of any inference procedure designed to uncover time variation of expected returns.

In this chapter, I suggest a new approach to the analysis of stock return predictability,

which has several advantages relative to the predictive regression. Instead of looking at ad

hoc linear regressions of returns on the dividend-price ratio, I employ a structural approach.

I start with the assumption that both expected returns /P and expected dividend growth /d
are time varying but unobservable to the econometrician. To keep the model parsimonious,

I assume that in the benchmark case A/ and /d follow AR(1) processes with normal shocks

which are allowed to be contemporaneously correlated. By definition, A/ and Ad are the

best predictors of future returns and future dividend growth, respectively. However, since

they are unobservable, the econometrician should use the observed data to uncover them.

Realized returns and dividend growth are related to unobservable expectations as rt+1 =

S± + e~+ 1 and Adt+l = A d + et+l, where er+1 and ed+, are unexpected shocks to returns

and dividends. Under a mild assumption on the joint behavior of prices and dividends, the

present value relation imposes a restriction on shocks in this system making them mutually

dependent. To maintain tractability, I use the log-linearized form of the present value

relation suggested by Campbell and Shiller (1988).

This specification of returns and dividends has exactly the form of a state space model

with state space variables C/ and A4 and observables rt+1 and Adt+l. Hence, the dynamics of

the best estimates j4 and 'd of unobservable state variables are described by the Kalman

filter. Note that by construction tr and 'd optimally use the whole history of observed

dividends and returns. In contrast, the predictive regression utilizes the dividend-price

ratio, which is a specific combination of past dividends and returns. The Kalman filter
7Fama (1990) takes future growth rates of real activity as a proxy for the contribution of expected cash

flows. Kothari and Shanken (1992) augmented this approach by using dividend yield and the growth rate
of investments as additional proxies for expected dividend growth and by using future stock returns as a
control variable. Although this approach helps to disentangle the expected returns and expected dividend
growth, it uses future variables and thus is not appropriate for forecasting. Menzly, Santos, and Veronesi
(2004) suggest to use the consumption-price ratio to disentangle the contributions of expected returns and
expected dividend growth.



ignores the dividend-price ratio and allows data to form the best linear predictor.8

As in the case of predictive regression, the model parameters need to be estimated before

making forecasts. Assuming that all shocks are normally distributed, I employ a maximum

likelihood estimator (MLE) to obtain parameters of the Kalman filter. To test the time

variability of expected dividends and expected returns, I use the log-likelihood ratio test

based on the Kalman filter likelihood function. Since the predictability of returns is studied

simultaneously with the predictability of dividend growth, the suggested testing procedure

can be viewed as a generalization of Cochrane (2006) "the dog that did not bark" approach.

The empirical results of this chapter can be summarized as follows. I apply the de-

scribed filtering technique to aggregate stock returns and demonstrate that the hypothesis

of constant expected returns is rejected at the 1% level. I argue that for the empirical

sample of annual aggregate stock returns and dividends the dividend-price ratio is not the

best combination of prices and dividends that can be used for predicting returns and it

is possible to construct a more powerful forecasting variable using dividends and returns

separately. In particular, I show that the new forecast of future returns j4 outperforms the

dividend-price ratio both in and out of sample, providing a higher value of the R 2 statistic

and smaller out-of-sample forecasting errors. Moreover, besides statistical significance, the

constructed forecast is economically significant, allowing an investor who times the market

to get higher return without taking an additional risk.

One might argue that if only information on returns and dividends is used, and if both

expected returns and expected dividend growth are time varying and correlated with each

other, it is impossible to distinguish their contributions to the variation of the dividend-

price ratio. I show that, in general, this is not the case. For instance, there is no need for

other variables correlated with expected returns and independent from expected dividend

growth to separate their contributions. However, such additional information can increase

the statistical quality of the inference. Furthermore, I demonstrate that, although in the

benchmark model the information on dividends and returns is theoretically insufficient to

identify variances and covariances of all innovations, the freedom is limited and can be

described by a one-dimensional subset in the parameter space. More importantly, there is

enough information for making inference about the correlation between expected returns and

8Conrad and Kaul (1988) also use the Kalman filter to extract expected returns, but only from the history
of realized returns. Brandt and Kang (2004) model conditional mean and volatility as unobservable variables
following a latent VAR process and filter them out from the observed returns.



expected dividend growth. Consistent with Lettau and Ludvigson (2005), I find evidence

that this correlation is high and positive.

To ensure that my findings are not driven by particular details of the model specification,

I perform a series of robustness checks. First, I examine several extensions of the benchmark

model allowing expected returns and expected dividend growth to follow AR(2) and general

VAR processes and confirm most of the conclusions provided by the benchmark model.

In particular, the predictors obtained from different models are highly correlated and all

of them have comparable in-sample and out-of-sample performance. Second, I study an

alternative measure of aggregate cash flows, which include dividends and repurchases, and

show that my findings regarding time variation of expected returns do not change. Third,

I examine the sensitivity of my test results to the distributional assumption by employing

non-parametric bootstrap, and again demonstrate that the hypothesis of constant expected

returns can be reliably rejected.

Although in my main analysis I use only the data on dividends and returns, I also

study the possibility of adding other observables to the state space model. I adopt a simple

framework in which a new observable serves as an additional proxy for the level of unob-

servable expected returns or expected dividend growth. As particular examples, I consider

the book-to-market ratio BMt and the equity share in total new equity and debt issues

St. I demonstrate that although the book-to-market ratio does not bring new information

about future returns, it helps to predict future dividend growth. On the contrary, the equity

share variable does help to improve the predictive ability of the system both for dividends

and returns. Surprisingly, this improvement comes from the ability of St to predict future

dividend growth, but not returns.

The filtering approach has several advantages over the conventional predictive regression.

First of all, it explicitly acknowledges that both expected returns and expected dividend

growth can be time varying. As a result, the filtering approach is more flexible and allows

us to disentangle the contributions of expected returns and expected dividend growth if

dividends are predictable. This makes the prediction of returns more accurate and simul-

taneously gives us predictions of future dividend growth.

Next, the filtering approach employs a weaker assumption on the joint behavior of prices

and dividends relative to the predictive regression, which implicitly assumes stationarity of

the dividend-price ratio. As a result, the filtering approach is more robust to structural



breaks in the long run relation between prices and dividends, and this is the source of its

superior forecasting performance. In particular, even a small change in the mean of dividend

growth can produce a substantial shift in the dividend-price ratio, which destroys most of

its forecasting power. The filtering approach is insensitive to such shifts. Since there is

evidence supporting the presence of structural breaks in the empirical data, this robustness

is very important and delivers more powerful tests of return predictability. Moreover, un-

derstanding why the filtering approach provides superior results is necessary to address the

concern that my findings might be attributed to luck or data mining. Also, robustness to

structural breaks makes the filtering approach more valuable from an ex-ante point of view

when it is unclear whether structural breaks will occur.

By construction, the filtering approach does not grant a special role to the dividend-

price ratio in predicting dividends and returns and allows data to form essentially new

time series of the estimates " and dj. Nevertheless, the correlation between "i and the

dividend-price ratio is 0.69. This suggests that ^4 and the dividend-price ratio are likely

to share the same predictive component. Ignoring the dividend-price ratio is also beneficial

because, as widely recognized, the major problems of forecasting regressions come from a

very high persistence of the forecasting ratios. The filtering approach emphasizes that high

persistence of almost any predictive variable reflects high persistence of expected returns or

indicates the presence of structural breaks.

The rest of the chapter is organized as follows. In Section 1.2, I formulate the state

space model for time varying expected returns and expected dividend growth, and examine

the identifiability of model parameters. Section 1.3 is devoted to empirical analysis of

aggregate stock returns and dividend growth with the use of the suggested state space

model. Specifically, I estimate the model parameters, examine the new forecasts provided

by the model, and demonstrate the robustness of the filtering approach to structural breaks

on this particular empirical sample. Section 1.4 contains the results of hypotheses testing,

with the main focus on the hypothesis of constant expected returns. Section 1.5 studies the

forecasting power of the constructed predictor out of sample. Section 1.6 provides several

extensions. There I examine the economic significance of the discovered predictability by

looking at optimal portfolios under different predictive strategies and study the implications

of including repurchases into the definition of cash flows. Also, I analyze several extensions

of the model. In particular, I show how to incorporate additional information and explore



alternative specifications for expected returns and expected dividend growth. Section 1.7

concludes, discussing several directions for future research.

1.2 Theory

1.2.1 State space model

Consider an economy in which both expected aggregate log returns /' and expected log

dividend growth Md are time varying. I assume that their joint evolution can be described

by a first-order VAR

It+1 = F + 1(At - A) + et+1, (1.1)
where in general pt is a p-dimensional vector with /i and itd as the first and the second

elements, respectively. 4 is a (p x p) matrix whose eigenvalues lie inside the unit circle. The

VAR specification (1.1) is quite general and admits higher order autoregressive processes for

expected returns and expected dividend growth as particular cases. To avoid unnecessary

complications, I also assume that et+1 contains only two normally distributed shocks which
ir and pzd ,pr eid

denote as et+r and et: et+l = (t+ , t+ ,0, ..., 0)'. These shocks can be interpreted as

shocks to expected returns and expected dividend growth and, in general, are allowed to be

correlated with each other: cov(e Lt, Ed 1) = Oaryd. In contrast to the most of the literature

studying time variation of expected returns, I assume that [t is an unobservable vector of

state variables. In other words, only market participants know it, but not econometricians.

Since by definition /L and / d are the best predictors of future returns and future dividend

growth, an econometrician faces a problem of filtering them out of the empirical data. In

the simplest case, he only observes realized log returns rt+1 = log(1 + Rt+l ) and realized log

dividend growth Adt+1 = log (Dt+l/Dr), which are related to unobservable expectations /1

and 1/ as

rt+1 = ,r + Er 1, Adt+1 = Ild + Ed41.rt = t+ = + (1.2)

By definition, e'+ 1 and Etd+ are unexpected shocks to returns and dividend growth uncor-

related with the previous period expectations: cov(/[, E +l) = cov(Ld, E+l)= 0

To make the model economically meaningful, an additional restriction on the introduced

shocks is needed. To motivate this restriction, I use the generalized Campbell - Shiller

linearization of the present value relation. As demonstrated in Appendix A, it implies that



unexpected return e• 1 can be decomposed as

00

Et+1 = Qet+l + E+1 + (Et+1 - Et) pi- (p -dprt+i + log(1 + exp(-dprt+i)), (1.3)
i=2

where dprt is the log dividend-price ratio: dprt = log(Dt/Pt), and p is a specified number

close to 1 from below. The matrix Q is given by

Q = pe12(1 - p )-1, e12 = (-1,1, 0, ..., 0). (1.4)

Eq. (1.3) is similar to the unexpected stock return decomposition of Campbell (1991). For

instance, the first term QleT 1 corresponds to "news about future expected returns", the

second and the third terms Q2E 1 + Et 1+l are "news about future dividends". However,

the decomposition (1.3) is more general, because the standard no-bubble condition is not

imposed. The following assumption provides an analog of the no-bubble condition which I

use to pin down specific empirical implications.

o Shocks lr a d

Assumption. Shocks e t+l, + E1+1 and 6d+1 are subject to the following linear

constraint:

Et+ = Qet+i + + (1.5)

I put the assumption in terms of the model disturbances, although as obvious from (1.3)

it can be equivalently stated in terms of the dividend-price ratio dprt.

To make a better sense of Eq. (1.5), consider a case in which the dividend-price ratio

is stationary. This stationarity is crucial for predictability of returns by the dividend-price

ratio and is a conventional assumption in the literature. If dprt is stationary, then Eq. (1.3)

immediately gives (1.5) since in the linear approximation the Taylor expansion around the

mean level of the dividend-price ratio dpr yields p.dprt+i+log(l+exp(-dprt+i) : -k. Thus,

the above assumption is consistent with the previous literature on predictability. However,

Eq. (1.5) is also valid under more general conditions and allows a mild non-stationarity of

the dividend-price ratio.9 In particular, it might also be valid if the dividend price ratio has

9The generality of the Assumption highlights a simple but interesting observation. Namely, it is not
necessary for the dividend-price ratio to be stationary to be consistent with stationary expected returns.



a deterministic growth component with the growth rate less then 1/p. Hence, the suggested

assumption can be viewed as a relaxed version of the no-bubble condition.

The exogenous parameter p plays two roles. On one hand, it is related to the origin of

the Taylor expansion dpr and must be chosen such that the difference between dprt and dpr

is small justifying the linear approximation. On the other hand, p controls the contribution

of future values of the dividend-price ratio into the innovation of returns. If p is sufficiently

small, it effectively suppresses far future terms, so even if the dividend-price ratio is mildly

non-stationary it will not break the validity of Eq. (1.5). However, if p is close to 1 then

almost all terms in Eq. (1.3) are important and the Assumption is valid only if dprt is very

close to a stationary process. Thus, the parameter p can be viewed as a measure of allowed

non-stationarity in the dividend-price ratio.

It must be emphasized that allowing dprt to be non-stationary does not mean that there

is an economic rationale behind it. The purpose of this assumption is to make the model

more flexible since in a finite sample a non-stationary process is a good approximation to a

stationary process with structural breaks. Correspondingly, the parameter p incorporates

our beliefs of how quickly the dividend-price ratio is allowed to explode in the finite sample.

Importantly, the obtained flexibility makes the model more robust since the new assumption

can be warranted in a wider range of circumstances. In particular, structural breaks in the

dividend-price ratio invalidate all standard arguments regarding the predictive power of the

dividend-price ratio, but the suggested assumption is still valid and the model is expected

to produce reasonable forecasts.

The flexibility brought by the relaxation of the no-bubble condition comes at a cost. If

the dividend-price ratio is stationary and does not experience structural breaks, a model

based on assumption (1.5) delivers less precise forecasts with lower R 2 in comparison with

any similar model incorporating the stationarity assumption. In particular, if additionally

expected dividend growth is constant then the forecast based on the conventional predictive

regression of returns on the dividend-price ratio will be more precise than the forecast pro-

vided by the suggested model. This is a well known econometric tradeoff between robustness

of the estimation procedure and its efficiency.

The imposed linear relation (1.5) leaves three independent shocks El r, E d1, and E d+
From the beginning, I assume that they have a general correlation structure with+ the fol-

From the beginning, I assume that they have a general correlation structure with the fol-



lowing covariance matrix:

(T( 6a tr Urlrd o~rd

S=Var id 2 2 I-t+l " r d dd)•+1 rd 'pdd Ud

Although this generality is appealing, it may provide too much freedom, leaving some of

the parameters unidentified. Indeed, there would be no problems if E were known exactly.

However, in practice all model parameters must be estimated from the empirical data. If

some sets of parameters are non-identifiable, they provide exactly the same observables and

even an infinite history of data does not allow us to say which set of parameters we deal

with. For the moment, I assume that all parameters are known and postpone a detailed

analysis of identifiability to Section 1.2.2.

Abusing notation, it is convenient to denote demeaned expected returns and demeaned

expected dividend growth by ti and / d . Then, the system (1.1) reduces to:

=t+1 = (IAt + Et+.1 (1.6)

Correspondingly, the demeaned observables take the following form:

Adt = 1 + td, (1.7)

rt = I 1 + Qet + d. (1.8)

From the representation (1.6), (1.7), and (1.8) it is clear that the model for dividends

and returns has a time homogenous state space formlo, where Eqs. (1.7) and (1.8) are mea-

surement equations and Eq. (1.6) is the transition equation for j t . Since all parameters of

the state space system (1.6) - (1.8) are assumed to be known, the solution to the forecasting

problem is provided by Proposition 1.

Proposition 1. Let xt be a vector combining past state variables It_- with current

shocks et•, •d , and etd: t = (Lt-1 , 6e4r, t d )'. Denote the current observables as Yt =

(rt, Adt)'. Given the state space system (1.1) with observables (1.7) and (1.8) the best

loDurbin and Koopman (2001) give a review of state space methods applied to time series analysis.



linear estimates of expected returns At and expected dividend growth /id are given by the

first two components of the vector A~ such that

1 0 0 '

010

0 0 0

I

where the best linear estimate xt is provided by the Kalman filter

Ct = (I - KM)F.t-1 + Kyt.

The Kalman gain matrix K is determined from the set of matrix equations

U = (I - KM)(FUF' + FEr'),

K = (FUF' + rr,')M'[M(FUF' + rPr')M']- .

The matrices M, F, and P are constant and defined in Appendix B. I is the (p+ 3) x (p+ 3)

identity matrix.

Proof. See Appendix B.

Proposition 1 states that each period the best forecast of future dividends and returns

should be updated with new information consisting of realized dividends and returns. The

recursive structure of the Kalman filter means that solving the predictability problem is

equivalent to extracting market expected returns from the whole history of observable data.

Clearly, this problem cannot be reduced to a simple OLS regression of returns on some

forecasting variables such as the dividend-price ratio.

The process for expected returns and expected dividend growth is quite general so far,

but for the empirical work it must be specified more precisely. As a benchmark model,

I consider the simplest form of the VAR system (1.1) in which pl and td follow AR(1)

processes with the persistence parameters r, and Od, respectively. In this case the matrix

At = 4 Xtj



Q takes the following form:

QP = '- d ). (1.9)( 1-P0r 1-P d

The AR(1) specification has two major benefits. First, it is quite parsimonious and has

the minimum number of parameters sufficient to describe time varying expected returns and

expected dividend growth. Second, this specification captures almost all interesting facts.

I demonstrate it in Section 1.6 where I examine several extensions of the benchmark model

including a general first order VAR with state variables ft and /t and AR(2) processes for

expected returns and expected dividend growth.

1.2.2 The identification problem

Proposition 1 gives a solution to the forecasting problem under the assumption that the

parameters of the state space model are known. However, in practice all parameters should

be estimated. Clearly, the question about parameter identifiability is very important at this

stage. More formally, let F(y, 0) be a distribution function of all observables yt, t = 0, 1, ..., T

generated by a state space model with parameters 0 E E. I will say that the vector of

parameters 00 is identifiable if for any 0 E 0, 0 = 60 there exists a vector of observables y

such that F(y, 0) 4 F(y, 0o). If all 0 E O are identifiable, the state space system will be

referred to as identifiable. In general, the identifiability of the model (1.6)-(1.8) depends on

the particular specification of the state variables 1Lt and the VAR matrix (. In this Section

I examine the identification problem in the benchmark case where tL and JA follow AR(1)

processes.

In this model, the observables y are represented by the history of dividends and returns

{(rt, Adt), t = 0,1, ..., T} and the set of unknown parameters is 0 = (4,, Od,e r/ r, d, a

PprjLd, Plird, PLdd), 0 E 12 X R 3 x I3 where Io = (-1, 1), Ic = [-1, 1]. Note that the

correlations Pprld, Plird, and Pldd are used as parameters instead of covariances which are

subject to sophisticated constraints since the matrix E must be restricted to be positive

definite.11 Since the model (1.6)-(1.8) has three shocks with a general correlation structure

and only two observables we may suspect that there are more parameters than can be

identified with the available data even putting aside a limited sample size. While the

I"More rigorously, the parameter space is 12 x R 3 x Ic with three sets of identified points:

1) if 0 r = 0 then (Or, d, O0, dU (0 d, Pjrj4d Pprd, PAdd) ~ (0O, O4 d' 0 , 2d0, O, PAdd);

2) if ad = 0 then (Or, O'dI Or, 0, O , P/Ar/d PpArd, PAdd) " (or1 0, ar, 0, , 0 P/Ard1 0);

3) if ua = 0 then (0r, Id, 7 Arr I ad, 0, PruAds PArd, P/Add) "" (Or, kd) 0/r, 0ad , 0, PrAd,, 0 0).



identification problem indeed exists, the freedom is quite limited and data still place tight

restrictions on the model. The sets of indistinguishable parameters are characterized by

Proposition 2.

Proposition 2. The persistence parameters r, and Od are fully identifiable. Two

positive definite covariance matrices E and E are observationally indistinguishable if there

exists A E R such that E - -= AQ, where

S(1-2)(1-Pr) 2  (1-P4 r)(1-0d4ar) 'Or(IP4-r)
(1-pd)2  

1-p d  -- d

1-d d

Proof. See Appendix C.

Proposition 2 is very important for empirical analysis. Basically, it says that we are

unable to recover the whole covariance structure of shocks even if we are given an infinitely

long history of returns and dividends. However, only one element of E must be fixed for

recovering the whole matrix. It means that the space of parameters can naturally be de-

composed into one-dimensional subsets whose points are observationally indistinguishable.

Moreover, as demonstrated below, the natural restriction that E is positive definite also im-

poses strict limitations on admissible parameters. Thus, although being unable to identify

all parameters exactly, we can say much about them.

In several cases below, to resolve the described ambiguity in parameters for reporting

purposes I use the following rule: among all empirically indistinguishable points of the

parameter space I choose the one with the lowest absolute value of Pdd. Given the structure

of the matrix Q, this procedure unambiguously fixes one point in each set of equivalence.

In particular, when this set hits the hyperplane Pdd = 0 the point on this hyperplane

is chosen. Note that the suggested rule is a matter of convenience only and is a concise

way to specify a particular locus. Clearly, there are a number of many other ways which

are absolutely equivalent to the selected one. Although this rule of fixing uncertainty is

used in the subsequent empirical work, I mostly focus on those results which hold for

all indistinguishable points of the parameter space and consider those results the most

interesting and the most important.



1.3 Empirical analysis

1.3.1 Data

The data used in this chapter come from the Center for Research in Securities Prices (CRSP)

and consist of the annual value-weighted CRSP index of stocks traded on the NYSE, AMEX

and NASDAQ. Since returns on the index are provided both with and without dividends, it

is easy to build the time series of dividend growth. The annual CRSP data set used in my

research covers the period from 1926 to 2004. To calculate the real values for all variables

I use the CPI index also available from CRSP.

In the subsequent empirical analysis, I use logs of returns and dividend growth. First,

it is consistent with the theory, which also operates with logs. Second, the distributions of

logs are closer to normal. This is particularly important because the ML approach used

for estimation and hypotheses testing essentially relies on the distributional assumption.

Third, logs are more homoscedastic.

In the empirical work, I focus on the one-year horizon. Indeed, consideration of shorter

horizons is complicated by seasonality in the dividend growth. Consideration of horizons

longer than one year unavoidably leads to overlapping returns. However, as demonstrated

by Boudoukh, Richardson and Whitelaw (2005), overlapping returns along with high per-

sistency of predictive variable produce high correlation across multiple horizon estimators.

Furthermore, Valkanov (2003) argues that in case with overlapping returns even asymptotic

distribution of test statistics has a non-standard form and this can partially explain the re-

ported evidence in favor of predictability. To avoid such critique, I do not use overlapping

returns and focus on the one year horizon only.

1.3.2 Parameter estimation

The first step of my empirical analysis is the estimation of the model parameters. Since

it is assumed that all shocks of the state space system are normally distributed, the most

efficient estimator of parameters is provided by the maximum likelihood estimator (MLE).

The log-likelihood function for the model is

T

log L(O) = -Tlog(2r) - log(det A) - (yt - t)'A-l(y t - t), (1.10)
t=l



where yt, t = 1, 2, ..., T is a set of observables and ' = MF=t-1. This structure of the log-

likelihood function is termed a prediction error decomposition.12 It originates from the fact

that conditional forecasting errors yt - ' are serially independent by construction and have

the covariance matrix A = M(FUF' + FEFY)M', where all constituent matrices are defined

in Appendix B. The set of unknown parameters is 0 = (0r, Od, a2r, d2 Pd) ryd, P~rd, Pldd).

By construction, Or E I, qd E 1 I, ao E R+, +ad G R+, Od E R+, Pjrud E Ic, PIrd E Ic,

Pldd E Ic, where Io = (-1, 1) , Ic = [-1, 1]. Note that stationarity of expected returns and

expected dividend growth is imposed explicitly.

The number of parameters is worth a comment. There might be concern that having 8

parameters in the model relative to 1 slope parameter in the predictive regression automat-

ically puts the filtering approach into a favorable position with its better predictive ability

following almost mechanically. However, this is not true. By construction, the slope in

the predictive regression is a number minimizing the variance of the residual, so we choose

it to maximize the predictive ability of the regressor. This is not the case in the filtering

approach. Maximizing the log-likelihood function of the model we are looking for the set of

parameters which provides the best fit to all data. In particular, the model with the esti-

mated parameters must match the empirical values of major moments such as variances and

correlations of observables. Obviously, this target is not identical to boosting predictability,

hence it is not clear from the outset that more parameters help to increase the predictive

ability of the model.

As demonstrated in Section 1.2, not all parameters of the state space system (1.6)-(1.8)

with AR(1) processes are identifiable. It means that there are many points in the parameter

space where the log-likelihood function takes its maximum value and these points can be

found one from another with the use of Proposition 2. I scale the identified set to fit the

unit interval [0, 1] and plot the estimated parameters in Figure 1-1.

Figure 1-1 provides several observations. First of all, the ML estimates of the parameters

make a good sense. Indeed, the expected returns are very persistent with the mean rever-

sion coefficient of 0.8005 and this is consistent with the intuition based on the predictive

regressions. This coefficient is identifiable and thus does not change along the estimated

set. Next, the correlation Pr 1 d between shocks to expected returns and expected dividend

12 Originally it was suggested in Schweppe (1965). For textbook discussion of the Kalman filter estimation
see Hamilton (1994).
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growth is very high and positive for all points in the identified set and doesn't fall below

0.77. It means that although we cannot identify Pjrd exactly, we can say much about it.

Note that high and positive value of Prvd is consistent with Menzly, Santos and Veronezi

(2004) and Lettau and Ludvigson (2005) who argue that high correlation between expected

returns and expected dividend growth might be responsible for the mediocre predictive

ability of the dividend-price ratio.

The other correlations Ptrd and Ppdd vary more significantly along the identified set, but

they still have reasonable signs. In particular, negative values of P1,rd are consistent with the

intuition that in good times when dividends do up expected returns go down. The negative

sign of Pydd indicates the mean reverting nature of the dividend growth: when dividends

increase expected dividend growth decreases.

To get better interpretation of the obtained parameter estimates, I compute several

statistics implied by the model with the estimated parameters and draw them in Figure

1-2. Since none of them are observable directly, their values are not identifiable and vary

along the optimal locus.

First, Figure 1-2 shows standard deviations of expected returns and expected dividend

growth. The obtained estimates indicate that both expected returns and expected dividend

growth are time varying and have comparable volatility although innovations to expected

dividend growth appear to be much more volatile than innovations to expected returns

(cf. Figure 1-1). The reconciliation comes from high persistence of expected returns which

explains why even small variance of shocks to expected returns might have important impli-

cations such that a dominating contribution into the variation of the dividend-price ratio. 13

Also, because of high positive autocorrelation of expected returns and negative autocorrela-

tion of expected dividend growth the unconditional correlation between 14 and p d is lower

than the conditional correlation between their innovations, but it is still sufficiently high

and positive.

Second, I examine the model implied innovations to returns and the dividend-price

ratio. Their standard deviations reported in the second row of Figure 1-2 almost exactly

coincide with the corresponding values obtained from the predictive regression errors (see,

for example, Cochrane (2005)) Importantly, the implied correlation between innovations to

returns and the dividend-price ratio is high and negative, and this is consistent with the

13This was initially emphasized by Campbell (1990, 1991).
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literature on predictability of stock returns by the dividend-price literature.

Three last graphs at the bottom of Figure 1-2 represent Campbell (1991) variance decom-

position of unexpected returns e~ along the estimated identified set. Var(r~)/Var(er) and

Var(rlq)/Var(e[) are the contributions of "news about future expected returns" and "news

about future dividends" into et, -2Cov(tri, 7d)/Var(e[) is the covariance term. Although

these terms change along the locus, we can conclude that the major part of unexpected

return volatility is generated by time varying expected stock return: its contribution falls

in the range from 67% to 72%. The impact of "news about future dividends" also does not

vary significantly along the locus and about 41% of the variance can be attributed to it.

The role of the covariance term is smaller and it gives negative contribution of around 10%.

Although the obtained estimates are quite reasonable, they should be evaluated for

their statistical precision. However, there is no easy way to do it and there are several

reasons for that. First, we deal not with an identified point estimate but with an identified

set, and in this case conventional methods do not work. 14 Moreover, the empirical sample

is not large enough to make asymptotic values sufficiently reliable. Second, a number of

estimated parameters are defined only on a bounded set in Rn . In particular, a2r E R+,

a2 E R+, a2 E R+, PlriLd E [1, ], PjArd E [-1, 1], Pldd E [-1, 1]. It is well known in the

econometric literature that the ML estimate has a non-standard asymptotic distribution

and the conventional inference procedure is not applicable if the true parameter lies on

a boundary.15 Finally, the statistical significance of many parameters can be evaluated

only jointly. For example, the hypothesis of constant expected returns should be stated as

Ho : =lUr 0, PAurjd = 0, Plzrd = 0, Or = 0. Rigorous tests of hypotheses are performed in

Section 1.4.

To partially circumvent these difficulties and give a sense of the precision of estimates,

I run Monte-Carlo simulations. In particular, I take one of the point estimates from the

identified set and simulate 1000 samples with 79 observations. Note that any point from

the identified set can be used, and all of them will produce identical simulated samples.

Next, for each sample I find the ML estimates of the model parameters. For expositional

purposes, instead of looking at the whole identified sets I choose only one point from each

of them using the identification rule formulated in Section 1.2.2. Namely, I search for a

14 Chernozhukov, Hong, and Tamer (2004) develop estimators and confidence regions for identified sets.
15See, for example, Andrews (1999).
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0.964 0.8005 -0.4584 0.0014 0.0079 0.0106 0.8746 -0.3797 0.050 0.034
0.98 0.8085 -0.4648 0.0011 0.0079 0.0107 0.8774 -0.3892 0.058 0.035
0.95 0.7931 -0.4544 0.0016 0.0080 0.0106 0.8720 -0.3690 0.043 0.034
0.90 0.7572 -0.4468 0.0028 0.0079 0.0107 0.8621 -0.3180 0.029 0.032

Table 1.1: Maximum likelihood estimates of the benchmark state space model.

This table collects maximum likelihood estimates of the state space model (1.6) - (1.8) with AR(1)
processes. Different rows correspond to different values of the Campbell - Shiller linearization pa-
rameter p. In the first row the current empirical value of this parameter is chosen and other values
are considered for robustness check. The identification strategy of Section 1.2 yields P,,dd = 0 for
all examined p. R2 and R2 measure the ability of g and -d to predict future returns and future
dividend growth in sample.

combination of parameters that gives the best fit for the observed data and has the lowest

correlation pdd between the shock to expected dividend growth and unexpected dividend

growth.

The simulated distributions of the obtained point estimates are presented in Figure 1-3,

which allows us to make several observations. Thus, we can conclude that the standard

deviations of the estimates are rather high and the distributions of many estimates are

far from normal. However, all qualitative inferences based on the point estimates are still

valid. Moreover, the simulations allow us to evaluate the finite sample bias of estimates,

which is one of the major econometric problems of conventional predictive regressions.

It is not clear from the outset whether the obtained ML estimates suffer from the similar

drawbacks. I calculate biases of estimates as differences between the average of the simulated

estimates and the population parameters. The results are reported in Figure 1-3. To

visualize the conclusions, the values of population parameters are indicated by black bars.

It is remarkable, that the obtained biases are tiny, so we can conclude that the ML estimates

are almost unbiased.' 6

Recall that besides the parameters listed above the state space model (1.6)-(1.8) also

contains the Campbell-Shiller linearization parameter p. This parameter is taken as exoge-

nous in MLE, and the ML estimates might be sensitive to it. To illustrate that this is not

the case, Table 1.1 gives the point estimates of parameters for different values of p. The

first row corresponds to the sample value of p, whereas other three rows are computed for

' 6In general, bias depends on the particular values of population parameters. Strictly speaking, I demon-
strated unbiasedness for only one point in the parameter space. However, there is no reason to think that
for other points with O, and Cd reasonably less than one the conclusion would be different.
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arbitrary chosen values 0.98, 0.95 and 0.9.17 Again, instead of the whole identified set I

report only one point with the lowest absolute value of Pdd. Notably, the values in different

rows are almost the same. Taking into account how noisy the obtained estimates are, we

can conclude that there is almost no sensitivity to the choice of p.

1.3.3 Forecasts of dividends and returns

Given the estimated parameters the econometrician can use the Proposition 1 to construct

the forecasts At and At and evaluate their in-sample performance by R2 . Note that the iden-

tification problem is irrelevant at this stage since all points from the identified set produce

exactly the same values of "l and jd. Figure 1-4(a) plots the realized stock returns along

with the forecast "4. Also for comparison I plot the forecast based on the conventional pre-

dictive regression. Although the dividend-price ratio has some forecasting power in sample

and can explain 3.8% of variation in stock returns, it is outperformed by the constructed

predictor 'j which provides R2 of 5%. Although this improvement might seem very small,

it is quite important because even tiny increase in ability to forecast future returns leads to

significant effect on the optimal portfolios of long term investors. In Section 1.6 I provide

a detailed analysis of economic significance of the obtained improvement.

Similarly, Figure 1-4(b) plots the realized dividend growth and the constructed forecast-

ing variable 'AP. The dash-dot line represents the forecast by the dividend-price ratio. It is

well-known that the dividend-price ratio has no predictive power for the dividend growth

and Figure 1-4(b) clearly supports this result. However, the constructed predictor for the

dividend growth pd works much better and can explain about 3% of dividend growth.

To get additional insights about time variation of 'r, I juxtapose it with other variables

which were found to be proxies for expected returns. As such variables, I choose the book-

to-market ratio BMt advocated by Kothari and Shanken (1997), Pontiff and Schall (1997)

and others, the equity share in total new equity and debt issues St proposed by Baker and

Wurgler (2000), and a cointegration residual between log consumption, log asset wealth and

log labor income cayt constructed in Lettau and Ludvigson (2001). I choose these particular

variables because according to Goyal and Welch (2005) they demonstrate the strongest

17In the case of stationary dprt, the parameter p is usually chosen to be related to unconditional means
of returns and dividend growth !r and Pd as p = exp(Td - ,r). The sample value of p is computed from the

sample analogs of lr and 7id.
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dpr 0.07
(6.00)

DEF 1.87
(2.03)

NBER 0.02
(2.12)

BM

0.01
(1.24)

1.21
(2.52)

0.05
(6.65)

0.12
(5.21)

-0.01
(-0.09)

cay

cdy

0.04
(3.36)

0.06
(2.16)

1.57
(5.26)

0.43
(2.45)

Adj-R2  0.40 0.10 0.02 0.50 -0.01 0.25 0.00 0.04 0.23 0.05 0.02 0.05
N 79 79 79 79 79 54 79 79 79 79 79 54

Table 1.2: Regressions of expected dividends and returns on business cycle variables.

This table collects regression results of filtered expected return PF and filtered expected dividend

growth ,F on several business cycle variables. dprt is the log dividend-price ratio; DEFt is the default
premium, defined as the yield spread between Moody's Baa and Aaa corporate bonds; NBERt is
the NBER recession dummy; BMt is the aggregate book-to-market ratio; St is the equity share in
total new equity and debt issues; cayt is a cointegration residual between log consumption, log asset
wealth and log labor income constructed by Lettau and Ludvigson (2001); cdyt is a cointegration
residual between log consumption, log dividends and log labor income constructed by Lettau and
Ludvigson (2005). •t, jd, dprt, BMt, and St are based on the annual sample which covers the
period 1926 - 2004; cayt and cdyt are constructed from the annual data for the period 1948 - 2001.
t-statistics in parentheses are computed using the Newey-West standard errors.



ability to predict returns in sample. s8 Also, I include several proxies for business cycles

to examine quantitatively whether the filtered expected returns vary counter-cyclically. In

particular, I add the NBER recession dummy which equals to 1 for the particular year if the

December belongs to the NBER recession period and the default premium DEFt defined

as the yield spread between Moody's Baa and Aaa corporate bonds. 19

Table 1.2 reports estimates from OLS regressions of IL and At on all variables of interest.

First, as one can presume from looking at Figure 1-4(a) the forecast 'r and dprt are highly

and positively correlated. The adjusted R 2 statistic is 0.4 and it corresponds to the sample

correlation coefficient of 0.68. On one hand, it is not surprising, since both variables are

proxies for expected stock return and it is natural that the correlation between them is

high. On the other hand, "tr was constructed absolutely independently from dprt and uses

less restrictive assumption on the joint behavior of prices and dividends.

Next, as reported in Table 1.2, 'A appears to be substantially correlated with other

proxies for expected returns. Indeed, the slope coefficients in regressions on DEFt, BMt, and

cayt are statistically significant and the adjusted R 2 statistics correspond to the correlation

coefficients of 0.34, 0.71, and 0.51, respectively. The latter number is especially high given

that cayt is constructed from a very different data set including aggregate consumption and

labor income. These high correlations demonstrate that DEFt, BMt, cayt, and 'r are likely

to share the same predictable component of stock returns. Although the regression of jt on

NBERt also has a statistically significant coefficient, R2 is less impressive. Nevertheless,

the high correlations between 'r and the countercyclical variables BMt and DEFt indicate

that At is also countercyclical. This is consistent both with the previous empirical findings

in the literature and theoretical models explaining time variation of expected stock returns.

Table 1.2 also contains regression results for 'f. In particular, it reports the OLS regres-

sion on cdyt, which is is a cointegration residual between log consumption, log dividends and

log labor income. Lettau and Ludvigson (2005) argue that cdyt captures a predictable com-

ponent of aggregate dividend growth and it is interesting to compare it with 'd. Notably, the

slope coefficient is positive and significant, although the R2 statistic is only 0.05. Predictive

regression of realized dividend growth on both cdyt and pd (not reported) shows that these

18I am grateful to Martin Lettau for providing the data on cayt and cdyt on his website
http://pages.stern.nyu.edu/~mlettau/data/ and to Jeffrey Wurgler for making available the data on St
on his website http://pages.stern.nyu.edu/-jwurgler/.

191 use the data on corporate bond yields provided by Global Financial Data.



variables contain different pieces of information about future dividends and adding each of

them to the regression improves the result. Namely, R 2's of univariate regression of Adt+l

on cdyt and ,d for the period 1948 - 2001 are 18% and 13% correspondingly, whereas R 2 of

the multivariate regression is 24%.

Table 1.2 also reports the regressions of 7d on countercyclical variables BMt and DEFt.

Interestingly, expected dividend growth also appears to be countercyclical, and the high

correlation with the NBER dummy supports this conclusion. This is consistent with the

co-movement of expected returns and expected dividend growth discussed above.

Figure 1-5 visualizes the relation between filtered expected returns, filtered expected

dividend growth and business cycles. Gray bars indicate the periods of the NBER recessions.

Again, as the business cycle variables I choose the default premium DEFt, the dividend-

price ratio dprt, and the book-to-market ratio BMt which are known to be countercyclical.

Figure 1-5(a) clearly demonstrates that the filtered expected returns are also countercyclical

and go up when other variables indicating trough go up. Also, in consistency with the

correlation table discussed above, a similar pattern arises for expected dividend growth.

As follows from Figure 1-5(b), expected dividend growth is also countercyclical jumping

upward almost every recession and quickly bouncing back afterwards.

To get better understanding of the structure of "4 and pd it is instructive to consider

their decomposition over observables rt -, Adt-r, r = 0, 1, ... and over disturbances e4i,

E r and E•l-r, T = 0, 1, ... Given the estimated parameters, the corresponding coefficients

immediately follow from Proposition 1. Figure 1-6(a, b) presents the decomposition of r4

over observables for up to 50 lags. It is remarkable that the coefficients of this decomposition

decline slowly, and even very far observations have a significant effect on the current forecast

of future returns. For instance, current dividend growth of 1% above average increases the

projected returns by 17 basis points whereas dividend growth of 1% 30 years ago has an

effect of 5 basis points. Similarly, the realized returns above average have a long lasting

negative impact on the expected returns.

The effects of realized returns and dividends on 'r admit an intuitive interpretation.

Indeed, high realized return predicts negative future return due to the well-known discount

rate effect of Fama and French (1988). A positive shock to returns can indicate a negative

shock to expected returns or positive shocks to expected or unexpected dividend growth.

Because of high persistence of expected returns and the resulting dominance of "news about
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future returns" in the variance of unexpected returns, the discount rate effect prevails and

explains negative impact of realized returns on expectations. On the contrary, a positive

shock to realized dividend growth shows that either expected dividend growth is high or

unexpected shock to dividends is high. Conditioning on observable returns expected return

also goes up to offset the effect of ed or e~. So it is natural that the expectations of future

returns are revised upward.

The intuition behind the decomposition of At is more complex. Indeed, observing positive

innovation to returns while trying to make inference about the future dividend growth

the econometrician admits that either eMd or Ed is positive or erT is negative. Since the

disturbances e• and e6 d are highly positively correlated, the latter possibility implies that

Eid is negative. For the given set of parameters the second effect is stronger and it causes the

downward revision of ~d. Next, the increase in Adt is mostly attributed to Et. Conditioning

on realized returns it means that either Et is negative or Er is positive. Once again, because

of high correlation between Etd and Epr the second option means higher e6
d. This explains

positive revision in 'd.

Figure 1-7 provides decompositions of constructed r4 and pd and unobservable /4 and

td over shocks ter, e•d and e d_,. As it can be expected, es r affects less rl than p/ since

the econometrician cannot perfectly distinguish a positive disturbance to expected returns

and negative disturbance to expected dividend growth. So he updates Ptr less than he would

do under full information. Also, impossibility to separate the impact of t-r, and e•, (et_r)

leads to mistakes and non-zero weights on E•, (Ed_).

Trying to predict future dividend growth the econometrician also assigns non-zero

weights to shocks which do not affect unobservable Ad. Thus, observing shifts in dividends

and returns resulting from positive shock etr the econometrician is uncertain whether they

are generated by positive shock ejr or negative shock ed . Since the higher weight is put

on e~ and shocks to expected returns and expected dividend growth are highly correlated,

is rs to o ra
li is revised upward. Similarly, positive shocks to ed or Et result in considering e r as

negative and, again, due to high correlation between ELr and Ep lead to negative revision

of Af.



1.3.4 Filtering approach vs. predictive regression: comparison of robust-

ness

One of the most important advantages of the filtering approach is its robustness to structural

breaks in the long run relation between prices and dividends. In this Section I demonstrate

this robustness on the sample of aggregate dividends and returns and claim that, whereas

the forecasting power of the dividend-price ratio might be destroyed by structural breaks,

the filtering approach can still provide accurate predictions of future returns.20

The intuition behind the relative robustness of the filtering approach is quite simple

and appealing. It hinges on the fact that small shifts in the means of returns or dividend

growth translate into noticeable breaks in the dividend-price ratio dprt. Indeed, if dprt is

stationary then the mean level of the dividend-price ratio dpr in the linear approximation

is related to the mean levels of returns and dividend growth T7r and -d as

dpr = log exp(pr - A)

For example, if Tr = 0.07, 71d = 0.01, then dpr = -2.78. Now assume that Thd changes

to 0.04. This shift is quite small relative to the standard deviation of Adt, which is 0.14.

Consequently, if we examine the series rt and Adt only, detecting this break will take

some time and ignoring it will not produce a large error. Moreover, the estimated model

coefficients will not be strongly affected by the break, and the estimate of 'id will gradually

change from 0.01 to 0.04. This is what we can expect to observe in the filtering approach.

However, the new mean level of the dividend-price ratio is -3.49, which corresponds to the

break of 0.71. Since even the sample standard deviation of dprt is 0.41, a break of this size

is easily noticeable and cannot be ignored. Effectively, this break will increase the sample

variance and the sample autocorrelation of the dividend-price ratio. Moreover, the shift in

the mean level of the dividend-price ratio translates into the shift in the intercept of the

predictive regression, which in turn makes the slope coefficient biased downward.

I start the demonstration of the filtering approach robustness with comparison of the

model parameters estimated in subsamples. Along with the whole sample, which spans

the period 1926-2004, I also consider three subsamples. The first one is based on the post

20The idea that the forecasting power of the dividend-price ratio is ruined by structural breaks in its level
was recently emphasized by Lettau and Van Nieuwerburgh (2006).



okr cd 2 0L2 d P~rjd Pjrd R2 R2

1926 - 2004 0.8005 -0.4584 0.0014 0.0079 0.0106 0.8746 -0.3797 0.050 0.034
1946-2004 0.8489 -0.3968 0.0007 0.0088 0.0062 0.9108 -0.4109 0.061 0.138
1926-1990 0.7757 -0.5855 0.0017 0.0060 0.0117 0.8811 -0.3582 0.046 0.004
1946- 1990 0.7957 -0.4819 0.0011 0.0078 0.0053 0.9061 -0.4210 0.082 0.140

Table 1.3: ML estimates of the benchmark state space model for various subsamples.

This table gives maximum likelihood estimates of the state space model (1.6)-(1.8) with AR(1)
processes for various subsamples. The identification strategy of Section 2 yields Pydd = 0 for all
subsamples. R) and R• measure the ability of t and pt to predict future returns and future
dividend growth in-sample.

World War II data and this choice acknowledges that the Great Depression and the WWII

period might be "special". The second subsample is 1926-1990, and it is based on the

concern that the Internet bubble period is "special". Also, as shown by Lettau and Van

Nieuwerburgh (2005), it is likely that in the early 90's the dividend-price ratio experienced

a structural break and this is another motivation to consider subsamples without the last

14 years. In the third analyzed subsample both suspicious periods are eliminated. The

parameter estimates for different time periods are reported in Table 1.3.

Although the estimated parameters are not identical in all subsamples, the variation

across different periods is strikingly small for most of them. In particular, all qualitative

conclusions about parameters drawn for the whole sample are also valid in subsamples.This

robustness is consistent with the provided intuition that the estimates of the Kalman filter

parameters are not sensitive to structural breaks. Furthermore, the in-sample R2 statistics

for ^r in different subsamples are also very close to each other, suggesting that the filtering

approach reasonably works in all periods, and its ability to predict returns was not ruined

by structural breaks.

R 2 statistics for dt exhibit a different pattern. If the Great Depression period is included,

then they are relatively small, but if the period starts in 1946, 14 has much higher predictive

ability with R 2 of 14%. This observation indicates that probably the period from 1926 to

1946 was special regarding the way how dividends were announced and paid, and the model

does not capture this specificity correctly. However, this does not prevent the filtering

procedure to predict returns adequately, although in periods with high R2 for itd the R2

statistic for A' is higher as well.

Next manifestation of the robustness of the filtering approach comes from the comparison

of several empirical statistics with their model implied counterparts. In particular, it is



a(rt) a(Adt) o(dprt) p(rt) p(Adt) p(dprt) r 3d R
Panel A: 1926-2004

I 0.1984 0.1400 0.4156 0.0461 -0.1399 0.9299 0.0947 0.0056 0.038 0.000
II 0.1964 0.1438 0.2567 -0.0589 -0.2236 0.8311 0.2341 0.0351 0.094 0.004

Panel B: 1946-2004
I 0.1709 0.1322 0.4228 0.0180 -0.2326 0.9475 0.1005 0.0314 0.063 0.011
II 0.1605 0.1287 0.2660 -0.0366 -0.2484 0.8739 0.1826 0.0277 0.092 0.003

Panel C: 1926-1990
I 0.2041 0.1380 0.2555 0.0383 -0.1520 0.8070 0.2699 0.0406 0.113 0.006
II 0.2017 0.1444 0.2411 -0.0706 -0.2557 0.8004 0.2614 0.0284 0.098 0.002

Panel D: 1946-1990
I 0.1712 0.1266 0.2519 -0.0075 -0.2990 0.8531 0.2877 0.1062 0.191 0.049
II 0.1571 0.1244 0.2226 -0.0581 -0.3173 0.8194 0.2399 0.0272 0.116 0.002

Table 1.4: Empirical and implied statistics for the benchmark state space model.

This table summarizes the empirical values of statistics (row I) and the statistics implied by the
estimated state space model (1.6)-(1.8) with AR(1) processes (row II). a(rt), a(Adt) and a(dprt)
are standard deviations of aggregate stock returns, dividend growth and the log price-dividend ratio,
respectively. p(rt), p(Adt) and p(dprt) are their autocorrelations. f,, Od, R2 and R2 are slopes and
the R2 statistics from predictive regressions of returns and dividend growth on the dividend-price
ratio.

interesting to examine the characteristics of the dividend-price ratio and its real and implied

abilities to predict future returns. Recall, that neither the estimation of the model, nor the

construction of forecasters uses dprt directly. Hence, the analysis of the dividend-price ratio

can provide independent insights about the model and the estimated parameters. As for

the underlying model parameters, I study several subsamples.

The results are reported in Table 1.4. First of all, the empirical variances of returns

and dividend growth almost coincide with the corresponding variances implied by the ML

estimates of the parameters in all subsamples. Also, there is a reasonable fit for autocor-

relations of returns and dividends. This means that although the model parameters are

not fully identifiable, and although their estimates are not very precise, the model with

obtained parameter values fits the major data characteristics quite well.

Next, I compute the variance and the autocorrelation of dprt implied by the state space

model and compare them with their empirical counterparts. The estimated parameters

imply that the dividend-price ratio should be highly autocorrelated and this is obviously

supported by empirical data. However, the quantitative mismatches between the observed

and implied statistics are different in various subsamples. Thus, in those subsamples that

do not include the last 14 years, the implied variance and autocorrelation of the dividend-

price ratio are almost identical to the corresponding sample values. On the contrary, when



the Internet bubble period is included, the model-implied and sample values are strikingly

different. In particular, the observed dividend-price ratio is more persistent than the model

dictates. Moreover, the sample variance of the dividend-price ratio is significantly higher

than its implied value, which clearly fails to match its empirical counterpart. Note that

exactly this discrepancy we can expect if a stationary time series experiences a structural

break in its level: structural breaks in general increase the variance of the process and make

it seem more persistent. Hence, the obtained mismatch is the first indication that probably

there exist shifts in the model parameters which are too small to impact the filter parameter

estimates, but which are amplified in the dividend-price ratio.

To provide further intuition, I also compute the empirical and implied statistics for

conventional predictive regressions of returns and dividend growth on the dividend-price

ratio. From Table 1.4 we get that in subsamples without the 90's, the implied and empirical

slopes in predictive regressions almost coincide and dprt has a predictive power with quite

high R 2 , as suggested by the model. However, in the samples with the last 14 years, the

sample regression coefficient goes down and a large gap between its empirical and implied

values appears. For example, the empirical slope coefficient in the regression of returns on

the dividend-price ratio in the whole sample is 0.0947, which is significantly less than the

model implied value 0.2341. Simultaneously the ability to predict future returns goes down

as well, and is smaller than it should be for the estimated set of parameters. Recalling a

well-known econometric result that a structural break in the regression intercept leads to a

downward bias in the slope estimator, we get one more indication that there was a structural

break in the early 90's, which destroyed the predictive power of the dividend-price ratio.

This is exactly what was reported by Lettau and Van Nieuwerburgh (2006).

Table 1.4 allows us to draw several other conclusions. Quite high value of the theoretical

R2 statistic says that the variation of the dividend growth is probably not a valid reason

for poor predictive power of the dividend-price ratio. In other words, it means that for

the estimated parameters predictability of dividend growth does not affect significantly the

quality of the standard predictive regression. Thus, although variation of expected dividend

growth and its positive correlation with expected returns works against the ability of dprt

to predict returns, the predictive power of the ratio is still warranted by high persistence of

expected returns relative to the persistence of expected dividend growth.

Along with testing predictability of returns by dividend-price ratio, there always was



interest to potential predictability of dividend growth by dprt. However, opposite to the case

of returns, there is a consensus among researchers that dividend growth is unpredictable by

the dividend-price ratio. Consistent with that, the observed slope of regression of dividend

growth on the log dividend-price ratio is almost zero, signalling of no dividend growth

predictability despite time varying expected dividend growth. Furthermore, the model-

based regression slope is also very close to 0, so the absence of predictability here is not

a consequence of structural breaks. Noteworthy, the dividend-price ratio fails to uncover

variability of expected dividend growth even if the predictability of dividend growth is there.

Comparison of theoretical and empirical R 2 statistics only supports this result.

To demonstrate the robustness of the filtering approach relative to the predictive regres-

sion I also run a Monte-Carlo experiment. I take the parameters of the model estimated for

the whole sample and simulate 10 groups of artificial samples with 79 observations each. In

all simulations the average expected dividend growth has a structural break in the middle

of the sample, and the size of the break varies from 0.01 in the first group to 0.055 in the

last group. Each group contains 600 simulated samples. For each sample, I estimate the

model parameters and find in-sample R 2 statistics for Af and for the forecast, based on the

conventional predictive regression of returns on the dividend-price ratio. The average R2

statistics for each group are plotted in Figure 1-8. Clearly, if the break is small enough the

dividend-price ratio provides better forecast than J4. Indeed, the use of simulated dprt for

predictions implies that the dividend-price ratio is stationary and this makes the forecaster

more powerful. However, the higher power in cases with small breaks comes at cost. If

the break is big, the dividend-price ratio looks like non-stationary in the finite sample, and

it looses its ability to predict returns. On the contrary, the filter based forecast ^F does

not rely on the stationarity assumption. Without this additional constraint on prices and

dividends, FA is less efficient providing lower R 2 statistics, but it is more robust to structural

breaks. Indeed, its R2 decreases more slowly than the R 2 of the dividend-price ratio as the

break size goes up, and ultimately for sufficiently large breaks A' outperforms dprt.

In summary, the suggested filtering approach is more robust to structural breaks in the

long run relation between prices and dividends than the conventional predictive regression.

This explains why the filtering approach works better in the whole sample of aggregate

dividends and returns, which is likely to contain such breaks. Note that this property

being interesting ex-post is particularly valuable ex-ante when it is not clear whether the
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structural breaks will occur.

1.4 Testing Hypotheses

Although the point estimates of parameters obtained in the previous section indicate that

expected returns and expected dividend growth are time varying, only rigorous statistical

tests can confirm it reliably. This section is devoted to such tests.

In general, there are three hypotheses of major interest. The first one is that expected

returns are constant. In terms of the state space model parameters it can be stated as

Or = Oa=r = Piirlid = Plird = 0. Clearly, testing this hypothesis is equivalent to examining

predictability of stock returns. The second hypothesis is that expected dividend growth is

constant, i. e. dividends are not predictable: Od = aUd = Prprd = Pydd = 0. Again, it is an

advantage of the filtering approach that the test of this hypothesis draws on both returns

and dividends and this helps to increase the power of the test. The third hypothesis is

that the correlation between expected returns and expected dividend growth is negative:

P1rtd < 0. This hypothesis is inspired by recent discussions in the literature.

Given the log-likelihood function (1.10), it is natural to employ the maximum likelihood

ratio test as the major tool for testing the above hypotheses. The test statistic has the

following form:

LR(y) = max log L(0, y) - max log L(0, y), (1.11)
OE) 0EE0

where 00 is the restricted set of parameters specified by the null hypothesis. The rejection

region for the test is {y : LR(y) > Ca}, i.e the null hypothesis is rejected if the value of

the LR statistic computed for the empirical sample exceeds an appropriate threshold. The

value of Co is determined by the desired test level a and the distribution of the test statistic.

There are several complications related to practical realization of the maximum likeli-

hood ratio test in our case. First, the inference based on the standard asymptotic distribu-

tion of the log likelihood ratio may be incorrect. Indeed, at least for the first two hypotheses

we have a so called parameter-on-the-boundary problem since the values of parameters un-

der null are on the boundary of the parameter set. As a consequence, the distribution of the

test statistic might be non-standard even asymptotically. Moreover, the annual sample is

too small to make the inference based on asymptotic distribution sufficiently reliable and, as



a result, I have to consider the finite sample distribution of the test statistic. Unfortunately,

this distribution is not analytically feasible and Monte Carlo simulations are needed.

Second, all null hypotheses stated above are composite, and this immediately leads

to the nuisance parameters problem. It means that the distribution of the test statistic

depends on several unknown parameters. For example, for the null hypothesis of constant

expected returns these parameters are id, Upd, Pirpd, and Ppdd. To warrant the desired test

level a, the threshold of the rejection region C, should satisfy the following inequality:

sup Pe(LR(y) > Ca) < a,
Oe)o

where PO is a probability measure under particular set of parameters 0 E 00. It means

that the rejection region for a composite hypothesis is an intersection of rejection regions

for all possible simple hypotheses from 0o. In general, construction of this intersection is

an extremely formidable task which in most cases cannot be solved even numerically.

To avoid the last problem and make the inference feasible, I do not consider the whole

space 60 but focus only on a neighborhood of one particular point 0o such that 0o =

arg maxoceo log L(0, yo), where yo is the given empirical sample. 21 The intuition behind this

simplification is straightforward. Indeed, if the null hypothesis is true, then by construction

it is most likely that the sample yo was drawn from P0o. As the point representing a simple

null hypothesis moves away from 80, the value of LR(yo) increases since the first term in

(1.11) is the same but the second term decreases. However, the distribution of LR(y) should

not change significantly. Indeed, for each particular realization of the sample y the value of

LR(y) depends on benefits from tuning 8 parameters instead of 4. It is not likely that the

reduction in the optimized log likelihood function depends significantly on the point in the

four dimensional parameter space O 0. Consequently, the critical quantiles of LR(y) also

should not significantly change from point to point. Hence, if the simple hypothesis 00 is

rejected, then all other simple hypotheses will also be rejected and the rejection region Ca

is determined by P0 ): P 0o(LR(y) 2 Ca) < a.

Equipped with this methodology, we are ready to test the particular hypotheses. The

fist one is that the expected returns are constant. This is the most interesting hypothesis

which attracted much attention. Alternatively, in our case it can be stated as impossibility

2 1In econometrics this procedure is termed as parametric bootstrap.



to predict future returns given historic records of past returns and dividends. Clearly, this

is a composite hypothesis with 80 parameterized by (,°d, ,2d' CI , P~dd) where E0 is defined

as

o0 = {0 E O : , = oir = PpriTd = Pird = 0 }.

Note that opposite to the case with an unconstrained parameter space, there is no identi-

fication problem under null hypothesis and all parameters of the model are unambiguously

determined by available observations. This fact simply comes from the structure of the

matrix Q defined in Proposition 2.

According to the described methodology, I first estimate the set of nuisance parameters

00o for the actual data sample yo. The obtained estimates show that expected dividend

growth must be very persistent with the autocorrelation coefficient of 0.961 if expected

returns are constant. The value of the log likelihood function drops from 90.03 to 80.02, so

the LR statistic for yo is 10.01. Next, I test the simple null hypothesis represented by the

single point 00. Since the distribution of the LR statistic under the null is not analytically

feasible, I take 00 as population parameters, simulate 2000 samples with 79 observations

each, and compute the test statistic for each sample. Since the null hypothesis is simple,

there is no maximization in the second term of (1.11). The simulated distribution of the

LR statistic is presented in Figure 1-9.

To visualize the conclusion, the empirical value of the test statistic LR(yo) is indicated

by the black bar. Clearly, its value is too high to be justified by a statistical error. In

other words, it is very unlikely that under the null 00 the minimum of the restricted log

likelihood function exceeds the unrestricted minimum value by 10.01. Thus, the simple null

hypothesis 00o is rejected at least at the 1% level.

As discussed earlier, the rejection of 00 in general does not imply the rejection of the

composite e0. So, it is necessary to confirm the intuition that as 0 moves away from 0o the

value of the LR statistic for yo increases whereas the quantiles of its distribution remain

approximately the same. For this purpose, I randomly take 50 points 0i E O0, i = 1...50

which are in the neighborhood of 00 and compute the empirical values of the test statistic

LRi = maxe•e log L(0, yo) - log L(0i, yo). As it can be expected, the far from 00 the point

is, the larger the value of LRi becomes. Next, I simulate the distribution of the LR statistic

at each point Oi and find the 5% quantiles qi.22 The pairs (qi, LRi), i = 1...50 are plotted
22Simulation of the distribution of the LR statistic is computationally intensive. To reduce the compu-
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Figure 1-9: Simulated finite sample distribution of the LR statistic under the null hypothesis
of constant expected returns.

The likelihood ratio test statistic is computed for 2000 simulated samples with 79 observa-
tions each. The black bar stands at the empirical value of the LR statistic.
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Figure 1-10: Scatter plot of the pairs (qi, LRi), i = 1, 2, ..., 50.

Here 50 points Oi E eo, i = 1,2, ..., 50 which are in the neighborhood of 00o are taken
randomly. qi, i = 1,2, ...,50 are 5% quantiles of the simulated distribution of the LR
statistic at each point Oi. LRi, i = 1, 2, ..., 50 are empirical values of the test statistic at the
points Oi: LR, = maxOEe log L(0, yo) - log L(0i, yo).

in Figure 1-10.

It is easy to see that although values of the LR vary a lot and for sufficiently distant

points they are around 50, the variation of quantiles qi is limited to a compact range from

5 to 8.5. Thus, Figure 1-10 thoroughly supports the intuition provided above. Moreover, at

every point the value of LRi significantly exceeds the value of qi. It means that the simple

null hypotheses represented by Oi are rejected at the conventional statistical level. Although

tational time, I simulate only 100 draws for each point Oi, i = 1, 2, ..., 50 and take the fifth largest draw as
qi. According to Dufour (2005), the error in qi computed in this way is relatively small and the simulated
critical region has the level of 6/101. I do not consider 1% quantiles since the estimation error is quite high
for them given the simulated sample of 100 points.
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Figure 1-10 does not provide rigorous proof that all other simple hypotheses 0 E 80 are

rejected, it demonstrates that it is unlikely to find 0 CE 0 that will not be rejected by the

suggested test. Overall, we have a solid statistical evidence that the empirical data is not

consistent with constant expected returns.

The results of testing other hypotheses are less impressive. The parametric bootstrap

allows me to reject the hypothesis of constant dividend growth only at the 12% level which

is lower than conventional levels. Similarly, the hypothesis p,,,rd < 0 can be rejected only

at the 15% level. This implies that either parametric bootstrap is too conservative and does

not have enough power, or we really deal with constant expected dividend growth.

1.5 Out-of-Sample Analysis

Recently Goyal and Welch (2005) pointed out that, although conventional predictors of

returns have some predictive power in sample, most of them underperform the naive his-

torical average prediction out of sample. In particular, the dividend-price ratio gives poor

out-of-sample forecasts. In this Section, it is demonstrated that the constructed predictive

variables "4 and jd not only outperform the dividend-price ratio out of sample, but also

provide forecasts superior to historical average.

A natural way to quantify the out-of-sample behavior of any predictive variable is to

compare the error of the forecast it provides with the error of the simplest forecast based

on the historical average. In particular, for all forecasting variables including the historical

mean I calculate the mean absolute error (MAE) and the root mean squared error (RMSE)

defined as follows:

T T
MAE = e -~t RMSE =(y-

t=1 t=1

where Yt is the realized value of the forecasted variable and yt is its prediction. Here I

compare three types of forecasts. The first one is based on the historical mean. The second

one is generated by the standard predictive linear regression. In particular, to get the best

estimate of the return rr+l at time T given the history of returns rt and the dividend-

price ratios dprt up to time T, I run the regression rt+1 = a + bdprt + Et+1 and obtain the

estimates & and b. Then, the best forecast is A,+1 = & + bdprT. The third type of forecast is



a MAE AMAE RMSE ARMSE
Panel A: Prediction of returns

Historical average of returns 0.0089 0.1409 0.0000 0.1715 0.0000
Log dividend-price ratio 0.0702 0.1485 -0.0076 0.1775 -0.0061
Filtered expected return 0.0236 0.1363 0.0047 0.1689 0.0025

Panel B: Prediction of dividend growth
Historical average of dividend growth 0.0052 0.1023 0.0000 0.1331 0.0000
Log dividend-price ratio 0.0145 0.1048 -0.0025 0.1371 -0.0040
Filtered expected dividend growth 0.0348 0.1004 0.0019 0.1313 0.0018

Table 1.5: Out-of-sample analysis.

This table reports out-of-sample forecasting power of the historical mean, the log dividend-price
ratio, and the constructed forecasts •Aand Afd . a is a standard deviation of the predictor, MAE
is a mean absolute error of prediction. AMAE = MAEhist - MAE, where MAEhist is a mean
absolute error of prediction based on historical average. RMSE is a root mean squared error of
prediction, ARMSE = RMSEhist - RMSE, where RMSEhit is a root mean squared error of
prediction based on historical average.

provided by the constructed variables "4 and df. To avoid a look-ahead bias, I estimate the

parameters of the state space model (1.6) - (1.8) only on the data available to a fictitious

observer at the moment T and use the estimated parameters for predicting dividends and

returns one year ahead. Thus, the parameters of the model are reestimated each year. To

form the first forecast, I use 25 years of data, so the evaluation period starts in 1950.

The measures of predictive power for all discussed forecasting variables are reported in

Table 1.5. First, both MAE and RMSE indicate that the log dividend-price ratio lacks any

ability to forecast returns out of sample and only adds noise to the naive predictor based on

the historical mean. This is a replication of the Goyal and Welch (2005) result. However,

the filtered expected return -' performs much better. Not only it gives smaller prediction

error than the dividend-price ratio, but also beats the historical average. In particular, the

RMSE of the filtered expected return is 0.1689 reflecting a noticeable improvement relative

to the RMSE of the historical mean which is 0.1715. This error reduction approximately

corresponds to the out-of-sample R2 statistic of 3%.

Panel B of Table 1.5 provides the same out-of-sample statistics for different variables

forecasting dividend growth. Since the dividend-price ratio cannot forecast dividends even

in sample, one would not expect to see any out-of-sample predictability. Unsurprisingly,

Table 1.5 confirms that there is absolutely no indication of ability of the dividend-price

ratio to forecast dividend growth. Nevertheless, the filtered expected dividend growth fi
possesses the predictive power even out-of-sample. Specifically, it decreases RMSE from

0.1331 to 0.1313 and provides the forecast with the out-of-sample R 2 statistic of 2.7%.



Although the obtained out-of-sample results are noteworthy, their importance should

not be overestimated. Campbell and Thompson (2005) and Cochrane (2006) show that

given the limited sample size, the out-of-sample statistics do not say much about the real

predictive power of forecasting variables. In particular, they demonstrate that even if all

parameters are known, only expected returns are time varying, and the dividend-price ratio

is a perfect forecaster of future returns, it is not surprising to get values of the Goyal-Welch

statistic indicating poor out-of-sample performance of the forecasting variable. Indeed, in

a finite sample it could happen that the historical mean prediction has lower forecasting

error than the established forecaster because of simple bad luck. However, an opposite error

can also occur: a variable which does not have any predictive power out of sample might

produce lower RMSE relative to the historical mean due to good luck. Although it is not

likely that the above results are driven by this finite sample error, we must be aware of this

possibility.

1.6 Extensions

1.6.1 Stock repurchases

In the previous analysis, I mostly focus on stock dividends as cash flows from the corporate

sector to equity holders. However, dividends is not the only way to disgorge cash to investors

and it is instructive to consider alternative measures of aggregate payout. In this section

I study the implications of including stock repurchases into the definition of cash flows. 23

This modification might have a strong impact on predictability of returns. Thus, Boudoukh,

Michaely, Richardson, and Roberts (2004) demonstrate that opposite to the dividend-price

ratio the total payout ratio, defined as dividends plus repurchases over price, has statistically

significant forecasting power for future stock returns.

In the filtering approach the redefinition of aggregate cash flows is equivalent to consid-

eration of different trading strategy implemented by investors. Indeed, identifying dividends

with cash flows we get a simple "buy and hold one share forever" strategy, which value is

by definition the price per share. However, if we measure the transfer of resources from the

corporate sector to investors as a sum of dividends and repurchases we get a "repurchasing"

23As reported by Jagannathan, Stephens, and Weisbach (2000), Fama and French (2001), Grullon and
Michaely (2002) and others, stock repurchases are becoming a popular channel of returning cash to investors.



strategy: buy a number of shares, get dividends, and sell a part of them to the firm if the

firm buys them back. This new strategy provides exactly the same return as the "buy and

hold one share forever" strategy, but has different cash flows and, consequently, a different

valuation ratio.24

Clearly, different strategies can be more or less appropriate for analysis of expected

returns. Indeed, valuation ratios of different strategies might have different sources of time

variation. In particular, some of them can be driven by changes in expected returns whereas

others are mostly affected by changes in expected cash flows. There is abundant evidence,

also corroborated in the previous section, that changes in the valuation ratio of the "buy

and hold one share forever" strategy are mostly due to changes in expected returns, but

not in expected cash flows. However, for alternative definitions of aggregate payout the

conclusion can be the opposite. Bansal, Khatchatrian, and Yaron (2005) consider earnings

as an alternative measure of cash flows and demonstrate that the major part of fluctuations

in the price-earnings ratio is explained by fluctuations in the earnings growth rate. Bansal

and Yaron (2006) examine an aggregate transfer of resources from all firms to all equity

holders, which consists of dividends and repurchases net of stock issuance. The authors

show that in this case at least 50% of asset price variability is explained by predictability

of aggregate payout growth. Larrain and Yogo (2006) define aggregate cash flow even

more generally including not only stock dividends and repurchases net of issuance, but also

interest and debt repurchases net of issuance. They show that changes in expected cash

flows account for the major part of the asset valuation ratio.

Here I demonstrate that the filtering approach applied to the "buy and hold one share

forever" strategy and the "repurchasing" strategy provides comparable results regarding

time variation of expected returns. I take the data on repurchases collected in Grullon

and Michaely (2002) and adjust the testing period accordingly. The data in Grullon and

Michaely (2002) cover the period from 1972 to 2000. Prior to 1972 the contribution of

repurchases into aggregate cash flows is negligible and can be ignored.

Table 1.6 collects the estimation results. Panel (a) shows that the parameter estimates

and the related qualitative conclusions are very similar for both strategies. In particular, the

in-sample R 2 statistics are almost identical and the strategies provide the return forecasts of

24For the "repurchasing" strategy the cash flows are CFt = Nt-1 Dt + Pt(Nt-1 - Nt) + where Nt is the
number of shares held at time t.



(a)
or2Od 2 2dor 2 PprId PIrd R 2 R 2

I 0.8751 -0.6348 0.0006 0.0049 0.0119 0.9017 -0.3475 0.031 0.025
II 0.8433 -0.7307 0.0008 0.0031 0.0159 0.8657 -0.1246 0.034 0.025

(b)
a(rt) a(Adt) o(dprt) p(rt) p(Adt) p(dprt) ,r Oa R2  Rn

I 0.1973 0.1364 0.2813 0.0299 -0.1387 0.8407 0.1869 0.0184 0.0662 0.0012
II 0.1949 0.1499 0.2790 -0.0391 -0.2155 0.8513 0.1896 0.0086 0.0736 0.0003

Table 1.6: Repurchasing strategy.

(a) Maximum likelihood estimates of the state space model and in-sample R2 for different strategies:
I - "buy and hold one share forever" strategy; II - "repurchasing" strategy. (b) The empirical values
of statistics (row I) and the statistics implied by the estimated state space model (1.6)-(1.8) with
AR(1) processes (row II) for the "repurchasing" strategy.

equal quality. This is one more manifestation of the filtering approach robustness. Panel (b)

of Table 1.6 compares the empirical statistics and those implied by the estimated parameters

in the case of the "repurchasing" strategy and demonstrates that the discrepancy between

the empirical statistics and the implied statistics is notably less than for the "buy and

hold one share forever" strategy (cf. Table 1.4).25 In particular, the variance and the

autocorrelation of the payout ratio are less than of the dividend-price ratio and are consistent

with their implied counterparts. In addition, the R2 statistic of the predictive regression

is 6.6% which is higher than for the "buy and hold one share forever" strategy and is

very close to the theoretical value of 7.4%. This supports the result of Boudoukh, Michaely,

Richardson, and Roberts (2004) who argue that the total payout ratio but not the dividend-

price ratio can reliably predict future returns.

The ML ratio test on time variation of expected return also provides very similar con-

clusions for both strategies. The simulated distribution of the LR statistic under the "re-

purchasing" strategy allows us to reject the null hypothesis of constant expected returns at

the 3.5% level. Although this result is not as strong as under the "buy and hold one share

forever" strategy reported in Section 1.4, it indicates the predictability of returns at the

conventional statistical level.

25In the first row of Table 6 Panel (b) dprt stands for the payout ratio, which is dividends plus repur-
chases over price. In the second row of Table 6 Panel (b) dprt denotes the implied valuation ratio of the
"repurchasing" strategy. Although these two objects are formally different, it is unlikely that the difference
is essential so it is meaningful to compare their statistics.



1.6.2 Implications for asset allocation

Statistical evidence that aggregate stock returns are predictable can have important eco-

nomic implications. For example, an investor who splits her assets between the stock market

and the risk-free treasury bills must try to time the market on the basis on her changing

expectations. As demonstrated by Kandel and Stambaugh (1996), Campbell and Viceira

(1999), Barberis (2000), Campbell and Thompson (2005) and others, even small predictabil-

ity of stock returns leads to a substantial effect on optimal portfolio weights. It means that

even a small increase in the forecasting power might be very important for investors. In par-

ticular, the slight improvement brought by the filtering approach can lead to large welfare

gains relative to the naive strategy ignoring the predictability.

To evaluate the benefits of the filtering procedure, I need to consider an investor who

reestimates the model parameters each period, forms new forecasts of future stock returns,

and allocates wealth to maximize her expected utility. In general, the trading policy of

such investor is rather complicated and does not admit a tractable solution for several

reasons. Indeed, due to a mean reverting nature of expected returns and expected dividend

growth, the values of pr and /d determine the current investment opportunities. Since

they change over time, a trading strategy of a multiperiod investor contains a hedging

component which is complicated by the unobservability of expected returns and dividend

growth to the investor. 26 Moreover, each period the investor reestimates the parameters of

her model taking into account new information revealed in this period. Thus, a rational

investor would also hedge changes in parameter estimates and this further complicates the

portfolio problem. 27

To illustrate the effect of the filtering approach on asset allocation avoiding the above

complications, I assume that the investor has mean-variance preferences and at each moment

cares only about the portfolio return one period ahead. The risk aversion parameter is set

to 5.

I start with comparison of real wealth accumulated by investors who follow different

strategies to form their expectations regarding future stock returns. The simplest approach

is to ignore the predictability and to take an average of past returns as the best forecast.

26See, for example, Wang (1993) for solution to the portfolio problem of a multiperiod investor who filters
out information about unobservable state variables from the history of available data.27Xia (2001) solves the portfolio problem of an investor who takes into account the uncertainty in the
parameters of the predictive relation.
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Figure 1-11: Accumulated real wealth of investors with one period horizon and mean-
variance preferences.

Initial wealth is $1. The solid line indicates wealth of the investor predicting future returns
as an average of past returns. The dash-dot line shows the wealth accumulation by investors
who use the dividend-price ratio to predict stock returns. The dashed line represents wealth
of investors who follow the filtering procedure to form their expectations.

Another strategy is to use the dividend-price ratio as a predictive variable. Obviously,

the most interesting question is about the relative performance of investors following the

filtering approach.

Wealth accumulation of these three types of investors is depicted on Figure 1-11. It

shows that the investors who try to filter out expected returns (dashed line) consistently

outperform the investors who ignore the time variation in expected returns (solid line).

Ultimately, those investors who do not time the market earn 2.5 dollars on each dollar

invested in 1950 whereas the investors who follow the filtering strategy earn 3.5 dollars on

the same initial investment. The strategy based on the dividend-price ratio (dash-dot line)

also provides noteworthy results. Thus, in 2004 the investors who form their forecasts on

1



the conventional predictive regression earn 1.2 dollars on each dollar of initial investment

and underperform not only those investors who use the Kalman filter to predict returns, but

also naive investors who do not try to time the market at all. This disastrous result is mostly

due to the last 15 years which seriously questioned the ability of the dividend-price ratio

to predict stock returns. However, in the interim the strategy based on the dividend-price

ratio outperforms not only naive strategy but sometimes even the filtering strategy. This

is consistent with the conclusion that the conventional predictive regression provides more

precise forecast and, consequently, higher returns in case of the stationary dividend-price

ratio but is not robust to certain shifts in parameters.

Although accumulated wealth provides a clear metric for comparison of different pre-

dictive strategies, it is possible that some strategies are more risky than others and their

higher return is not an indication of their superior predictive performance but a compen-

sation for the risk. To study this possibility, I compute certainty equivalents of investors

using different methods to predict returns. It appears that investors ignoring predictability

get 1.46 whereas the certainty equivalent of investors who rely on the filtering approach is

1.79. Clearly, the latter approach is beneficial since it not only provides higher return but

also increases the utility level.

Overall, the analysis of asset allocation under different approaches to predictability

of stock returns demonstrates that the filtering approach not only provides statistically

significant evidence in favor of return predictability, but also has economically important

implications for portfolios of long term investors.

1.6.3 Additional robustness checks

Sensitivity to distributional assumptions

The parametric bootstrap used for hypothesis testing essentially hinges on the specified

distribution. Throughout the analysis, I maintain the assumption that all variables are

normal and draw all simulated shocks from the normal distribution. Here I study the

impact of relaxing this assumption and perform the test on constant expected returns with

the non-parametric bootstrap. In particular, I estimate the model parameters under the

null hypothesis and use the realized returns and dividends to infer the realized values of et~d

and ed. Clearly, under the null all e tr are zeros, and this allows us to reconstruct all other



shocks. 28 Then, instead of drawing simulated shocks from the normal distribution with the

estimated covariance matrix, I draw the bootstrap sample with replacement from the set of

realized etd and cd and construct the pseudo-sample of dividends and returns. This sample,

in turn, is used for the computation of the ML ratio test statistic LR. I repeat these steps

2000 times and use the obtained distribution of LR for finding its quantiles and comparing

them with the empirical value of the LR statistic. To save the space, I do not report the

resulting distribution since qualitatively it is very similar to the simulated LR distribution

under the normality assumption.

The results of the non-parametric bootstrap are very similar to the results obtained

under normally distributed shocks. Again, the hypothesis of constant expected returns

can be rejected at the significance level of 1.5%. This similarity of results indicates that

the normality assumption is quite reasonable and does not drive the results of hypotheses

testing.

Alternative process specifications

The benchmark model with expected returns and expected dividend growth specified as

AR(1) processes has a virtue of simplicity and a small number of parameters. In this

section, I examine several extensions of the benchmark model and show that although

more complicated models fit data slightly better, providing in general higher in-sample

R 2 statistics, the simplest model captures most of the interesting effects. I do not run a

horse race among different specifications, my purpose is to show that all of them provide

comparable results, thus it is possible to rely on the simplest model with the minimum

number of parameters.

I consider several modifications of the benchmark model. In particular, I examine speci-

fications in which one or both state variables ML and pd follow AR(2) processes. For brevity,

I denote such models as AR(1)/AR(2), AR(2)/AR(1), and AR(2)/AR(2), where the first

and the second parts indicate the processes for y' and ld, correspondingly. Obviously, in

this notation the benchmark model is AR(1)/AR(1). The extended models have one or two

additional parameters k2r and 02d corresponding to the second lags of AR(2):

il = rL th + 2r t-1 t1)

281 also take the unconditional mean p d as the initial value of expected dividend growth.



d 1d1 + t1.A-t+1 = 01dC~t + 02d~t- t+1'

Opposite to the benchmark model, all models with at least one AR(2) process are completely

identifiable. In other words, not only the new parameters but also the covariance matrix E

can be unambiguously recovered from the data.29 Also, I consider the model with general

VAR process for expected dividends and expected returns. Specifically, I assume that pt

and pd evolve as
r r pr
d d jad
t+1 t ) t+1

where 4 is a (2 x 2) matrix, whose eigenvalues are all inside the unit circle. The identifiability

of this model is very similar to the identifiability of the AR(1)/AR(1) model. In particular,

the matrix 4 in general is fully identifiable and its non-diagonal elements give two additional

parameters to be estimated. 30 However, the covariance matrix E is not fully determined by

data and an analog of Proposition 2 holds.

The estimated parameters for different models are quantitatively different, but they

provide very similar conclusions, which are mostly the same as obtained from the benchmark

AR(1)/AR(1) model. Thus, expected returns are more persistent than expected dividends,

but variance of shocks to expected dividends is higher. Again, except the VAR specification,

the correlation between Ei and e p1 is high and positive and in all models Campbell (1991)

decomposition attributes the major part of variation in returns to the variation in expected

returns.

The results of comparison the model implied parameters with their corresponding em-

pirical values are almost identical to the benchmark case and are not reported for the sake

of brevity. Again, the observed statistics of returns and dividends are closely matched,

although the observed variance and autocorrelation of the dividend-price ratio are con-

29For example, the identifiability of new parameters in the AR(2)/AR(2) model follows from

cov(rt - ,lrrtl- - 02rrt-2, rt-3) = 0, cov(Adt - 4ldAdt-1 - 0 2 ddt-2, Adt- 3 ) = 0,

cov(rt - 0lrrt-1l - k2rrt-2, rt-4) = 0, cov(Adt - 0ldAdt-1 - 0 2dAdt-2, Adt- 4 ) = 0.

The identifiability of the covariance matrix E results from non-trivial second order autocorrelations of it =
rt - r,,rt-1 -

4
2rrt-2 and Adt = Adt - 0ldAdt-1 -1 2dAdt-2.

30Identifiability follows from

y dt t  rt-2 0.
SAdt-1 Adt-2 A )=



R R2 AMAE ARMSE AW AW ce

AR(1)/AR(1) 0.050 0.038 0.0047 0.0025 0.88 0.33
AR(1)/AR(2) 0.048 0.068 0.0044 0.0014 1.52 0.52
AR(2)/AR(1) 0.055 0.033 -0.0007 -0.0009 0.98 0.61
AR(2)/AR(2) 0.056 0.084 0.0038 -0.0010 1.03 0.54

VAR 0.072 0.042 0.0037 -0.0019 1.38 0.85

Table 1.7: Alternative specifications of expected dividends and expected returns.

This table gives in-sample and out-of-sample predictive power of Af and Af for alternative specifi-
cations of expected dividends and expected returns. R2 and R2 are in-sample R2 statistics for FA
and A•. AMAE = MAEhist - MAE, where MAEhist and MAE are mean absolute errors of pre-
dictions based on historical average and A', respectively. ARMSE = RMSEhist - RMSE, where
RMSEhist and RMSE are root mean squared errors of prediction based on historical average and
Af, respectively. AW is the difference of terminal wealths accumulated by investors, who predict
returns with [4 and with the historical mean, AWce is the difference in their certainty equivalents.

spicuously higher than their model values. Also, as in the benchmark case, the empirical

predictive power of the dividend-price ratio is weaker than dictated by model.

Table 1.7 allows to compare the in-sample fit of different models as well as to evaluate

their out-of-sample behavior. In general, allowing two additional parameters I get better

in-sample fit of the model since in all cases I use the same amount of data, but the increase

in the number of model parameters provides additional flexibility. Interestingly, allowing

AR(2) processes mostly improves the ability of the model to predict future dividend growth

whereas the captured variation in returns is almost the same as in the benchmark case. For

instance, if both iLt and pt are modelled as AR(2) processes the R2 statistic for [4 is 0.056,

which is slightly higher than 0.05 obtained for the benchmark model, but the R 2 statistic

for F^d goes up from 0.038 to 0.084. Importantly, the predictors obtained from different

models are highly correlated with the correlation coefficients around 0.9. Although it does

not prove that they all share the same predictive component, it is likely to be the case.

Similarly to the benchmark case, to evaluate the predictive ability of A[ out-of-sample

I look at two metrics: the mean absolute error (MAE) and the root mean squared error

(RMSE). Table 1.7 reports the differences AMAE and ARMSE, which show how FA from

different models helps to decrease the error of prediction relative to the naive forecast based

on the historical mean. The results for different models are mixed. On one hand, AMAE is

positive except for AR(2)/AR(1) specification saying that in general the constructed forecast

is valuable. On the other hand, ARMSE is negative for three out of five specifications.

Although the obtained out-of-sample performance does not unambiguously indicate that

the models help to reduce the forecasting error, the results are not inconsistent with the



return predictability and a priory, given small sample size, the chance to get mixed results

is quite high even if returns are really predictable.31 Table 1.7 also provides the difference in

wealth earned by a market timer, who used the filtering approach, and an agnostic investor,

who used historical mean to form her best expectation of returns. Similar to the simplest

AR(1)/AR(1) model all extensions have positive AW, thus the market timing is rewarded.

To make sure that this reward is not a compensation for extra risk I also compute the

differences in certainty equivalents earned by the same investors AWce. For all models

the investor who time the market does not reduce her certainty equivalent relative to the

agnostic peer, thus she does not take an extra risk that can justify higher return.

Alternative data periods

In my analysis, I use annual data on dividends and returns where the period coincides

with the calendar year, i.e. each forecast is constructed at the end of December. Due

to seasonality of dividends, I cannot use higher frequency data directly in my approach,

however the availability of monthly data can be used for an additional robustness check.

Specifically, using monthly CRSP data on returns with and without dividends I construct

new annual samples covering other calendar periods such as from February to January, from

March to February, and etc. As in the benchmark case, I estimate the model parameters for

each sample and construct one-year-ahead forecasts, which now are made at the end of each

month. Obviously, the parameter estimates as well as the constructed forecasts in different

samples are not independent one from another, since they effectively use overlapping data.32

However, looking at 12 samples instead of 1 means that I use much more information, and

this information helps to examine the robustness of the obtained results and even get new

insights about predictability.

Overall, the obtained parameter estimates for other calendar periods are qualitatively

similar to the benchmark January to December case and for the sake of brevity I do not

report them. Again, expected returns are highly persistent with the parameter kr lying in

the range from 0.75 to 0.82, the correlation Prd is above 0.8, the correlations Ptrd and P•dd

are negative. Hence, the model parameters obtained in the January to December sample

are quite representative and their reasonable values are not the result of an accidental
31See Campbell and Thompson (2005) and Cochrane (2006).
32An interesting question for future research is how to test the hypothesis of constant expected returns

simultaneously using all samples and accounting for their overlaps.



coincidence.

Additionally, I compare the empirical and model implied statistics for the dividend-

price ratio in different calendar samples. In all of them I get exactly the same pattern as

in the benchmark case: empirical variances and autocorrelations of the dividend-price ratio

are higher than their model implied values and the predictive regression R 2 statistics are

significantly lower than suggested by the model. It means that this mismatch is an intrinsic

property of data supporting its interpretation as an indication of a structural break.

The most interesting behavior is demonstrated by the R2 statistics for At and At in

different calendar periods. To avoid confusion with the R 2 statistics in predictive regressions,

I denote them as R2r and R2d. As shown in Figure 1-12, they significantly change from

period to period and their highest levels far exceed the values in the January to December

sample. For example, for annual returns measured from July to June R2r is around 7% and

R~, approaches amazing 25%. This indicates that the information about future dividends

and returns containing in their history varies from sample to sample.

The statistics R2, and R,2 exhibit an interesting pattern. Thus, they have their highest

values in the calendar periods in which much information about dividends is released in

the last month making the observable returns most informative. High value of R2• is very

intuitive in this case. Indeed, better information about future returns increases variation

of id and improves the predictive ability of tf which manifests itself in higher R2d. More

importantly, the predictive power of pL also goes up for these calendar periods. When there

is much information about future dividends, the filtering approach is especially useful since

it allows to disentangle expected dividends and expected returns providing a cleaner and

thus more efficient forecaster for returns.

Notably, the R 2 statistic in the predictive regression for returns Rpr(r) exhibits a com-

pletely different pattern being around 4% for all samples. The predictive relation between

the dividend-price ratio and returns is not that sensitive to additional information about

future dividends and, consequently, the predictive power of the dividend-price ratio does

not change from period to period. However, in the predictive regression of dividend growth

on the dividend-price ratio the Rdpr (Ad) statistic partially resembles the pattern of R2. It

means that despite its very low power to predict dividend growth, dprt still contains some

information about future dividends, but it is possible to obtain much more information

using dividends and returns separately.
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1.6.4 Adding other observables

The state space model of Section 1.2 uses only the history of dividends and returns. However,

there might exist other useful information about future dividends and returns which would

allow to improve the quality of the forecasts. In this section I examine an extension of

the benchmark model with an additional observable qt and show how to incorporate the

information contained in the history of qt in order to get the most powerful predictors for

future dividends and returns.

In general, qt can be any predictor of future dividends or returns suggested in the

literature. Note that available predictors for Adt+l are also helpful for predicting returns in

the filtering framework, and even if qt contains information only about expected dividend

growth, it still can be useful for predicting returns allowing to distinguish the shocks e6r

and e•d and, as a result, making the forecast f more precise.

There is some ambiguity in how to model the relation of qt to ,L, d, er and Etd. For

instance, we can think about qt as an additional persistent state variable following AR(1)

process with the persistence parameter kq and the innovation e4, which is correlated with

other innovations etr, et , and e . This approach was recently exploited by Pastor and

Stambaugh (2006) in their predictive system framework. Effectively, the predictor qt and

unobservable expected returns 1z share the same innovation, and the innovation 4e allows

to make inference about the unobservable shock etr, which in turn helps to improve the

forecast /~. In particular, if e4 is perfectly correlated with Etr and 4q = Ir, then qt is a

perfect proxy for A4.

Another way to treat qt is to consider it as an additional observable linearly related to

expected returns: qt = a1[ + e4. This specification captures the idea that qt is a proxy for

the level of L4, but not for the innovations of 14. However, in this case we force pr to have

exactly the same persistence as qt, and this seems to be an unwarrantedly strong restriction.

In my analysis, I adopt an alternative framework. I assume that qt is a linear combination

of 14, Ad and Lq , where Aq is an additional unobservable state variable, which follows AR(1)

process with the persistence parameter qa and the innovation E 'q. On one hand, this

approach allows to relate qt to the level of p4, on the other hand, it is sufficiently flexible

and does not impose any constrains on the autocorrelations of 14 and qt. The basic AR(1)



model of Section 1.2 augmented with the new observable has the following form:

r Ar + ptr d Ad + EeId q q +Eq

/4 +I = OrZt + +-  At t+ J t+ - Oqlt t+1,

-r P pr d

rt+1 = - r 1  P+ --- t+1 + Etd+  (1.12)

Adt+l = ptd + Etd+l,

qt+l = apLt + b±td+l + .

To reduce the number of parameters, I assume that cov(e•I 1, e ) = ov (E~4 1, 1) = 0.

It means that the shock to expected returns e fi affects qt+t only directly through [Mr,

but not through the correlation with Et+1 .q If qt represents only those variables that are

supposed to be proxies for the level of expected returns, than the assumptions on the

covariances is quite reasonable 33. Thus, the model (1.12) has only one new correlation

Ptqd = cov(e •L, ed+1) to be estimated.

As additional variables providing new information about future returns, I choose the

book-to-market ratio BMt and the equity share in total new equity and debt issues St

proposed by Baker and Wurgler (2000). On the one hand, according to Goyal and Welch

(2005), these variables are among the best in-sample predictors of future returns. On the

other hand, St has the lowest correlation with the price-related predictors such as dprt and

BMt, and presumably it contains more additional information relative to the history of

dividends and returns. Thus, we can expect to see the strongest impact from adding these

particular variables as new observables.

To estimate the parameters of the model (1.12) I use MLE and the results are reported

in Table 1.8. Adding new observables does not significantly change most of the benchmark

model parameters. The only major difference is a positive sign of kd, and it can be explained

either by misspecification of the process for expected dividend growth, or imprecision of

parameter estimates.

Table 1.8 shows that the book-to-market ratio BMt has high and positive loading of

3.501 on expected returns, but small and insignificant loading of -0.326 on expected divi-
33This assumption also helps to identify all other parameters of the system (1.12). Unlike the benchmark

case, in the extended model the moments of observable variables non-linearly depend on unknown param-
eters. This makes the analysis of identifiability much more difficult since identifiability is now equivalent
to uniqueness of the solution to a complicated system of non-linear equations. Although I don't have an
analytical proof of identifiability in this case, my numerical analysis indicates that the system is identifiable.



BMt St BMt St BMt St
or 0.8324 0.8013 a2  0.0097 0.0020 Pjqd -0.475 -0.922
kd 0.2516 0.6932 a2 0.0182 0.0166 a 3.501 0.739

kq 0.9050 -0.0795 PArAd 0.6116 0.8465 b -0.326 -3.314
a2r 0.0011 0.0026 Plrd -0.3226 -0.0070 R2  0.047 0.132
aUd 0.0022 0.0011 pdd -0.8451 -0.2137 R 0.087 0.111

Table 1.8: ML estimates of extended state space model.

Maximum likelihood estimates of the state space model (1.12) with the book-to-market ratio BMt
and the equity share in total new equity and debt issues St. R2 and R2 measure the ability of -r
and -p to predict future returns and future dividend growth in-sample.

dend growth. It means that the book-to-market ratio is indeed a proxy for the level of r4

and the contribution of td is small enough not to ruin the predictive power of BMt in the

predictive regression. Table 1.8 also gives the R2 statistics for A• and 61d which now use

a richer information set including not only the history of dividends and returns, but also

the history of the new observable. Interestingly, the predictive systems with and without

BMt have very similar ability to predict future returns. Thus, adding the book-to-market

ratio to the system does not increase the predictive power of Ar indicating that most of

the relevant information is already contained in the history of dividends and returns (recall

that the correlation between BMt and /4 constructed from dividends and returns only is

0.71). However, BMt helps to disentangle expected dividend growth and expected returns

and this improves the predictability of dividend growth.

The equity issuance variable St exhibits a different pattern. Similar to BMt it has a

positive coefficient before /4 and a negative coefficient before 14, however, the absolute

value of b is greater than a, so St is a surprisingly better proxy for expected dividend

growth than for expected returns. Thus, given a positive correlation between A4 and At,

when expected dividend growth is high expected returns are also high and St is low (b

is negative). This induces negative correlation between expected return and the equity

issuance variable, which is consistent with the negative slope coefficient in the predictive

regression of returns on St.

Interestingly, the OLS regression of future dividend growth on St also demonstrates some

ability of St to predict Adt+l. In particular, the corresponding slope coefficient is negative

and its t-statistic is -2.56. This result is consistent with high and negative coefficient b.

Unlike the case of BMt, adding St significantly increases the predictive power of /A and

/4. The history of St allows to raise the R2 statistics for A' from 5% to 13% and the R2



statistics for Ad from 3.5% to 11%. It means that St is likely to contain new information

about future dividends and returns, which is not incorporated in the history of dividends and

returns, and the filtering approach allows to merge efficiently these sources of information.

This conclusion is also supported by low correlation between St and A' constructed only

from dividends and returns (cf. Table 1.2) and by the ability of St to predict dividends and

returns in univariate regressions.

Higher R 2 statistics in the model (1.12) relative to the benchmark case deserve an

additional comment. One might think that the improvement in the sample predictability

almost mechanically results from the larger number of parameters. However, it is not

the case. Recall that by construction, while maximizing the log-likelihood function, we

maximize the fit of the model, but not the degree of predictability per se. Essentially, the

optimization procedure matches statistical moments, and adding a new observable not only

gives additional degrees of freedom in the parameter space, but also increases the number

of moments needed to be matched. Hence, it is not clear a priori that new information will

help to boost the predictive ability of the model, thus the fact that it helps is a non-trivial

result.

1.7 Conclusion

In this chapter, I suggest a new approach to analysis of predictability of aggregate stock

returns. This approach is more robust to structural breaks and allows dividend growth to be

predictable. Overall, although many other approaches fail to provide statistical evidence for

predictability, I demonstrate that the suggested robust method rejects the null of constant

expected returns at a high confidence level.

In my research, I mostly focus on the predictability of stock returns and improvements

that can be achieved by allowing for time varying expected dividend growth and relaxing

the standard no-bubble constraint. However, the same approach enables us to examine the

predictability of dividend growth. Although the price-dividend ratio lacks the power to

predict future dividends, the history of returns and dividends allows one to construct a new

variable that can uncover time variation in expected dividend growth.

I concentrate on the analysis of aggregate stock returns and aggregate dividend growth.

However, the suggested approach has much broader applicability. It is a general method



of extracting expected returns and expected dividend growth from the realized dividends

and returns, which is applicable to a wide range of portfolios and trading strategies. For

instance, it can be used for analysis of industry portfolios, growth and value portfolios, and

many others. Because of its advantages, the filtering approach would be especially valuable

in the cases where dividend growth has a predictable component. As demonstrated above,

the ability to distinguish innovations to expected returns and expected dividend growth can

significantly improve the quality of forecasters. Since the filtering approach produces its own

forecasting variable, it can be very useful when there are no other economically motivated

exogenous variables that are expected to predict dividends and returns. Also, due to its

relatively flexible assumptions the filtering approach is particularly advantageous when the

valuation ratio is mildly non-stationary or can suffer from structural breaks. When it is not

clear ex-ante whether the structural break will occur or not, the robustness of the filtering

approach to such breaks is appealing.

One of the most promising portfolio applications of the suggested approach is the study

of time variation of the value premium. Since the filtering approach does not need exogenous

variables that are supposed to predict returns, it can be used for analysis of value and

growth portfolios separately. This sort of analysis can give new insights about sources of

value premium variation, as well as clarify the relation between value premium and business

cycles. Understanding time variation of value premium will help to support or refute the

existing theoretical explanations of why value stocks earn higher returns relative to growth

stocks. Also, the filtering approach allows us to uncover innovations in expected returns and

expected dividend growth for value and growth portfolios, and compute their covariations

with innovations in market expected returns and market expected dividend growth. Doing

this will allow one to reexamine discount rate betas and cash flows betas in the line of

Campbell and Vuolteenaho (2004) and Campbell, Polk, and Vuolteenaho (2005), without

relying on specific exogenous proxies for expected returns and avoiding the critique of Chen

and Zhao (2006).

The applications of the filtering approach can go even further than a system of returns

and cash flows. In general, it can be extended to any system with unobservable expectations

and a present value relation type constraint. For example, one can filter out expected asset

returns and expected consumption growth given data on asset returns and consumption and

imposing a linearized budget constraint, as in Campbell (1993). Although predictive OLS



regressions give only mixed evidence for predictability of aggregate consumption growth, the

filtering approach can shed new light on this question. This is another interesting avenue

for future research.

1.8 Appendix A. Present value relation and generalized Camp-

bell - Shiller linearization

In this Appendix I provide details on the generalized Campbell-Shiller linearization of the

present value relation when expected returns and expected dividend growth are time vary-

ing. I call the considered linearization generalized because in contrast to its original version

I do not impose the no-bubble condition.

The starting point is the well-known present value relation which in logs is

rt+l = Adt+l + dprt + log(1 + exp(-dprt+l)), (1.13)

where dprt = log (Dtl/Pt). This is an identity which holds for every period, so for all

pE (0, 1)

dprt = Et pi-(rt+i - Adt+i) + Bt, (1.14)
i=1

where the last term Bt is

Bt = --Et pi- (pdprt+i + log(1 + exp(-dprt+i)) .
i=1

It is important that the expectation operator in (1.14) conditions on the time t information

available to market participants, but not to the econometrician. Plugging (1.2) into (1.14)

we get

oo (,r _o _ I.Ld o r

dprt = Et pi- (+i 1  d+i + Bt = Et E i Pi+i - td+i) Bt.
i=l i=O

The dynamics of expectations stated in Eq. (1.1) yield:

Et (p~t+i- p) = ,'I/It - F)



Consequently,

00 00oo

dprt = - el2P(it - Y) - p12 + Bt
i=O i=O

elf- el(1 - pI)-1( Bt,

1-p

where e 12 = (-1, 1, 0, ... , 0). Introducing the deviations from averages /~t = pt -f , we obtain

the following representation of the price-dividend ratio in terms of expectations:

dprt = -el 2 (1 - pD)- t - e12  + Bt. (1.15)
1-p

The linearization of the present value relation (1.13) originally derived in Campbell and

Shiller (1988) is

rt+1i -k + dprt - pdprt+l + Adt+l (1.16)

where p = 1/(1 + exp(dpr)), k = log(p) + dpr(1 - p) and the Taylor expansion is taken

around a specified point dpr. Note that at this stage only proximity of dprt+l to dpr is

used. Substitution of (1.15) into (1.16) yields

P-1 elzF t d drt+l -k+dprt-pdprt+1+Adt+l = -k+dprt+p (e1 2 (1 - p))-I +l 1- t+ - t +

(1p4)1  e 11 / B

= -k - e12- - p +) t +pI+B + Pp)) ( 12  t1 + Ct+l) + 1 - +1

d d 2 -- ± -.B +edld -+ --
+/t + E+l = -k - e12f - e12t + pe2(1 - )-1 t+l d + + Bt pBt+

= -k + pj - pe12(1 - p)-l1 t+l + l Bt - pBt+l.

As a result, in the linear approximation we get

Et+1 = pe12(1 - p'1)- 1 ±t+l Et+l +1 Bt - pBt+l - k. (1.17)

Using the definition of Bt and applying the linearization again we get

Bt - pBt+l - k = (Et+l - Et) Pi- 1 (pdprt+i + log(1 + exp(-dprt+i)).
i=2



As a result, unexpected returns can be presented in the following form

oo

t+1 = Qet+l + ed+l + (Et+1 - Et) pi-1 (pdprt+i + log(1 + exp(-dprt+i)),
i=2

where Q = pel2(1 - p )-l

1.9 Appendix B. Proof of Proposition 1

Let xt be a joint vector combining past state variables /t_ 1 with current shocks epr , ed,

and e d: Xt = (Ult-1, etr e d ~d)'. Note, that no one component of xt is observable at time

t. With this notation, the state space system can be put into canonical form:

xt+l = Fxt + et+l,

where

F=

The observables

I

0

0

0

0 0 0

0 0 0

0 0 0

0 0 0

- (rt, Adt) are

M= ( 00. 0 1 Q21
0 1 0 ... O0 0 1

and Q = pel2(1 - pI)-'. Expected returns and expected dividend growth are the first two

U U

(pr)

d~
e C=et

Yt = Mxt,

,, .. \



components of At, which can be obtained from xt as

I

0 0

Thus, the problem of constructing Ar

Applying the Kalman filter34 we get a

and ~t reduces to obtaining 't = E[xtly,: 7 < t].

recursive equation for ht:

it = (I - KM)F:ti + Kyt,

where the Kalman gain matrix K along with the error covariance matrix U = E[(xt -

i~t)(xt - ,it)'ly, : -7 t] are determined from the set of matrix equations

U = (I - KM)(FUF' + rEr'),

K = (FUF' + FEF')M'[M(FUF' + FEF')M']-,

where I is the identity matrix.

1.10 Appendix C. Proof of Proposition 2

To examine the identification of the model (1.6) - (1.8) with AR(1) processes I look for

combinations of parameters that can be uniquely determined given all population moments

of observables. First, the parameters 0r and Od are identifiable. Indeed,

cov(rt - crrt-1, rt-2) = 0, cov(Adt - OdAdt-1, Adt- 2 ) = 0.

Consequently,
cov(rt, rt-2)

r cov(r, rt-1)'
cov(Adt, Adt-2)
cov(Adt, Adt-1)

3 4 Jazwinski (1970) provides a textbook discussion of linear filtering theory.

Xt,At -

f• -



Next, notice that the observables yt = (rt, Adt) follow the VARMA(1,1) process:

1 -qrL 0 rt r (1 - L)1 - qrL d

0 1 - Od L  Adt 0 L 1 - L d

(1.18)

where L is a lag operator. Indeed, applying the operators (1 - OrL) and (1 - qaL) to (1.8)

and (1.7) and using that (1 - rL)i/ = ,"r and (1 - OdL) d = e•d we get (1.18).
Making use of this representation, I show that the covariance matrix E of shocks et, I E d

and Et is identifiable up to one parameter. Note that it is not the case for a general VARMA

model with a two-dimensional vector of observed variables and a three-dimensional vector

of shocks. It is convenient to introduce the following modification of observables:

Here I explicitly use that Or and Od are identifiable. Hence,

-pr 1 (1 - OrL)1-pO0 1-p L
0 L

1- ¢rL
1- OdL

eret

IldCt

etd

= (A + BL)

where
A= 1-P

0 0 1

Provided the observations Yt the only no

ones:
( var(, )
cov(Ft, Adt)

1 Por, B 1-Pr 1-Pld

0 1 --d

n-trivial moments I can construct are the

cov(Ft,Adt) = AEA' + BEB',
var(Adt)

cov(Ft, Ft-1) cov (Ft, &dt-1)
covcov(it,t) cov(tt, Adt i) = BEA'. (1.20)

S cov(Ft-1, Adt) cov(Adt, Adt-_1))
In total, var(Wt) and cov(Wt, t-1) contain 7 different statistics, so (1.19) and (1.20) give 7

linear equations for 6 unknowns a2, r2, 2>, Up'rjd, aUrd, oudd. The matrix of this system

pr

~isdEtjzdEt

following

(1.19)

Y t 1 - 0rL

Adt 0
0 )(rt

1 - Od L Adt



2+(1-P P (1-p+)
(1-po')" (I-PO

1 + 2 _ 2p (p+¢,)+r (1-P O)(1-pPd)

1 1+

0 P'r
-l+p d

(1
P P2 r

( 1--P d)
2

1 + Or Od
1

P (P r 
+ 1

)
(1-P¢r)(1-P d)

-Od

P
l-p d

P+±d P-r,+
2 

OdP Or
-1+p r l-p d

P 1
+
p 2p- 1

-- l+p~
r -l+p4

d

0
1

1-p r

1-P r

1

1-p~d
2pod-1

-i+PtId

A tedious calculation shows that the rank of this matrix is 5. It means that the linear

system is degenerate and only 5 equations are linearly independent. Therefore, the matrix

M has a non-trivial kernel z: Mz = 0. This kernel is

_ = (1- 2 )(1-P_ )2
It corresponds to the matrix

It corresponds to the matrix

(1-p~d )
2

(1--Pr)(1--d r)
1-pId

1-p'd

1-p d

(1-POr)(1-p d r)
1--P'd

O-+pr (Ip r)
-- +pqd Od

1-p g

'd
1I

such that AQA' + BQB = 0, BQA' = 0. It means that this matrix being appropriately

rescaled can be added to E without any changes in the observable statistics. This completes

the proof.
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Chapter 2

Expected Returns on Value,

Growth, and HML

2.1 Introduction

The filtering technique developed in the first chapter is very general and applicable not

only to aggregate expected returns, but also to returns on many other portfolios and even

trading strategies. In this chapter, I study time variation of the value premium and explore

predictability of returns and dividends on value and growth portfolios.

Understanding time variation of the value premium is very important from theoretical

point of view. The origin of the value premium has attracted much attention in the asset

pricing literature, and empirical analysis of value premium dynamics might shed new light

on this problem. Indeed, alternative explanations of the value premium differ in their

implications for dynamical properties of expected returns on value and growth portfolios.

Hence, the examination of time variation of the value premium serves as an additional

empirical test for those theories.

Rational risk-based theories predict countercyclical behavior of the value premium1. For

example, Zhang (2005) argues that this pattern naturally results from costly disinvestment

coupled with the countercyclical price of risk. In bad times, it is more difficult for value

firms to scale down their capital than for growth firms. As a result, value firms are adversely

affected to a greater extent, and this makes them more risky in bad times. To compensate

'See, for example, Gomes, Kogan, and Zhang (2003), Zhang (2005), Kiku (2006), and others.



investors for this risk, expected returns go up widening the value premium. In contrast,

the theories explaining value premium by various irrationalities in the behavior of a typical

investor do not predict any cyclicality in the value premium2

From the practitioners' point of view, understanding predictability of the value premium

might help to improve the performance of the strategy known as style timing. An investor

who follows such a strategy shifts his wealth between two investment styles (value and

growth) on the basis of predictions of relative style performance. To implement this strategy

it is crucial to forecast the difference in returns on value and growth portfolios, so much

effort has been made by practitioners to identify the variables possessing such forecasting

power. In particular, such variables as innovations in industrial production (Sorensen and

Lazzara, 1995), the forecast of the spread in the price-earnings ratios for value and growth

portfolios, earnings revisions, and style specific risk spread (Fan, 1995) were argued to have

some ability to predict relative performance of value and growth. Kao and Shumaker (1999)

also mention several macroeconomic factors such as yield-curve spread (term premium), real

bond yield, and earnings yield gap (the difference between the earnings-to-price ratio of the

S&P 500 Index and the long-term bond yield) as good proxies for future value premium.

One of the most reliable predictors of the value premium is the value spread, which is the

difference between book-to-market ratios of growth and value portfolios (Asness, Friedman,

Krail, and Liew, 2000; Cohen, Polk, and Vuolteenaho, 2003) 3. In particular, Cohen, Polk,

and Vuolteenaho (2003) find that the value spread is a significant predictor of the return

on the HML portfolio constructed by Fama and French (1993).

Another interesting question is predictability of style indexes per se. The classification

of mutual fund strategies in the value-growth dimension is widely used in industry where

style indexes serve as benchmarks for style investing. As a result, returns on mutual funds

have a factor structure with the style benchmark as a dominant factor. Predictability of the

benchmark is important to investors who follow portfolio strategies that invest in mutual

funds (Avramov and Wermers, 2006). In particular, if benchmark returns are predictable,

the optimal portfolio is very different from what investors would choose in the absence of

predictability, and tilts toward actively managed funds.

2For arguments in favor of a behavioral explanation of the value premium see Lakonishok, Shleifer, and
Vishny (1994), La Porta, Lakonishok, Shleifer, and Vishny (1997), Rozeff and Zaman (1998), and others.

3Asness, Krail, and Liew (2003) argue that this result can be extended to value and growth portfolios
constructed from country equity indexes.



Below, I apply the filtering technique developed in the first chapter of this dissertation

to analysis of expected returns on value and growth portfolios as well as the value premium.

The obtained results can be summarized as follows. First, the filtering approach allows me

to construct new proxies for expected dividends and expected returns for value and growth

portfolios, making use only of the history of dividends and returns. I show that filtered

expected returns indeed have significant forecasting power for future returns on growth

portfolios, but their ability to predict returns on the value portfolio is rather poor.4 The

corresponding R 2 statistic for the growth portfolio is 5%, whereas it is only 1% for value

stocks. Moreover, dividends on the growth portfolio also appear to be highly predictable

and the constructed forecaster manages to explain 27% of its time variation.

Next, I modify the filtering methodology to make it applicable to the value premium. I

assume that the difference between expected log returns on value and growth portfolios as

well as the difference between their expected log dividend growths follow AR(1) processes.

An analog of the relaxed no-bubble condition is now imposed on the difference in the

dividend-price ratios of value and growth portfolios. This difference is much more stable

than the aggregate dividend-price ratio examined in the first chapter. Hence, it would not

be unreasonable to assume that this difference is stationary and the no-bubble condition

in its canonical form is satisfied. If this stronger assumption is valid, it is more efficient

to use the history of returns and the dividend-price ratio differences instead of the history

of returns and the differences in dividend growths. For comparison, I examine two types

of the filtered value premium which differ in the data they use. The predictor based on

dividends and returns is denoted as VP , whereas the predictor constructed from returns

and the dividend-price ratios is denoted as VP
-1 -_2

The constructed forecasters VP and VP indeed predict the value premium. For
-- 1

the sample period 1950 - 2005 VP explains 2% of time variation of the value premium.
-2
VP is more powerful and explains around 7%. This difference in the predictive ability

- 2
illustrates the importance of economic assumptions behind each forecaster: VP appears

to be much more powerful because it incorporates a stronger assumption on the behavior

of the difference in the dividend-price ratios.

Given new predictors for the value premium, I get evidence that the value premium is

4Using a completely different framework, Guo, Su, and Yang (2006) also find that growth stock portfolios
are generally more predictable than value stock portfolios or stock market indexes.



countercyclical. To establish this fact, I run contemporaneous regressions of the filtered

value premium on several countercyclical variables such as filtered expected aggregate stock

returns, the default premium, the book-to-market ratio, and the NBER recession dummy.
-1 -_--2

I show that for both VP and VP the slope coefficients in almost all cases are positive

and in many cases significant.

One of the most successful variables predicting the value premium is the value spread

(Cohen, Polk, and Vuolteenaho, 2003). It contains additional information relative to the

history of prices and dividends and its incorporation into the filtering framework can further

improve the quality of the forecast. I demonstrate how to exploit the flexibility of the

filtering approach and add this variable as an additional observable. Simple OLS regression

shows that the value spread by its own can explain about 4% of in-sample time variation

of the value premium. However, the expected value premium filtered from the data on

returns, the dividend-price ratios, and the value spread is a much better predictor giving

the R2-statistic of 11%.

Time variation of the value premium has attracted much attention in the empirical

literature. Petkova and Zhang (2005) argue that the value premium varies countercycli-

cally, since value betas have positive correlation with the expected market risk premium,

but growth betas have negative correlations. These results were extended to international

markets by Fujimoto and Watanabe (2005). Also, countercyclical variation of the value

premium was confirmed by Chen, Petkova, and Zhang (2006) who estimated conditional

expected return spread between value and growth portfolios as a sum of expected dividend-

price ratio and expected long-term growth rate of dividends. Another evidence that the

spread in expected returns on value and growth portfolios displays countercyclical varia-

tions is provided by Kiku (2006). She defines "bad" times as periods with high consumption

uncertainty and constructs the value premium by projecting the realized spread in returns

on value and growth portfolios on lagged price-dividend ratios and dividend growth rates

of these portfolios. Santos and Veronesi (2006) argue that the value premium is counter-

cyclical by comparing average excess return of the extreme value and growth portfolios in

"good" and "bad" states, which are defined through the price-to-book ratio of the market

portfolio. When the market-to-book ratio is low the economy is in the "bad" state with

high average market excess returns. In these periods the realized value premium is high,

and this serves as evidence of counter-cyclical behavior of the value premium.



The rest of the chapter is organized as follows. Section 2.2 describes the filtering ap-

proach to the analysis of time variation of expected returns focusing on specificities related

to the HML portfolio. Section 2.3 collects the main empirical results on predictability of

value and growth portfolios and time variation of the value premium. Section 2.4 describes

an extension of the benchmark model, which augments the data on dividends and returns

with the value spread. Section 2.5 concludes.

2.2 Filtering Approach

2.2.1 Benchmark model

This section briefly describes the filtering approach to analysis of time variation in expected

dividends and expected returns. Assume that an econometrician is given time series of

realized cash flows (dividends) and returns generated by some portfolio or trading strategy.

The only restriction on this portfolio or trading strategy is that the cash flows are positive.

The problem of the econometrician is to utilize the available data and to construct the most

efficient forecasts of future cash flow growth and returns imposing realistic restrictions on

the joint behavior of prices and cash flows. The basic idea is to model logs of (demeaned)

expected returns /_J and (demeaned) expected dividend growth pt as latent state variables

which are known to market participants, but unobservable to the econometrician. In the

benchmark model I assume that 1p and I/d follow AR(1) processes:

r+1 0r + ti dt +1= +d id 1. (2.1)

The econometrician observes realized returns and dividend growth, which are noisy proxies

for past market expectations:

rt+i = A4 + , Ad+ + (2.2)

The innovations et+,, e~+1, et, Ed+ are assumed to be normally distributed and indepen-

dent across time. However, there are no restrictions on their contemporaneous correlation

structure. It is reasonable to assume that the dividend-price ratio cannot blow up quickly,

so a relaxed no-bubble condition holds. In the linearized form this assumption produces a



linear restriction on the innovations ETr , E Dr which has the following form5:

e+-1 = e+1 + - e t + + e d+ "  (2.3)
1- P1- p~d

Here p is a linearization parameter. The system (2.1) - (2.3) can be represented as a

canonical state space system with unobservable state variables (tr1 , Pd-1, Etr d, e) and

observables (rt, Adt). Hence, the best linear estimate of unobservable expectations 4r and

tid is provided by the Kalman filter. The details of the Kalman filter implementation for

this particular state space system can be found in Chapter 1.

The condition (2.3) is valid even if the dividend-price ratio dprt is mildly non-stationary.

However, in some cases it is reasonable to impose a more restrictive condition and assume

that this ratio is stationary. In this case, it is efficient to use the (demeaned) log dividend-

price ratio as an additional observable, which in the linear apporximation is related to

unobservable expectations as

r d

dprt - t
1 - Pr 1 - Pd"

Since given the dividend-price ratio and returns it is possible to reconstruct dividend growth,

one of these series is redundunt. For example, it is enough to use (rt, dprt) as observables.

The Kalman filter assumes that the model parameters are known. However, in practice

they must be estimated and the question is whether they all can be estimated unambigu-

ously. As demonstrated in Chapter 1, the persistence parameters or and Od are identifiable,

but the covariance matrix of innovations Er E dl , and ed can be reconstructed up to

one parameter. Consequently, many interesting statistics of the unobservable processes iZ+1
and tP+l are also unidentifiable and we can only find intervals where these parameters lie.

In such cases, I will report only maximum and minimum values reached by the parameter

on the identified set.

2.2.2 Value premium

The described procedure can be directly applied to the growth and value portfolios. Further-

more, with some modifications, this approach is applicable to analysis of the value premium,

which is by definition the difference between expected returns on growth and value portfo-

5See details in Chapter 1.



lios (Fama and French, 1993). Although it is possible to filter out these expected returns

separately and then compute the filtered value premium as a difference between them, this

approach is not efficient. Indeed, value and growth stocks comprise a large part of the whole

stock market, and returns on these portfolios to a large extent are determined by aggregate

market returns. Hence, expected returns on the value and growth portfolios quite closely

follow expected returns on the market portfolio. Taking the difference we cancel out the

dominant component and the residual variation is largely represented by noise. Moreover,

this approach would assume that the valuation ratios of the value and growth portfolios

satisfy the relaxed no-bubble condition only individually. This assumption is too weak for

uncovering time variation in the value premium.

Another way to uncover the value premium would be the application of the filtering

approach to HML, since effectively the value premium is expected return on this portfolio.

However, the HML portfolio cannot be described by the state space system (2.1) and (2.2),

since HML might have negative dividend payments making log dividend growth ill-defined.

To overcome this problem and make the procedure more efficient, I modify the filtering

approach in several ways. First, slightly abusing notation I denote the difference between

expected log returns on the value and growth portfolios as p,. I assume that this difference

follows an AR(1) process. Similarly, /td is the difference in expected log dividend growth

between growth and value portfolios. Since both portfolios pay positive dividends, this

difference is well defined. Correspondingly, rt+l is now realized return on the HML port-

folio, and Adt+l is the difference in realized realized dividend growth on value and growth

portfolios (not dividend growth on the HML portfolio!)

Next, to filter the value premium more efficiently, I impose a constraint identical to

(2.3), where now er is unexpected innovation in the value premium, epr is innovation in the

expected value premium, etd and et are innovations in expected and unexpected difference

of dividend growths. Although this assumption is an analog to the relaxed no-bubble

condition introduced in Chapter 1, it is different from the assumption that the valuation

ratio of each portfolio does not grow too fast. As can be shown, Eq. (2.3) is satisfied

in the linear approximation if the difference between dividend-price ratios of growth and

value portfolios is stationary and the common component of these ratios cannot grow up

too fast. This new assumption is quite reasonable and economically motivated. Indeed,

because of price comovements the dividend-price ratios of various portfolios also tend to



comove and Figure 2-1 supports this observation. As mentioned above, the assumption

that the dividend-price ratios of each portfolio individually satisfy the relaxed no-bubble

condition is relatively weak and does not impose sufficient restrictions on the innovations.

With the described modifications and changes in notation, the state space model for the

value premium is identical to the benchmark model. Hence, all identification results hold

and the Kalman filter for expected returns has exactly the same form. To save the space, I

do not reproduce these results again.

2.2.3 Adding other observables

The benchmark model assumes that only data on dividends and returns are available to

the econometrician. However, it is quite likely that investors as well as the econometrician

possess other information, which might be helpful for predicting future returns. In the

simplest case, this information is summarized by an additional variable qt.6 In general, qt

is related both to future returns and future dividend growth. With the new observable qt,

the state space model (2.1) and (2.2) takes the following form

1 + = Lrd+ +E 4, d +1 = qCq + E+1

7rt+1 r P tr + P E 1+1 = d+ + d, (2.4)
1- Pr t+  1- p tt+ l

qt+i = + a2 L+i + a3El + a4+ 1 5t+1 + +1

The way in which qt is added to the system (2.4) is quite general and agnostic why

qt captures future returns. Overall, there are two channels through which innovations to

expected returns enter into qt. First, a non-zero coefficient al means that qt is a proxy for the

level of expected returns and e1r affects qt+i through /Lj+1 . Second, a non-zero coefficient

a3 means that qt is a direct proxy for innovations in expected returns and is affected by Eq1

directly. It is an empirical question which channel works for each particular observable qt.

I do not exclude the possibility that qt+i also captures innovations in expected cash flows

and allow ld+ and E? 1 to enter qt+l in the same way as / 4+r and e•Tr.

To make the model sufficiently flexible, I assume that the error term L' 1 also follows

AR(1) process with the persistence coefficient Oa. This assumption allows to break the link

6In the empirical work, I use the value spread as an additional proxy for the value premium.



between autocorrelation of qt and autocorrelations of p/ and pd. However, to reduce the

number of parameters and make the model identifiable I assume that '4,q is uncorrelated

with other shocks. It means that all other shocks in the system affect qt+l only directly

and the strength of their effect is controlled by coefficients al,..., a5. The indirect channel

through Pt+l is switched off.

2.3 Main Empirical Results

2.3.1 Data

The main data set used in the analysis consists of dividends and returns on the value

and growth portfolios. These portfolios are constructed from the standard two-by-three

independent sort on size and book-to-market (Fama and French, 1993). 7 As in the case of

the market portfolio explored in the first chapter, I work only with annual data. The major

problem arising on shorter horizons is seasonality in the dividend growth, and there is no

unambiguous way to eliminate it. The value premium is conventionally defined as return

on the HML portfolio, which is the value portfolio minus the growth portfolio (Fama and

French, 1993). For robustness check, I also examine value and growth portfolios from the

five-by-five sort on size and book-to-market.

Although the data on value and growth portfolios are available from 1927, I choose

the year 1950 as the starting point of the sample. This choice is motivated by anomalous

behavior of value and growth stocks during Great Depression and WWII, which seem to be

quite different from the subsequent period. This is clear from Figure 2-1, which displays

the log dividend-price ratios for growth and value portfolios. During the period 1927-1949

the ratio is much more volatile than afterwards, especially for value stocks. In particular,

in the mid 1930's the dividend-price ratio for value stocks exhibits a trough, but by 1940

reverted back to its average historical level. This anomalous pattern is mostly explained

by huge volatility of dividend growth in the 1930's. The observed unusual swings strongly

suggest that the description of dividends and returns before and after 1950 by the same

dynamic system with the same coefficients might be unwarranted8 .

7This data is available on Kenneth R. French's website http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/dataJibrary.html.
8Indeed, a preliminary estimation shows that the simplest system (2.1) does a poor job matching statistical

moments of dividends and returns for the whole sample 1927-2005.
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Figure 2-1: Log dividend-price ratio of value and growth portfolios.
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Besides dividends and returns on growth and value stocks, this study exploits several

other variables such as default premium, aggregate book-to-market ratio, equity share in

total new and debt issues, which have been argued to predict aggregate stock returns or

exhibit pronounced countercyclical pattern. Default premium is defined as the yield spread

between Moody's Baa and Aaa corporate bonds with bond yields provided by Global

Financial Data. The equity share in total new and debt issues is suggested by Baker

and Wurgler (2000). The corresponding data can be found on Jeffrey Wurgler's website

http://pages.stern.nyu.edu/~jwurgler/.

2.3.2 Value and growth portfolios

Before examining the value premium, I study time variation in expected returns and ex-

pected dividend growth for value and growth portfolios. I follow the standard definition

of growth and value (Fama and French, 1993) based on six portfolios formed from sorts

of stocks on market value and the book-to-market ratio. Value stocks are those with top

30% values of the book-to-market ratio, and growth stocks are in the bottom 30%. In the

selected period from 1950 to 2005 both portfolios paid positive dividends, so it is possible

to apply the filtering procedure described in Section 2.2.1 directly. Now t/1 and pd are

expected returns and expected dividend growth on these portfolios.

Table 2.1 provides several estimated statistics of unobservable expected dividends and

expected returns on value and growth portfolios. As discussed in the previous section, not

all parameters of the model are point identifiable. For statistics that are not constant on the

identified set I report the minimum (row 1) and maximum (row 2) values. Table 2.1 indicates

that the obtained statistics are quite similar to their counterparts estimated for the market

portfolio in Chapter 1. Again, expected returns are quite volatile, highly persistent, and

correlated with expected dividend growth. Variance decomposition of unexpected returns

indicates that "news about future returns" gives larger contribution than "news about

future dividend growth". This similarity is not striking, since expected returns on growth

and value portfolios are to a large extent driven by expected returns on the market portfolio.



Panel A: Growth Stocks

) P( r 1) g 1t-1) p(•rI) ,(,r) p( •) ((,r, ) (,r ) -p(• ) R, R

0.055 0.07 0.45 0.207 -0.99 1.58 0.14 -0.78
0.95 0.53 0.05 0.27

0.056 0.10 0.47 0.207 -0.96 1.64 0.15 -0.74
Panel B: Value Stocks

,(/•,r) ,(,r) P(,r, /_,r p (1_11, I-1) d) 0-(-r) P(Er, -1) -.,r) ,• (7•7 d) 2 2

0.052 0.03 0.21 0.211 -0.78 0.85 0.42 -0.30
0.89 -0.45 0.01 0.05

0.053 0.11 0.26 0.211 -0.77 0.88 0.43 -0.28

Table 2.1: Statistics of expected returns and expected dividends for value stocks and growth stocks.

This table collects various statistics of expected returns and expected dividend growth for the value and growth portfolios. a(po) and
a(p d ) are standard deviations of expected returns and expected dividend growth, p(p', pt) is a the correlation between them. p(dp, p-1)
and p( t-, d 4 ) are autocorrelations. oa(e) is the standard deviation of unexpected stock return; p(E , •r ) is the correlation between
unexpected returns and the innovation in expected returns. 2 (rt 2 (), and -2p(r, ,d) represent Campbell (1991) decomposition of

unexpected stock returns into "news about future returns", "news about future dividend growth", and the correlation term. R2 and R2
are in-sample R 2 statistics for filtered expected returns and expected dividend growth. For non-identified statistics the top and bottom
numbers give the maximum and minimum values on the identified set.



An interesting result coming from Table 2.1 is that returns on growth portfolio exhibit

more predictability than returns on the value portfolio and this is consistent with the results

of Guo, Su, and Yang (2006). Although the volatility of expected returns on growth stocks is

only slightly higher than the volatility of value stocks, the constructed predictors can explain

5% of time variation in expected returns on growth stocks, whereas the the corresponding R 2

statistics for value stocks is only 1%. Interestingly, dividend growth is also more predictable

for the growth portfolio with the striking R 2 statistics of 27%. This observation admits the

following interpretation. In the case with more predictable dividends, the filtering approach

is more capable to disentangle expected dividends and expected returns, thus providing a

better forecast for future returns.

To further evaluate the predictability of returns on value and growth portfolios, I run

OLS regressions of realized returns on various forecasters. The results are displayed in Table

2.2. First, the filtered expected return is a significant forecaster for returns on growth stocks

delivering the R 2 statistics of 8%, which is the largest among other considered predictors.

Note that the regression-based R 2 statistics is larger than the R 2 statistics computed for the

filtered expected returns. This is very natural, since the OLS regression adjusts the slope

in front of the predictor producing better in-sample fit relative to the unscaled forecaster.

Second, the dividend-price ratio of the growth portfolio also possesses some forecasting

power: the corresponding slope coefficient is significant and the R 2 statistics is around

5%. Third, returns on the growth portfolio can be predicted by some of the variables that

predict market returns. Table 2.2 shows that filtered expected aggregate stock returns,

the aggregate dividend-price ratio dprt, and the aggregate book-to-market ratio BMt are

statistically significant forecasters with the R2 statistics around 5%.

The results are different for the value portfolio. Again, comparing the R 2 statistics we

can conclude that returns on the growth portfolio are more predictable than returns on

the value portfolio. Indeed, the filtered expected return has no forecasting power and the

adjusted R 2 statistics for it is even negative. Although the aggregate expected returns,

default premium, and the book-to-market ratio seem to have some forecasting power, the

R2-statistics are lower than provided by predictors for growth stocks.

The right hand side variables in regressions reported in Table 2.2 are quite persistent.

Thus, there might be concern that the slope coefficients are upward biased in a finite

sample and the distributions of t-statistics are non-standard making the reported results



(3ot Vau

S 3.22 0.65
(2.40) (1.57)

-aggr 1.05 0.87
(3.48) (3.56)

dpr 0.08 0.08
(2.71) (1.75)

dpra ggr 0.13 0.09
(2.60) (1.87)

DEF 6.60 9.93
(1.57) (2.50)

BM 0.14 0.14
(2.24) (2.27)

S -0.74 -0.41
(-1.70) (-0.97)

Adj. R2 0.08 0.06 0.05 0.05 0.00 0.01 0.07 -0.01 0.04 0.01 0.02 0.04 0.02 0.01
N 55 55 55 55 55 55 55 55 55 55 55 55 55 55

Table 2.2: OLS regression of realized returns on value and growth portfolios on various
predicting variables.

This table reports estimates from OLS regressions of realized returns on value and growth portfolios
on filtered expected returns on these portfolios and several other variables. The sample is from
1950 to 2005. A is filtered expected return on the corresponding portfolio; fa9ggr is filtered expected
return on the market portfolio; dpr is the log dividend-price ratio of the corresponding portfolio;
dpra9ggr is the log dividend-price ratio of the aggregate stock market; DEF is the default premium,
defined as the yield spread between Moody's Baa and Aaa corporate bonds; BM is the aggregate
book-to-market ratio; S is the equity share in total debt and equity issues. The t-statistics based on
the Newey-West standard errors are reported in parentheses.
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unreliable (Mankiw and Shapiro, 1986; Stambaugh, 1999). To alleviate this concern, I use

the testing procedure developed by Campbell and Yogo (2006), which assesses the severity

of the problem. I find, that in almost all regressions the correlation between innovations to

returns and the predictor variable is sufficiently small and the inference based on the t-test

with conventional quantiles is reliable.

To check the robustness of obtained results, I examine an alternative definition of the

value and growth portfolios. Instead of a two-by-three sort on size and book-to-market, I

take five-by-five sort and pick the portfolios with the highest and lowest values of the book-

to-market ratio. Overall, the reported conclusions are not sensitive to this modification and

even quantitatively the results are very similar to the benchmark case. To save the space,

I do not report them.

2.3.3 Expected value premium

In this section I study the time series properties of the value premium with the special focus

on its relation to business cycles. As described in Section 2.2, I estimate the benchmark

model (2.1), (2.2) for differences in expected log returns on value and growth portfolios

(value premium) and differences in expected log dividend growth. I examine two versions

of the filtered value premium, which I denote as VP and VP2. The first one is constructed

from the observables (r' - r, Ad - Ad), where indexes v and g stand for value and growth.

The second variant of the filtered value premium VP2 is built using (rr - rt, dpr' - dprg).

As pointed out in Section 2.2, if the difference of the log dividend-price ratios dprv - dprf

is stationary, the estimate VP is more efficient.

Table 2.3 reports several estimated statistics pertaining to the value premium. The

obtained estimates indicate that the filtered value premium is very persistent with the

autocorrelation coefficient about 0.93, which is comparable with the autocorrelations of

expected returns on value and growth portfolios. However, the value premium is less volatile

with the standard deviation around 4%. This is quite intuitive, since expected returns on

value and growth portfolios to some degree are driven by expected returns on the market

portfolio. In the difference this dominant component cancels out making expected value

premium less volatile. Table 2.3 also displays the R2 statistic for the filtered value premium.

Although it is much more difficult to predict the value premium relative to returns on
value1 and 2 have some ability to predict future value

value and growth portfolios, both VP and VP have some ability to predict future value
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c(VPj) p(VPt, VPt_-)
Panel A: Value Premium VP

0.039
0.039 0.92 0.0190.039

Panel B: Value Premium VP

0.042
0.044 0.93 0.0670.044

Table 2.3: Statistics of the filtered value premium.

This table displays statistics for the unobservable value premium. a(VPt) is the standard deviation
of the value premium, p(VPt, VPt-1) is its autocorrelation. R2 is the in-sample R2 statistics for the
filtered value premium.

I II III IV V
VS 0.14 0.14 0.12

(2.82) (4.23) (4.59)

VP 1.41 1.56
(2.83) (2.39)

VP 1.05 0.97
(3.72) (3.17)

Adj. R2  0.04 0.02 0.05 0.06 0.08
N 55 55 55 55 55

Table 2.4: OLS regression of the realized value premium on the filtered value premium and
the value spread.

This table reports coefficient estimates from OLS regression of the realized value premium on the
-1 -2

filtered value premiums VP , VP , and the value spread VS. The sample is from 1950 to 2005. The
value premium is defined as expected returns on HML portfolio. The value spread VS is defined
as the difference in the logs of the book-to-market ratios for value and growth portfolios. The
t-statistics based on the Newey-West standard errors are reported in parentheses.

premium. The first predictor has the R 2 statistics 2% whereas the second predictor manages

to explain almost 7% of future time variation of the value premium. It is not surprising,

since VP uses more restrictive assumption on the dividend-price ratios of the value and

growth portfolios and, as a result, is more efficient.

To get more evidence about the forecasting power of the constructed variable, I run

predictive regression of realized value premium on the obtained predictors. The results are

presented in Table 2.4. As a benchmark, I also consider the value spread VS, which also

has some forecasting power for the value premium (Cohen, Polk, and Vuolteenaho, 2003). 9

The juxtaposition of the value spread and the filtered value premium allows me to show

9See more details on the value spread in Section 2.4.
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how information contained in one predictor complements the information from the other.

The first regression in Table 2.4 shows that in my sample VS indeed appears to be

a statistically significant predictor for the value premium with the R 2 statistics of 4%.

In general, this confirms the results of Cohen, Polk, and Vuolteenaho (2003), but the R 2

statistics is a bit lower than they find for the sample period 1938-1997.
-1 -2

Predictive OLS regressions of the realized value premium on VP and VP confirm that

these variables can forecast the value premium. The slope coefficients in both of them are

positive and statistically significant. The adjusted R 2s are 2% and 5%, correspondingly,

being very similar to those reported in Table 2.3. Notably, the coefficient in front of VP is

very close to 1 indicating that there is no need to rescale this variable to get better in-sample

fit.

It is remarkable that the information contained in the value spread and the filtered value

premium is different and these variables capture different components of the value premium.

The correlation between VS and VP is only -0.07, whereas the correlation between VS

and VP is 0.08 implying that these forecasters are almost orthogonal to each other. As a

result, the combination of these predictors can provide a better forecast than each predictor

alone. This is confirmed by Table 2.4. In the joint OLS regression both slope coefficients

are positive and significant and the adjusted R 2 statistics are higher than in the individual

regressions. The novelty of information brought into the system by the value spread will be

further exploited in Section 2.4.

The most interesting question is the cyclical behavior of value premium. Rational theo-

ries providing risk-based explanation for value premium predict counter-cyclical variation of

expected returns on the HML portfolio (e.g. Zhang, 2005; Kiku, 2006; Santos and Veronesi,

2006). To examine the cyclical behavior of the value premium, I run contemporaneous

regressions of filtered expected HML returns on several business cycle variables. Since it is

widely recognized that expected returns are countercyclical, I include as regressors proxies

for aggregate expected returns. 10 One of such variables is filtered expected return on

the market portfolio a gg99r, constructed in Chapter 1. Also, I examine several other vari-

ables that have been argued to predict aggregate stock returns. In particular, I take the

default premium DEFt defined as the yield spread between Moody's Baa and Aaa corpo-

10Petkova and Zhang (2005) emphasize importance of using expected returns as opposed to realized returns
for characterization of economic conditions.
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-- 1 --"2
VP VP

I II II IV I II III IV
Aaggr  0.22 0.80

(1.05) (1.87)
DEF 1.75 3.26

(5.79) (2.64)
BM 0.02 -0.02

(3.21) (-0.87)
NBER 0.01 0.005

(2.99) (0.87)
Adj. R2  0.04 0.24 0.06 0.03 0.17 0.23 0.01 -0.01

N 56 56 56 56 56 56 56 56

Table 2.5: Regression of the filtered value premium on business cycle variables.
-1 -2

This table reports coefficient estimates from OLS regression of filtered value premium VP and VP
on expected market returns and several business cycle variables. The sample covers the period from
1950 to 2005. The value premium is defined as expected returns on the HML portfolio. Ag99r is
filtered expected aggregate stock returns; DEF is the default premium, defined as the yield spread
between Moody's Baa and Aaa corporate bonds; NBER is the NBER recession is dummy. BM is
the aggregate book-to-market ratio. The t-statistics based on the Newey-West standard errors are
reported in parentheses.

rate bonds (Fama and French, 1989) and the aggregate book-to-market ratio BMt (Kothari

and Shanken, 1997; Pontiff and Schall, 1997). All these variables exhibit a counter-cyclical

variation. Finally, I add the NBER recession dummy which equals to 1 if December the

particular year belongs to the NBER recession period.

The regression results are reported in Table 2.5. Although not all slope coefficients are
------2

significant, most of them make a good sense. Indeed, excepting the regression of VP on
-1 -2

BM, all coefficients are positive indicating positive correlation between VP and VP on

one hand and the selected countercyclical variables on the other. Moreover, many of these

coefficients are statistically significant. The strongest relation is observed between the value

premium and the default premium. In both regressions with DEF on the right hand side

the slopes the t-statistics are far above 2 and the R 2s demonstrate that the default premium

and the value premium have almost 25% of common variation.

To visualize the commonality in the value premium and the selected countercyclical

variables I plot them on the same graph. The result is displayed on Figure 2-2. The solid line

and the dashed line represent the filtered value premiums VP and VP , correspondingly.

It is worth to note, that although VP and VP- are built from different data, they appear

to be highly correlated and track each other. 1 ' Also, from the graph we observe that both

"The correlation between them is 0.76.
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Figure 2-2: The filtered value premium and business cycles.
-1 -2

This figure plots the filtered value premium VP and VP along with several business cycle
variables. Fag9r is filtered expected aggregate stock returns; DEF is the default premium.
All variables are standardized to unit variance. The shaded areas indicate NBER recession
dates.
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estimates of the expected value premium jump up during the NBER recession periods,

indicated by shaded bars. This is even true for the short recession in 2000, even though this

year does not formally qualify for my definition of a recession year (the recession was over

by December). Exactly the same behavior is demonstrated by the default premium, which

is represented by the dash-dot line. Moreover, even beyond the recession period we observe

some comovement between DEF and the filtered value premiums. The countercyclical
- 1 --- 2

pattern and comovement with VP and VP are less obvious for filtered expected aggregate

stock returns 'aggr. Although, as established in Chapter 1, faggr evolves countercyclically,

it is a noisy proxy for business cycles. Hence, its comovement with the expected value

premium might not be pronounced.

2.4 Value Spread

Forecasting the value premium is a daunting task, which is much more difficult than fore-

casting aggregate stock returns. Although there is a dozen of variables which have been

argued to track aggregate expected returns, the existing literature suggests only few ex-

ogenous variables predicting the value premium. One of the most successful of them is

the value spread (Asness, Friedman, Krail, and Liew, 2000; Cohen, Polk, and Vuolteenaho,

2003) defined as the difference between book-to-market ratios of the low- and high-B/M

portfolios.

As demonstrated in Chapter 1, the filtering approach is quite flexible and allows to add

other available proxies for expected returns as additional observables. In this section, I

estimate the augmented system (2.4) with the value spread as an additional predictor. I

show that the constructed predictor optimally incorporates all available information and

outperformes the value spread and the filtered value premium taken individually.

The value spread used in most of this section is constructed in the following way. All

CRSP stocks are sorted into 3 groups on the basis of their book-to-market ratio (with 30%

of stocks in the portfolio with low book-to-market ratio, 40% in the middle portfolio, and

30% in the portfolio with high ratio). For the high- and low-B/M portfolios equal-weighted

averages of the book-to-market ratios are computed and the value spread VSt is defined as

the difference between logs of these averages 12

12The portfolios that I use are constructed according to Fama and French (1993). For each year t, they
are formed at the end of June of year t. B/M for year t is the book equity for the fiscal year t - 1 divided
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I II III IV V
VS 0.14 -0.12 -0.01

(2.82) (-1.93) (-0.48)
VP 1.04 1.72

(4.08) (4.80)
VP2 1.69 1.74

(7.09) (6.22)
Adj. R2 0.04 0.08 0.17 0.08 0.15

N 55 55 55 55 55

Table 2.6: OLS regression of the realized value premium on the filtered value premium from
the augmented system (2.4) and the value spread.

This table reports coefficient estimates from OLS regression of the realized value premium on the
f dm ql --- q2

filtered value premiums VP VP , and the value spread VS. The sample is from 1950 to 2005.
The value premium is defined as expected returns on HML portfolio. The value spread VS is
defined as the difference in the logs of the book-to-market ratios for value and growth portfolios.
The t-statistics based on the Newey-West standard errors are reported in parentheses.

As in the previous section, I consider two types of the filtered value premium, which
- 1 -- q2

I denote as VP and VP . The first one is constructed from the history of realized

differences in log returns r' - rg, differences in log dividend growth Adv - Adf, and the

value spread VSt. The second one uses the assumption that the difference in the log

dividend-price ratios dpr' - dpr' is stationary and it also contains some information about

future value premium. Hence, VP2 exploits r - rf , dpr -- dpr , and VSt.
To evaluate the forecasting ability of obtained predictors relative to the value spread, I

_Tq1 -q2run OLS regressions of the realized value premium on VS and the forecasters VP , VP

The results are displayed in Table 2.6.
-ql "q2

Regressions II and III confirm that VP and VP are good forecasters for future value

premium. The slope coefficients are positive and highly statistically significant. The R 2

statistics for VPql is 8%, which is much higher than the R 2 statistics for VS (4%) and

VP- (2%). It is even higher than in the multivariate OLS regression on VS and VP (6%).

Exactly the same pattern is observed for VP , which alone manages to explain 17% of

variation in the value premium.
-ql _-.q2

Regressions IV and V demonstrate, that VP and VP absorb the information con-

tained in the value spread. When the value premium is regressed on both the filtered value

premium and the value spread, the slope coefficient in front of VS is insignificant. Cor-

respondingly, the adjusted R 2 statistics does not increase and even go down in regression

by market equity for December of year t - 1. This methodology slightly differs from the methodology of
Cohen, Polk, and Vuolteenaho (2003) who use the market equity value recorded in May of year t.
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To ensure that my results are not specific to the particular definition of the value spread,

I also examine alternative ways to construct it. In particular, I also consider the value spread

based on sorting stocks into 5 equal groups and taking the difference between the log book-

to-market ratios of the low- and high-BM portfolios. The obtained results are qualitatively

very similar and I do not report them.

2.5 Concluding Remarks

In this chapter I apply the filtering methodology developed in Chapter 1 to analysis of

time variation of value premium. Making use of the history of the value premium and the

differences in the log dividend-price ratios of the value and growth portfolios, I construct a

new predictor which can forecast 5% of time variation in the future value premium. This

predictor evolves countercyclically, providing evidence in favor of rational explanations of

the value premium. Augmented with the value spread, the state space system produces the

forecasting variable that explains over 17% of the value premium variance.

In my analysis, I mostly focus on time series properties of the value premium. However,

the filtering approach allows to reconstruct not only unobservable expectations, but also

to disentangle the contributions of "news about future returns" and "news about future

cash flows". Hence, it might serve as an alternative to the VAR methodology, developed by

Campbell and Shiller (1988) and Campbell (1991). Given innovations to expected returns

and expected dividend growth on the book-to-market sorted portfolios, it would be interest-

ing to compare their cash flow and discount rate betas and check whether the value premium

can be explained by higher cash flow betas of value stocks (Campbell and Vuolteenaho,

2004).
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Chapter 3

Forecasting the Forecasts of

Others: Implications for Asset

Pricing

3.1 Introduction

This chapter studies the properties of linear rational expectation equilibria with imperfectly

informed agents. Since the 1970s the concept of rational expectation equilibrium (REE)

has become central to both macroeconomics and finance, where agents' expectations are

of paramount importance. In financial markets information is distributed unevenly across

different agents. As a result, prices reflect expectations of various market participants

and are, therefore, themselves essential sources of information. While making investment

decisions, an agent, then, needs to worry not only about her own expectation, but also

about expectations of other agents, or, in Townsend's (1983a) words, agents forecast the

forecasts of others. Iterating this logic forward, prices must depend on the whole hierarchy

of investors' beliefs. Many economists have seen this as an important feature of financial

markets and a possible source of business cycle fluctuations. However, the formal analysis

of dynamic models with heterogeneous information has proven to be very difficult. The

reason is that in most cases the successive forecasts of the forecasts of others differ from one

another, which leads to an infinite number of expectations to be accounted for. So unless

some recursive representation is available, one needs an infinite number of state variables
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to describe all of them. As a result, the model becomes not only analytically, but also

numerically, involved.

A lot of effort has been made to identify some special cases where this hierarchy can

be summarized by a few cleverly chosen state variables, and nearly all existing models

study exactly these cases. Previous research found three assumptions that help to preserve

tractability. The first requires agents to be hierarchically informed, which means that agents

can be ranked according to the quality of their information. A special example is when there

are two classes of agents, informed and uninformed. In this case, the informed know the

forecasting error of the uninformed and therefore do not need to forecast it, so higher

order expectations collapse. The second assumption calls for fundamentals to be constant

over time1 . Finally, the third one demands the number of endogenous variables (prices)

that agents can condition their forecasts upon to be greater or equal than the number of

variables that agents seek to forecast2 . Clearly, the above assumptions are quite restrictive

and the insights obtained under them may not survive in a more general informational

environment.

There is a continuing quest for other cases that admit tractable analysis. This is a

challenging problem, since even when a model does have a finite dimensional state space,

often it is very difficult to identify the state variables in which equilibrium dynamics takes

a tractable form. One of the approaches is suggested by Marcet and Sargent (1989) and

Sargent (1991). The key idea of these papers is to model agents' beliefs as an ARMA

process and compute the rational expectations equilibrium as a fixed point of a map from

the perceived law of motion to the real law of motion. As an example, the authors calculate

the equilibrium in Townsend's (1983a) model.

While the complete characterization of tractable models is undoubtedly a daunting task,

in this paper we provide a boundary example. In the example, we show that if (i) each agent

lacks some information that is known to other agents, (ii) fundamentals evolve stochastically

over time, and (iii) dimensionality of unknown shocks exceeds that of conditioning variables,

then the infinite regress problem cannot be avoided and an infinite number of state variables

is required to describe the price dynamics. The first condition guarantees that information

held by other agents is relevant to each agent's payoff and, as a result, her beliefs about

1See, for example, He and Wang (1995), Allen, Morris, and Shin (2004).
2See analysis of Townsend (1983a) model in Sargent (1991), Kasa (2000), Pearlman and Sargent (2004).
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other agents' beliefs affect her demand for the risky asset. We call this information setup

differential and contrast it with the hierarchical setup, in which one agent is better informed

than the other. The second condition forces agents to form new sets of higher order beliefs

every period. Since no agent ever becomes fully informed, they all need to incorporate the

entire history of prices into their predictions3 . The third condition makes it impossible

for agents to reconstruct the unknown shocks (or their observational equivalents) from

observable signals4

The proof goes as follows. First, we show that if the price dynamics can be described with

the finite number of variables then it must be an ARMA (auto-regressive, moving average)

process of a finite order. This provides a justification for Sargent's (1991) methodology and

implies that the agents' demand should be a finite order ARMA process as well. Using

a one-to-one correspondence between rational functions in frequency domain and ARMA

processes, we show that a solution to a closed system of equations obtained from the market

clearing conditions cannot be represented by a rational function. So by contradiction, price

dynamics must invoke an infinite number of state variables.

Having established this result, which leaves little hope for an analytical solution, we

proceed with the numerical analysis. By comparing the equilibria supported by the same

fundamentals but with different distributions of information among investors, we are able

to isolate the effect of information dispersion on expectations. We find that mistakes that

agents make in forming their expectations are much larger under differential information

than under hierarchical information. Therefore, differential information gives rise to a

larger deviation of prices from the benchmark case without information asymmetry. To

better understand the dynamics of price, in addition to static contributions of expectations,

we also study the joint dynamics of expectations and fundamentals. We show that agents'

forecasting errors are much more persistent when information is differentially distributed

among them, which is a direct consequence of the absence of superiorly informed agents

who arbitrage these errors away.

Analysis of a more general informational setup allows us to evaluate the robustness

of previous findings and get new insights. We find that under the differential information

3This observation suggests that price histories may play an important role in financial markets in which
asymmetric information is ubiquitous, thus lending support to technical analysis, which is often employed
in practice.

4See Pearlman and Sargent (2004) for more details.
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setup the absorption of information into prices can be very slow. As a result, returns can be

positively autocorrelated, which may be a step towards an explanation of momentum. The

driving force behind this effect in our model is underreaction of agents to new information.

It should be emphasized that we consider an equilibrium model in which the diffusion of

information into prices is an endogenous process: it is an equilibrium outcome of agents'

portfolio decisions and the resulting effect on the price. This distinguishes our explanation of

momentum from a number of behavioral theories which appeal to different cognitive biases5 .

Our model predicts that momentum is stronger in stocks with little analyst coverage and

higher analysts dispersion forecasts, and this is consistent with empirical evidence6 .

Furthermore, our model allows us to investigate the effects of information dispersion

on trading volume, whose empirically observed high levels present a puzzle to financial

economists. We differentiate between two types of trades: informational trades between

informed agents and exogenous trades with liquidity traders. We show that under the

hierarchical setup there is almost no trade between informed and uninformed agents. This

is intuitive, since the uninformed are aware of their disadvantage and, therefore, averse to

trade. As a result, in this framework, trading volume is almost exclusively determined by

the properties of the exogenously assumed process for noise trader demands. In contrast,

in a framework with differential information, trade between informed agents is high, since

no one has a clear advantage. More importantly, we demonstrate that the contribution

of informational trade to total volume can be significantly higher than that of exogenous

volume.

The rest of the chapter is organized as follows. In Section 3.2 we discuss the related

literature. Section 3.3 describes the model. In Section 3.4 we solve for the equilibria for

benchmark cases of full and hierarchical information dispersion setups. In Section 3.5 we

consider differential information. Section 3.6 presents details of the numerical algorithm

used to solve the model. In Section 3.7 we analyze higher order expectations. In Section 3.8

we examine the impact of information dispersion on prices and returns. In particular, we

demonstrate that differential information accompanied by evolving fundamentals can gen-

erate momentum in returns. Section 3.9 is devoted to analysis of trading volume generated

in our model. Section 3.10 concludes. Technical details are presented in Appendices A, B,

5See Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (1998), Hong and
Stein (1999) among others.

6See Hong, Lim, and Stein (2000), Lee and Swaminathan (2000), Verardo (2005) among others.
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C and D.

3.2 Related Literature

There is a vast literature related to dynamic asset pricing with asymmetric information.

In most papers, however, higher order expectations play a very limited role and can be

summarized by a finite number of variables. Grundy and McNichols (1989) and Brown

and Jennings (1989) study two-period models, which are very restrictive for analysis of

dynamic effects of differential information. Singleton (1987), and Grundy and Kim (2002)

consider multiperiod models in which all private information is revealed after one or two

periods. Although such models deliver predictions about dynamic properties of prices and

returns, the investors' learning problem in these models is effectively static. This diminishes

the impact of asymmetric information on expectations and prices, which could be more

pronounced would the learning problem be also dynamic. As demonstrated below, enabling

private information to be long-lived allows for non-trivial interplay between expectations

and fundamentals, which sometimes reverts the conclusions provided by simplified models.

For example, we show that in contrast to Grundy and Kim (2002), the volatility of returns

under differential information may be lower than in an otherwise identical economy with

no information asymmetry.

The dynamic nature of the learning problem is a necessary, but not a sufficient condi-

tion for getting a non-trivial contribution of all higher order expectations. To avoid the

aforementioned infinite regress problem, Wang (1993, 1994) considers a multi-period econ-

omy in which agents are hierarchically informed. Although this immensely simplifies the

analysis, the obtained conclusions might significantly rely on the information distribution

assumption. An alternative approach to avoid the whole hierarchy of iterated expectations

was developed in He and Wang (1995). In their model, agents have differential information

about the unknown final payoff, which, however, does not change over time. Our setup nat-

urally extends these models by allowing both a general information structure and stochastic

evolution of fundamentals.

The above papers assume that asymmetrically informed agents behave competitively

and do not have any market power. However, there is a vast literature exploring strategic

behavior of asymmetrically informed agents and the resulting effect on prices of securities.
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In multiperiod models with strategic traders there is also a room for non-trivial dynamics

of higher order expectations but, similar to the case with price-taking agents, most existing

models try to avoid the "forecasting the forecasts of others" problem. For example, Foster

and Viswanathan (1996) and Back, Cao, and Willard (2000) use the Kyle (1985) framework,

in which the liquidation value of the risky asset does not change over time. The only paper

allowing the "forecasting the forecasts of others" problem is Bernhardt, Seiler, and Taub

(2004). In this paper authors study price dynamics of an asset with stochastic fundamentals

which is traded by heterogeneously informed strategic agents.

The theme of our research is also aligned with another strand of the literature, which

explicitly analyzes higher order expectations. Allen, Morris, and Shin (2006) argue that

under asymmetric information agents tend to underreact to private information, making

the price biased towards the public signal. Bacchetta and Wincoop (2004) show that un-

der asymmetric information price deviations from fundamentals can be large. Having a

fully-fledged dynamic model enables us to provide a more thorough analysis of agents' ex-

pectations and their dynamics as well as to give specific predictions about their relationship

to the behavior of prices, returns, and trading volume.

3.3 The Model

In this section, we present our model. Throughout the rest of the chapter, it is assumed

that investors are fully rational and know the structure of the economy.

3.3.1 Financial Assets

There are two assets. The first asset is a riskless asset in perfectly elastic supply that

generates a rate of return 1 + r. The second asset is a claim on a hypothetical firm which

pays no dividends 7 but has a chance of being liquidated every period. We assume that the

probability of liquidation in period t + 1, given that the firm has survived until period t, is

equal to A. Upon liquidation the firm pays its equity holders a stochastic liquidation value

Vt. This liquidation value can be decomposed into two components: Vt = V' + Vt2, and

7We model the firm as not paying dividends for the sake of simplicity, since the current dividend would
be an additional signal about future cash flows.
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each component evolves according to a first-order autoregressive process:

t+1 = a + bve+1, j = 1, 2.

We assume that et Af(O, 1) are i.i.d. across time and components. For simplicity we

take identical parameters a and by for the processes Vt1 and Vt2. The total amount of risky

equity8 available to rational agents is 1 + Ot, where Ot - beet and e - A((0, 1).

3.3.2 Preferences

There is an infinite set of competitive rational investors indexed by i and uniformly dis-

tributed on a unit interval [0, 1]. Each of them is endowed with some piece of information

about the fundamentals Vtl and Vt2. We assume that investors are mean-variance optimiz-

ers and each investor i submits the demand X' which is proportional to his expectation of

excess stock return Qt+1:

t1 E[Qt+llP] Qt+1 = AVt+l + (1 - A)Pt+l - (1 + r)Pt. (3.1)a Var [Qt+l I]f'

Here Pt is the information set of investor i at time t. All investors are assumed to have the

same coefficient of risk aversion a.

3.3.3 Properties of the model

Before we turn to analysis of equilibrium, it is worthwhile to make several comments about

the model. First of all, we make the model very stylized, since we want to demonstrate

and analyze the "forecasting the forecasts of others" problem in the simplest setting. In

particular, we assume that all shocks are normally distributed and this property is inherited

by other random variables in the model, leading to the linear form of conditional expec-

tations and, therefore, to a linear equilibrium. Next, we consider a model with an infinite

horizon and focus on stationary equilibria which enables us to use powerful methods from

the theory of stationary Gaussian processes. Finally, a major simplification is achieved by

assigning agents' mean-variance preferences. This assumption is similar to the assump-

tion of logarithmic utility with log-normally distributed shocks under which the hedging

8This can be interpreted as supply of stock by noise traders. Following Grossman and Stiglitz (1980), we
introduce stochastic amount of equity to prevent prices from being fully revealing.
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demand is zero. Since calculation of hedging demand in the economy with infinite number

of state variables is complicated by itself9 , sidestepping this problem allows us to preserve

tractability of the model but still relate equilibrium price to agents' higher order beliefs and

characterize their dynamics.

3.3.4 The rational expectation equilibrium

We focus on a rational expectation equilibrium of this model which is defined by two con-

ditions:

1) all agents rationally form their demands according to (3.1);

2) market clearing condition holds: f Xtdi = 1 + Ot.

In the most general case, information sets of investors R are different, investors have

to forecast the forecasts of others, and non-trivial higher order expectations appear. As a

basis for our subsequent analysis, it is useful to represent the price in terms of fundamentals

and expectations of agents. It is convenient to first define the weighted average expectation

operator E•[x] of agents as follows:

E[x]= J E[xI.t]di,  l= widi, w=
a Var[Qt+l I.fl

Note that the weights wi are endogenous and determined by the conditional variances of

excess returns given investors' information sets. The expectations of agents with better

information get larger weights than those of the less informed. Using the market clearing

condition we can derive a relation between the current price and the next period price:

1 +Ot 1
Pt (1 r) E t+ + (1 - X)Pt+l].Q(1 + r) 1 + r

Iterating this relation forward and imposing the no-bubble condition, we get

1 1 aA (1-A -
1P = Ot + E 1- Et•Etw ..E.+t+, . (3.2)

P (r + ) (1 + r) 1 + r =0 + rt+

This equation represents the price as a series over iterated weighted average expectations

of future values of Vt: we have arrived at a mathematical formulation of forecasting the

forecasts of others. It highlights two essential difficulties. The first is that the law of iterated

9 See Schroder and Skiadas (1999) for some results in this case.
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expectations need not hold because agents may have different information; this point was

recently emphasized by Allen, Morris and Shin (2004). The second and even more significant

obstacle is that the current price also depends on agents' future expectations which, in turn,

depend on future prices. Consequently, in order to compute their expectations, we have

to solve for the entire sequence of prices as a fixed point. Since this problem is quite

complicated, before attempting to find a solution for the general case, let us first consider

some special cases in which the solution is not as involved.

3.4 Benchmarks

3.4.1 Full information

As a starting point, we consider the full information setup. Full information means that all

investors i E [0, 1] observe both components Vtl and Vt2 and their information sets are

= {P,, V1, V2 7 t}.

In this case we are back to the representative agent framework, and the law of iterated ex-

pectations holds: E~tE • +,..E~+,Vt+, = EtVt+8 = asVt. Now observing the price is sufficient

to infer the demand of noise traders 0t. We have the following proposition:

Proposition 1 Suppose that

1) all investors observe Vt;

2) 2?Vbvbe + (_TA) •< .

Then there exists a full information equilibrium in which the equilibrium price of the

risky asset is given by

1 aA 1Pt = -+ V- 1 t. (3.3)P (r + A) + 1 + r - a(1 - X) V (1 + r)

(1+ r - a(1 - A))2  1  1 8b2,bA 2(1 - A)2
-= + (3.4)4b A'(1 + r)2 a a (1 + r - a(1 - A))2

Proof. See Appendix A.
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The obtained price function has a structure which is common to linear rational ex-

pectations models 10. The first term corresponds to a risk premium for uncertain payoffs.

The second term is the value of expected future payoffs discounted at the risk-free rate

adjusted for the probability of liquidation. The third term compensates the investors for

noise trading related risk.

Formally, the equations determining equilibrium price admit two solutions. One of them

is given in Proposition 1, and we take this solution as the full information benchmark in the

future. The reason for discriminating between equilibria is that the other solution is unsta-

ble, meaning that minor errors in agents' behavior significantly impact prices and destabilize

the economy. Having this in mind, we consider only the full information equilibrium which

is most sensible from the economic point of view.

3.4.2 Hierarchical information

Now consider the equilibrium with hierarchical information", which means that investors

can be ranked according to the amount of their information: some investors are better

informed than others. Formally, the information sets of investors at time t are hierarchically

embedded in each other and generate a filtration: tC 9 P7' C .... We focus on the simplest

case, and assume that there are only two types of investors which we denote as 1 and 2.

Investors of type 1, which are indexed by i E [0, 7], are informed and observe both Vt1 and

Vt2. Investors of type 2, with i E (y, 1], are partially informed and observe Vt2 only. We can

write their information sets of informed and uninformed investors as

.F {PVV72 T < t}, 2 = {P, V2  T t}.

There are several reasons why this informational structure is interesting. First of all, it is

an intermediate setup between the full information and the differential information equi-

libria. Despite the investors having heterogeneous information, the infinite regress problem

does not arise and we can find a closed-form solution. The intuition behind this result

is simple and can be easily conveyed in terms of expectations. When trying to extract

the unknown piece of information from the price, investors of type 2 form their expec-

'0 See Campbell and Kyle (1993), Wang (1993)
11The idea to analyze hierarchical information setup in order to avoid the infinite regress problem was

suggested by Townsend (1983) and elaborated in the asset pricing context by Wang (1993, 1994).
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tations V1 = E[Vtli F] about the current value of Vt1. Since all agents of type 2 make

an identical estimation error, IV is a new state variable influencing the price of the as-

set. In their turn, the investors of type 1 need to form their own expectations about

expectations of type 2 investors, E[V l.Fl], and in the general case of differential informa-

tion, it would be represented by another state variable. However, since t.F2 C F we get

E[(rtl 1 ] = E[E[Vt'l7 1 ] = 41 and the infinite regress problem does not arise. Basi-

cally, since the type 1 agents have all the information, they can, without mistake, deduce the

mistake of type 2 agents, thus their prediction of the price is accurate. So the hierarchical

information case illustrates how iterated expectations collapse and the state space of the

model remains finite dimensional. The hierarchical information equilibrium in our model is

characterized by Proposition 2.

Proposition 2 If investors of type 1, with i E [0, y], observe Vt1 and Vt2 and investors of

type 2, with i E (y, 1], observe only Vt2 the equilibrium price of the risky asset is given by

1 1
Pt= - + pVt - Ot+p Pa('l - Vt'), (3.5)

where pv, pa and 2 are constants which solve a system of nonlinear equations given in

Appendix B.

Proof. See Appendix B.

3.5 Differential information equilibrium

Now consider the informational structure in which all agents are endowed only with a piece

of relevant information and the rest of the information is never revealed. Again, assume

that there are two types of agents, j = 1, 2 with i E [0, y] and i E (y, 1] respectively, such

that their information sets are given by

.F1 = (, V, : 7 < t}, t2 = {P, V :7 < t}. (3.6)

3.5.1 Forecasting the forecasts of others

In means that the agents of type j can observe only Vj and the history of prices. Let

us show how the problem of "forecasting the forecasts of others" arises in this case. First
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of all, due to the presence of noise traders, the price is not fully revealing, i.e. knowing

the price and their own component of information Vi, the agents cannot infer the other

component V-J. However, the information about V - j is relevant to agent j, since it helps

him predict his own future payoff and, consequently, to form his demand for the asset.

Moreover, due to the market clearing condition, the information of each investor is partially

incorporated in the price, each agent has an incentive to extract the missing information of

the other type from the price. Therefore, an agent will form his own expectations about the

unknown piece of information. For example, agent 1 forms his expectations about agent 2's

information. These expectations of agent 1 affect his demand and, subsequently, the price.

So the inference problem of agent 2 is not only to extract the information of agent 1, but

also the expectations of agent 1 about the information of agent 2. Agent 1, in turn, faces a

similar problem; we can see how the infinite regress starts to appear.

The above reasoning might seem to be quite general, however, it does not always produce

an infinite set of different higher order expectations. He and Wang (1995) provide an

example how the higher order expectations can be reduced to first-order expectations even

when investors have differential information. They consider a similar setup but assume that

the firm is liquidated with probability one at some future time T and that the liquidation

value does not evolve over time. In this situation, investors also try to predict the weighted

average of investors' expectations V of V. The paper demonstrates that V can be written as

a weighted average of V conditional on public information (price) and the true value of V.

Given this, investor i's expectation of V is a weighed average of his first-order expectations,

conditional on price and on his private signals. Averaging them, one can show that second-

order expectations of V can be again expressed as weighted average of V conditional on

price and the true value of V. As will be shown later, this logic breaks down when V evolves

stochastically over time.

It is necessary to distinguish between the cases with finite vs. infinite dimensional state

space because they are conceptually different and call for different solution techniques. In

the former case, the major problem is to find appropriate state space variables. In the latter,

the search for a finite set of state variables that can capture the dynamics is worthless by

default, and the solution of such models presents a greater challenge.
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3.5.2 Markovian dynamics

To provide the ground for rigorous treatment of the "forecasting the forecasts of others",

we introduce the concept of Markovian dynamics. Let (i, .Ft, A), t E Z be a complete

probability space equipped with a filtration Yt. In what follows, all the processes are

assumed to be defined on this space.

Definition. Let Xt be an adaptive random process. We say that Xt admits Markovian

dynamics if there exists a collection of n < oo adaptive random processes Yt = {Yti},

i = 1..n, such that the joint process (Xt, Yt) is Markov, that is

Prob (Xt 5 x, Y < yIX, ,Y : 7 < t - 1) = Prob (Xt <5 , Yt ylXt1, Yt_1) .

Obviously any Markov process admits Markovian dynamics. The next example will further

help to clarify the ideas.

Example. Let et, t E Z be i.i.d. standard normal random variables. Define Xt =

et - Oet-1, an MA(1) process. Xt is not a Markov process, or even an n-Markov process:

Prob (XtlX, : 7 < t - 1) ý Prob (XtlXt-,,... , Xtn_,) for any n. However, Xt can be easily

extended to a Markov process if one augments it with et.

An important consequence of Xt admitting Markovian dynamics is that the filtered

process Xt then also admits Markovian dynamics, provided that signals obey the Markov

property. As a result, all relevant information is summarized by a finite number of variables.

Applying the concept of Markovian dynamics to our model we get the following result.

Proposition 3 Let ~t = o(V', V2 , Os, s < t). Suppose agents' information sets are given

by

.F = {P , V,3 : t}, j = 1,2.

Then in the linear equilibrium of the described economy the system {V 1, V 2, 9, P} does not

admit Markovian dynamics.

Proof. See Appendix C.

Although we give a detailed proof in Appendix C, it is useful to make some comments on

it here. The idea behind the proof is to use the following result from the theory of stationary

Gaussian processes: if the process admits Markovian dynamics, then it is described by a

rational function in the frequency domain. We start with the assumption that the price
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admits Markovian dynamics. The main part of the proof is to show that it is impossible

to satisfy the market clearing condition and to simultaneously solve the optimal filtering

problem of each agent working only with rational functions. This contradiction proves that

the equilibrium price does not admit Markovian dynamics and the infinite regress problem

is there.

To highlight the significance of this result from the theoretical standpoint, we refer to

the paper by Townsend (1983), which inspired the study of the infinite regress problem and

coined the term "forecasting the forecasts of others". Townsend attempted to create a setup

in which traders would have to estimate the beliefs of others in order to solve their own

forecasting problems. However, Sargent (1991) and Kasa (2000) show how to reduce all

higher order expectations in his model to just a small number of cleverly chosen low order

expectations. Since then, a lot of effort has been made to state the necessary and sufficient

conditions for the infinite regress problem to exist. We demonstrate that our setup is, in a

sense, a minimal model where this phenomenon appears. We know from the result of He

and Wang (1995) that if the value of the payoff remains constant over time, it is possible

to reduce higher order expectations to first order expectations. In our model, we relax just

this condition. It is still interesting to search for other cases, in which solution can take

a simple form. Our result, however, severely restricts the set of possible candidates. It

suggests that the infinite regress problem is almost unavoidable if one is willing to consider

a situation more general than the ones previously studied.

The result also provides support for technical analysis. The simplicity of the fundamen-

tals in our model leads to a straightforward solution in the case of complete information.

However, asymmetric information results in highly non-trivial price dynamics. Now, to be

as efficient as possible, agents have to use the entire price history in their predictions: as

stated in Proposition 3, they cannot choose a finite number of state variables to summarize

the price dynamics. This suggests that in financial markets, where fundamentals are not as

simple and asymmetric information is commonplace, price history may be informative for

investors.
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3.6 Numerical procedure

Systems with an infinite number of state variables are very difficult to analyze and, in

general, they do not admit analytical solutions. In order to evaluate the implications of

information distribution, we construct numerical approximation to the solution. Instead of

the initial setup, we consider the k-lag revelation approximation, in which all information is

revealed to all investors after k periods 12. In this case, the state space of the model is finite

dimensional and the equations determining the equilibrium can be solved numerically. We

relegate all computational details of the k-lag revelation approximation to Appendix D.

To demonstrate the properties of the numerical approximation, we compute the different

information equilibria in the k-lag revelation approximation for particular numerical values.

In setting parameter values for our numerical solution, we assume that the length of one

period is a month. It is reasonable to set the probability of liquidation A to 5% annually, so

that the expected life of a firm is 20 years. We make risk-free rate r equal to 1% annually. We

let a, the coefficient of risk aversion, equal 3, which is a commonly chosen value, for example,

as in Campbell, Grossman, and Wang (1993). We set the mean-reversion parameter a to

0.85. We make the size of supply shocks be equal to 15%. In Section 3.9 we relate this

parameter to volume turnover. In order for risk premium and return volatility to roughly

match their empirical counterparts, we set by equal to 1.2. Although the parameters are

chosen somewhat arbitrarily, they match several observable statistics. In particular, with

these parameters we get risk premium equal to slightly more than 7% and return volatility

of 15%. Most of our reported results are computed for this combination of parameters, but

we also examined a wide range of them and found that our conclusions are not driven by

this particular choice.

k-lag revelation approximation is a workhorse of our computations. Hence, before delv-

ing into numerical analysis we have to establish the precision of this procedure. Below we

demonstrate that the k-lag revelation approximation is sufficiently precise and converges

to the exact differential information equilibrium. Moreover, the rate of this convergence is

quite high and even small number of lags provide very good precision. It means that we

can legitimately use this approximation for numerical analysis of analytically untractable

equilibria.

12This approximation was initially suggested by Townsend (1983).
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(a) (b)
Figure 3-1: Precision of the k-revelation approximation.

These graphs depict errors in the price decomposition over lagged shocks E' (Panel (a))
and Eo (Panel (b)) in the differential information equilibrium relative to the benchmark
k = 50. Information is revealed to both types of agents after 1, 2, 5, 10, and 20 lags
correspondingly. The model parameters are as follows: a = 0.85, by = 1.2, be = 0.15,
A = 0.05/12, r = 0.01/12, a = 3, y = 0.5. Since the shocks e1 and E2 enter the price

function symmetrically, the corresponding coefficients are identical and we report them only
once.

In order to analyze precision of the k-lag revelation approximation we compute the

differential information equilibrium with various number of lags k after which information

is fully revealed. In particular, we take k = 1, k = 2, k = 5, k = 10, k = 20 and

k = 50. It is reasonable to think that if the computed equilibria for sufficiently large k

are not significantly different from each other and the price coefficient for each lag has a

well defined limit then the approximation is quite good. Indeed, in this case it is not likely

that for some greater k the coefficients jump or have irregular behavior. To demonstrate

the quality of the k-lag revelation approximation, we decompose prices over shocks Ei and

Ee for different values of k and plot the differences in the corresponding coefficients for the

given k and k = 50. The results are presented in Figure 3-1.

Inspecting Figure 3-1 we conclude that as k goes up the coefficients for each lag tend

to the value corresponding to k = 50. Moreover, even 10 lags give a good approximation

of the first five coefficients. Starting from the 6th coefficient the approximation works

poorer because the 10th revealed lag introduces substantial distortions. However, the price
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coefficients quickly decrease with the lag, so the error introduced by revealed information

gets very small for sufficient number of lags. Indeed, the coefficients calculated for 20

and 50 unknown lags are virtually indistinguishable. This observation suggests that the

k-lag revelation procedure gives very good approximation to exact differential information

equilibrium even for 20 lags. Thus, the k-lag revelation approximation is quite reliable and

produces meaningful results giving justification for its use in our analysis. To be on a safe

side, we use 50 unknown lags in our computations. 13

3.7 Analysis of higher order expectations

When information is dispersed among agents, higher order expectations play an important

role in price formation. Moreover, higher order expectations determine not only the wedge

between the price and the fundamental value of the firm, but also the statistical properties

of prices and returns. Thus, analysis of higher order expectations and especially of their

dynamical properties can shed new light on the impact of information distribution on prices

and returns.

It is convenient to decompose the price as given in equation (3.2) into the part deter-

mined by fundamentals and the correction At arising as a consequence of heterogenous

expectations:

1 aA 1
Pt = 1 + Vt - 1 t + A, (3.7)f2(r + A) 1 + r - a(l - A) 2(1 + r)

where

At ='1 -+l r ( r Et+,..Et+W s - Et)Vt+s. (3.8)
s=0

Et is the expectation operator with respect to full information. The differences A' =

(E'E'+,..Et+, - Et)Vt+, represent pure effects of asymmetric information. Obviously, if

investors are fully informed At = 0. The price decomposition (3.7) is valid for any informa-

tion distribution. Thus, we can apply it to both the hierarchical and differential information

cases and compare contributions of higher order expectations in different information setups.

In the hierarchical information case, all terms in the infinite series of expectations can
13As an additional check, we computed distances between sequential equilibria corresponding to k = 1, 2,...

in the Hilbert space of price processes. These distances decrease as kI -- 00, thus the equilibria form a
Cauchy sequence. Provided the Hilbert space of price processes is complete, the sequence of computed
equilibria converges to the equilibrium in the model without information revelation.
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Hierarchical Differential
a(At) 9.5 - 10-  1.8 -10-

p(Vt, At) -0.02 -0.27
p(0t, At) -0.99 -0.73

p(At 1_l, At) 0.004 0.64

Table 3.1: Statistics of the informational term At in the hierarchical and differential infor-
mation equilibria.

a(At) is standard deviation; p(Vt, At) and p(Ot, At) are correlations with Vt and Ot; p(At- 1,
At) is autocorrelation coefficient.

be calculated explicitly. In particular, a simple calculation yields

W2 1-8(+1)+1As = -s 1  
VOQ 1 - C'

Here c, wl and w2 are constants defined in Appendix B. As expected, all higher order

expectations terms are proportional to the estimation error Vt1 - Vt1
. It means that all

terms in the infinite series are perfectly correlated and the series collapses to one term

At = pA ( - Vtl), greatly simplifying the analysis.

We have already shown that with differential information all higher order expectations

are different so we can evaluate the effect of At on prices only numerically. To do this, we

compute volatility and autocorrelation of At as well as its correlations with Vt and Ot. The

results are presented in Table 3.1. The standard deviation of At are significantly greater

in the differential information case, as opposed to the hierarchical case indicating a greater

effect of information asymmetry when information is differentially distributed.

Also Table 3.1 reports that At is negatively correlated with contemporaneous values of

both Vt and Ot. Since A' are highly correlated with each other the intuition behind the

correlations can be easily conveyed by At°.Let us start with the negative correlation with

Vt. When Vt is high, the difference AO = EtVt - Vt is low since at least some investors

do not know exactly the value of Vt and their average estimation is biased towards the

mean value of Vt, which is 0. The intuition behind negative correlation of A ° and Ot is

also straightforward. If there is a positive supply shock, the price of the asset goes down.

However, some investors cannot perfectly distinguish this shock from a negative shock to

Vt, and therefore their estimation of Vt is low again.

This intuition is valid for both hierarchical and differential information, but the numbers
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Figure 3-2: Impulse response of At to the Figure 3-3: Impulse response of At to the
innovation in fundamentals in the models noise trading shock in the models with dif-
with different informational structures. ferent informational structures.

in these cases are significantly different. In the case of hierarchical information, informed

investors take most of the fundamental risk, but leave some of the liquidity risk to the

uninformed. With differential information, no agents are perfectly informed. It translates

into a greater average mistake about the fundamentals.

It is also interesting to examine the autocorrelation of At. Table 3.1 shows that there

is almost no autocorrelation in the hierarchical case, whereas At is highly persistent under

differential information with autocorrelation coefficient 0.64. Indeed, under hierarchical

information, fully informed investors can take advantage of the mistakes of the uninformed

and therefore arbitrage them away. When investors are differentially informed they all make

errors. Moreover, the errors made by one type depend not only on fundamentals but also

the errors made by another type of investors. Without fully informed arbitrageurs, mistakes

are much more persistent in comparison with hierarchical information case since it takes

much longer to correct them.

We conclude our study of At by depicting how it depends on a particular shock rep-

resented by its coefficients in the decomposition over the current and past shocks under

different information structures.

Figures 3-2 and 3-3 provide more support for the above results. We observe that in

the differential information case, At not only has much higher negative loadings on both

fundamentals and supply shocks than in the hierarchical one, but also its response to shocks

declines significantly more slowly. In the former case it takes more time for information
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to penetrate into price making it less responsive to innovations in fundamentals. This has

important implications for statistical properties of prices and returns.

3.8 Implications for asset prices

In this section we analyze how the underlying information structure affects stock prices,

returns, and their basic statistical properties. Propositions 1 and 2 give equilibrium prices

in economies with full and hierarchical information, respectively. To compute the statis-

tics of interest in the economy with differential information, we use the k-lag revelation

approximation described above. All computational details are collected in Appendix D.

3.8.1 Stock prices

Panel (a) of Figure 3-4 shows the decomposition of the equilibrium price with respect

to fundamental shocks et. As we move from full to hierarchical and then to differential

information, it takes longer for fundamental shocks to be impounded into the price (cf.

Figure 3-2). The quantitative effect is much more pronounced in the case of differential

information. The reason for this is that under hierarchical information, fully informed

investors know perfectly the states of the economy: mistakes of the uninformed and demand

of the liquidity traders. Competition forces them to arbitrage the mistakes of the uninformed

quite aggressively, and by the second lag the price reflects the underlying value almost

perfectly. When investors are differentially informed they all make errors in valuations.

Moreover, the errors made by one type depend not only on fundamentals, but also the

errors made by the other type of investors. Without fully informed arbitrageurs, it takes

much longer to correct mispricing: in the figure we see that it takes up to 20 lags for the

price to reveal the true value.

Panel (b) of Figure 3-4 shows the decomposition of the price with respect to supply

shocks e'. Here we observe the opposite effect: as we move from full to hierarchical and

then to differential information the equilibrium price becomes more and more sensitive to

noise trading. Investors with perfect information trade against liquidity traders. On the

other hand, investors who do not have full information confuse supply and fundamental

shocks and therefore require higher compensation to absorb supply shocks. The price is

much more affected by supply shocks under differential information, since in this case there
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Figure 3-4: Impulse response of the price to underlying shocks.

Panel (a) plots impulse response of the price to shocks et for economies with full, hierarchi-
cal, and differential information respectively. Panel (b) plots impulse response of the price
to shocks e? for economies with full, hierarchical, and differential information respectively.
The following parameter values are used: A = 0.05/12, r = 0.01/12, a = 0.85, a = 3,
- = 1/2, by = 1.2, be = 1.

is much more uncertainty about the true value of the firm.

3.8.2 Volatility of prices and returns

Table 3.2 collects standard deviations of prices and returns in equilibria with different

information dispersions. The price volatility is almost identical in the full information and

hierarchical information cases, but goes down in the differential information setup. This

finding can be interpreted as an effect of higher order expectations studied above. From

our previous analysis (cf. Table 3.1), we know that the higher order expectations have two

opposite effects on price volatility. On one hand, they represent additional volatile state

variables the inclusion of which increases total price volatility. On the other hand, these

state variables are negatively correlated with Vt, and this correlation is higher for differential

information. This leads to decrease in volatility. The overall effect depends on which of the

two effects dominates. For the given choice of parameters, these effects almost cancel each

other in the hierarchical information case, and the second effect dominates in the case of

differential information, in which price volatility goes down.

Let us consider how the information dispersion setup affects the volatility of returns.

Table 3.2 reports that volatility is lowest under differential information. This observation
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Full Hierarchical Differential

(%) (%) (%)
E(Qt) 7.56 7.57 7.16

Std(Qt) 15.88 15.89 15.47
Std(Pt) 25.6 25.6 24.7

Table 3.2: Risk premium and volatilities of price and excess return in models with different
informational structures.

The model parameters are as follows: a = 0.85, bv = 1.2, be = 0.15, A = 0.05/12,
r = 0.01/12, a = 3, y = 0.5.

contradicts the conclusion of Grundy and Kim (2002), who assert that differential infor-

mation causes returns to be more volatile than in the benchmark case with no information

asymmetry. The cause for this discrepancy is that in Grundy and Kim's model private

information is short lived, so investors can only trade on their information for one period,

and therefore trade more aggressively. If information is not revealed every period investors

have plenty of time to trade on their information. As a result, it takes a long time for shocks

to be impounded into prices, making returns less volatile.

Also, we can see that in the hierarchical information case volatility is slightly larger

than under full information. This result is consistent with findings in Wang (1993) who

considers a similar model. In this case it also takes longer for shocks to fundamentals to

be impounded into price compared to the full information setup. However, another effect

is also at work: the uninformed investors face the risk of being taken advantage of by the

informed investors. As a result, they are afraid of trading and taking large positions against

liquidity traders, which causes returns to be more volatile. The overall result depends on

the interaction of these two effects. In our simulations we could not find a region where

the first effect is stronger than the second one. It is interesting to notice that under the

differential information the opposite is true: the first effect dominates the second one. These

results provide another example in which introduction of fully informed arbitragers makes

returns more volatilel4

Because we assigned our agents a mean-variance demand over a one period horizon, the

volatility of one period returns has a direct effect on their perception of risk, producing an

inverse relation between expected returns and volatility. This is a result of our simplifying

assumptions, and a more thorough modelling of agents' preferences, for example as in Wang

14See also Stein (1987) and Wang (1993).
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(1993) would be required for rigorous analysis of the effect of asymmetric information on

risk premium.

3.8.3 Serial correlation in returns

In a seminal paper by Jegadeesh and Titman (1993) it is shown that buying past winners,

shorting past losers, and holding the position over 3 to 12 months generates high abnor-

mal profits. Since its discovery, momentum has been one of the most resilient anomalies

that challenge the market efficiency hypothesis. Despite a vast empirical literature about

momentum 15, there are few theories that try to explain it. These theories are traditionally

classified into rational and behavioral.

The rational theories provide risk-based explanations of momentum relating momentum

to systematic risk of cash flows. In Berk, Green, and Naik (1999) momentum results

from slow evolution of the project portfolio of the firm. Johnson (2002) demonstrates that

momentum can arise in a fully rational and complete information setting with stochastic

expected dividend growth rates. However, analysis in both papers is conducted in the

partial equilibrium framework with an exogenously specified pricing kernel.

Other researchers have turned to behavioral models, which generally attribute momen-

tum to underreaction or delayed overreaction, caused by cognitive biases. In Barberis,

Shleifer and Vishny (1998) investors, due to the conservative bias, tend to underweight

new information when they update their priors. In Daniel, Hirshleifer and Subrahmanyam

(1998) investors are overconfident and overestimate the precision of their signals. As a re-

sult, they overreact to private information, but not to public information. Hong and Stein

(1999) assume that information is slowly revealed to "news-watchers," who observe future

payoff relevant signals but do not use price as a source of information.

In general, there can be three possible sources of momentum profits 1". First, winners

might be stocks with high unconditional expected returns. Second, if one assumes that

factors are positively autocorrelated, then winners could be stocks with high loadings to

these factors. Finally, it might come from positive autocorrelation of idiosyncratic returns.

In all but the first explanation, 17 some components of stock returns should be positively au-

tocorrelated. Therefore, any theory aimed to explain momentum should be able to generate
15Jegadeesh and Titman (2005) is a recent review.
16See Lo and MacKinlay (1990).
17Jegadeesh and Titman (2002) present evidence against this explanation.
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positive autocorrelations in returns.

In this section we consider the correlation of Qt+l with the realized excess return APe =

Pt - (1 +r)Pt-1. Although most models with asymmetric information put severe restrictions

on possible sign of this correlation, we demonstrate that differential information can make

it positive.We use APte instead of Qt because in the model investors do not observe Qt,

but rather the history of prices. We will say that there is momentum if Apte is positively

correlated with Qt+i.

Proposition 4 Define the sequences ak, k = 0, 1,... and pok, k = 0, 1,... as ak = E(etkOt)

and p 0 = E (eekPt). Then

Cov(Qt+, APf) = •P (ak - (1 + r)ak+1). (3.9)
k=0

Proof. Using market clearing condition f Xtdi = 1 + Ot and the law of iterated expec-

tations we get

Cov(0t, APf) =/ Cov(Xt, APe)di = QCov (Qt+1, APt). (3.10)

From the definition of ak and po:

Cov (0tAPf) = aop - + ak(p )p ) = P k - (1 + rr)k+1). (3.11)
k=1 k=O

Combining 3.10 and 3.11 we get 3.9. M

In deriving this result, we use the fact that agents have myopic preferences. In general,

there might also be a hedging demand. Note, however, that if the hedging demand results

solely from information asymmetry, then it is a linear combination of agents' forecasting

mistakes, and therefore is orthogonal to the public information set. Since everyone observes

the price, the covariance of the hedging demand with APte is zero, and Eq. 3.10 holds. As

a result, the distribution of information between agents can change the magnitude of the

correlation but not the sign.

Proposition 4 allows us to study the possibility to observe positive serial correlation of

returns for different specifications of Ot.

Example 1. If Ot are i.i.d. then Cov (Qt+i, APe) = bepg/P.
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It means that the sign of the correlation Cov (Qt+l, Ape) is determined by the sign of

p . This coefficient is negative, because a positive supply shock normally leads to lower

price since risk averse agents require compensation for holding additional amount of risky

equity. In other words, if Ot are i.i.d. the incentive to follow contrarian strategies is very

strong and momentum cannot arise. The logic suggests that if we reduce this incentive by

modifying the process for Ot it might be possible to make the correlation of Qt with APe

positive.

Example 2. If Ot follows an AR(1) process Ot = be(1 - aeL)-le? then

Cov (Qt+, A e) = b(1 - a(1 r)) (3.12)

k=O

The sum Ek•=0 pOak is likely to be negative in most models, since the price is negatively

affected by shocks e?. Therefore, the sign of Cov (Qt+l, Apte) depends only on the sign of

(1 - ae(1 + r)) and not on the information dispersion or any other model parameters'.

If Ot is sufficiently persistent then (1 - ae(1 + r)) is negative and momentum arises. It

is worthwhile to compare this result with that of Brown and Jennings (1989), who are

able to generate positive autocorrelation of returns for a wide range of parameters in a

two period, but otherwise similar model. This difference underscores the importance of

considering a stationary economy where the initial conditions have little effect on properties

of equilibrium.

Next, if we allow Ot to have more general dynamics, information dispersion has a quali-

tative effect on serial correlation of returns. To keep the model parsimonious, we consider

the case in which Ot follows an AR(2) process.

Example 3. If Ot follows an AR(2) process with non-coinciding real roots ale and

a2e : Ot = be(1 - aleL)-l'(1 - a2eL)-l'Ee then

be k+lk+l
Cov (Qt+, Ape) p (( - ale( 1 + r))ale - (1 - a2e(1 + r))a2

v A(ale - a2e) O-

(3.13)

Eq. (3.13) shows that in this case the sign of Cov (Qt+I, APfe) is not so obvious and, in

general, depends on particular values of ale and a2e. For illustrative purpose, we set ale

and a28 to 0.54 and 0.89, respectively. This choice is somewhat arbitrary. It guarantees that

18Wang (1993) illustrates this observation.
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Full Hierarchical Differential

(%) (%) (%)
Corr(Qt+l, APte) -0.05 -0.02 0.01

Table 3.3: Correlation between Qt+1 and APte in models with different informational struc-
tures.

Stock supply by noise traders Ot follows AR(2) process with roots 0.89 and 0.54.

correlations in the full information case are negative at all lags, but at the same time, makes

the incentive to trade against liquidity traders small enough. We verify that similar results

can be attained with other parameter values as well. Table 3.3 presents the correlation

between Qt+l and APte in models with different informational structures. Remarkably,

when investors are fully informed or information is dispersed hierarchically, the correlation

Cov (Qt+l, Aptr) is negative and prices exhibit mean reversion. However, in the differential

information case, the correlation is positive and momentum arises. It is worth to emphasize

that momentum is not a result of specific choice of fundamental parameters, but originates

as a consequence of differential information. In the AR(2) case the mean reverting impact of

liquidity traders is sufficiently reduced and the effect of slow diffusion of fundamental shocks

dominates producing momentum. Diffusion of information in our model is an endogenous

process which is consistent with demands of fully rational investors. It distinguishes our

results from those of Hong and Stein (1999), who take the slow rate of information revelation

as an assumption. Of course, since we are looking at just one stock, this is not the whole

story about momentum: we do not take into account diversification at the limit, but this

is beyond the scope of our analysis.

There are several empirical regularities which support the informational explanation

of momentum and which are consistent with our model. Hong, Lim, and Stein (2000)

show that momentum predominantly resides in small stocks, and that, controlling for size,

momentum is greater for firms with little analyst coverage. These stocks are less informa-

tionally transparent, and if momentum is really due to slow diffusion of information into

prices then exactly these stocks should exhibit the strongest momentum behavior. Verardo

(2005) finds that momentum is more pronounced in stocks with high dispersion of analysts'

forecasts. This observation is also consistent with the suggested information theory of mo-

mentum. Indeed, if analysts have diverse opinions on a particular stock it is likely that it is
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more difficult to get objective and reliable information about the firm. Hence, it takes more

time for news to be incorporated into prices. As a result, in accordance with our theory,

this stock is more prone to momentum.

Although our model suggests that momentum arises due to slow diffusion of information,

it lacks a well defined parameter controlling the precision of information that agents have.

So, to get sharper predictions consistent with the empirical facts, we consider an extension

of our model. We still assume that there are two types of investors, j = 1, 2 and investors

of type j know V., r < t. But now we introduce a third component, V 3, which is observed

by both types of investors, so that the total value of the firm consists of three parts:

Vt = Vt1 + Vt2 + Vt3 . Again, Vt3 follows an AR(1) process, VT3 = aV3 + b* t+l.

The third component allows us to control the magnitude of the information dispersion.

To separate the impact of information from the effect of changing fundamentals we keep the

variance of Vt constant. By increasing the contribution of Vt3 to the total firm value Vt and

decreasing that of Vt1 and Vt2 , we decrease the information dispersion among agents. To

make the results comparable across the sections we fix Var(Vt) and control the contribution

of Vt3 by means of b* . Thus, if b, is close to zero the contribution of Vt3 is negligible and

we arrive at the differential information case with maximum information dispersion. On

the contrary, if b* is close to vfbv the third component dominates and we get the full

information case with zero information dispersion. We measure how diverse are opinions

among the agents as D = 1 - %/Var(Vt*)/Var(Vt).

To gain a better understanding of the relation between momentum and information

dispersion we plot the correlation of Qt+1 with APte as a function of D in Figure 3-5. We

see this correlation increases monotonically with information dispersion and eventually con-

verges to the positive correlation observed under differential information. This observation

is consistent with the results of Verardo (2005), thus providing support to our information-

based theory of momentum.

3.9 Trading volume

In this section we examine the basic properties of trading volume under different informa-

tion dispersion setups. This question has received a significant amount of attention in the

past. For example, Wang (1994) conducts an extensive analysis of stock trading volume
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Figure 3-5: Correlation between Qt+l and APte as a function of information dispersion
measured as D = 1 - V'ar(Vt*)/Var(Vt).

under hierarchical information and He and Wang (1995) study it under differential infor-

mation. However, as we have already pointed out, these papers employ various simplifying

assumptions to avoid the infinite regress problem. As a result, there is no easy way to

compare the findings among those models. In our work both hierarchical and differential

information are nested within the same model, which makes it possible to conduct such

analysis.

Let us first give a definition of volume in our model. Since the average number of

shares in our model is equal to one, what we refer to as trading volume is actually the

turnover. If in period t agent i holds Xt shares, but in period t + 1 his holdings are Xt+1

then his (unsigned) trading volume is IXt+ - XtI. We are interested in average trading

volume Voli = EIXt+1 - Xt of each agent and the relation between volume and information

the particular agent has. All liquidity shocks, produced by noise traders, are absorbed by

rational investors, and their trading volume is mostly determined by these shocks. However,

when investors have different information, they also trade with each other and, on average,

this volume can be characterized as Vo112 = E [f IXt+, - XtIdi -10t+1 - t] /2. Because

this volume is generated endogenously, we call it informational volume. On the other hand,

the trading volume of noise traders VolNT = E1Ot+1 - tl is completely exogenous in the

model. Total trading volume in the model is VolTot = Vol12 + VolNT. The results are
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I(%) II(%) III(%)
Vol, 16.9 33.7 37.8
Vol2  16.9 1.2 37.8
Vo112  0 0.2 10.5

VolNT 16.9 16.9 16.9
VolTot 16.9 17.1 27.4

Corr(|APt , VolTot) 0.1 0.7 6.7

Table 3.4: Normalized trading volume in models with different informational structures.

Voli - average trading volume of type i investors, Vo112 - trading volume between two classes
of investors, VolNT - trading volume of noise traders, VolTo t - aggregate trading volume.
I - full information equilibrium, II - hierarchical information equilibrium, III - differential
information equilibrium.

collected in Table 3.4.

Under full information, the volume is completely exogenous: no trades occur between

the informed agents. They simply absorb liquidity shocks, equally splitting the volume.

Under hierarchical information, the informed agents absorb most of the trades, since the

uninformed agents are aware of their disadvantage and, therefore, averse to trade. Their

volume is not zero because they try to trade against the noise traders, but occasionally

make mistakes and end up trading against informed investors. In the case of differential

information, the situation is very different. Agents of different types are not afraid of trading

against each other, and this leads to a high trading volume between them, as well as total

volume.

It is interesting to consider the behavior of trading volume with respect to the amount

of noise trading. Figures 3-6 and 3-7 show the ratio of the informational volume to the

volume of noise traders and total volume, respectively, for both hierarchical and differential

information.

We observe that total volume is increasing under both setups, since it is driven primarily

by the increase in the exogenous volume of liquidity traders. With the normality assumption

about the underlying shocks, we have

EI9t+i - = 2be (3.14)

which is linear in noise trading intensity be. Thus, it is more instructive to consider the

behavior of the ratio Voll 2/VolNT. We can see that it displays a very different pattern.

141



Figure 3-6: The ratio of informational Figure 3-7: Total trading volume VolTot
volume in the hierarchical and differen- in the hierarchical information and differ-
tial information equilibria to the exoge- ential information equilibria as a function
nous noise trading volume Voll2/VolNT as of noise trading intensity be.
a function of noise trading intensity be.

In the case of hierarchical information, the ratio is increasing in be. The increase in the

level of noise trading represents a better trading opportunity for the uninformed traders, so

they start to trade more. However, the more they trade, the more often they trade against

the informed investors. In the case of differential information the only obstacle to trade

is the no-trade theorem. Price becomes more and more informative as the level of noise

trading decreases. But in this case investors although trading less in absolute terms trade

much more relative to liquidity traders. This result suggests that asymmetric, especially

differential, information can help explain high trading volume levels observed in financial

markets.

We can also notice that the model is capable of producing another stylized fact about

volume: the positive correlation of trading volume with absolute price changes. Table 3.4

shows that correlation increases from full information to hierarchical information, and is

strongest under differential information. In the case of full information, the price moves

whenever any shock occurs. However, change in volume is only caused by supply shocks.

As we move from full information to hierarchical and to differential, more and more trades

come from shocks to fundamentals resulting in increased correlation.
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3.10 Concluding remarks

This chapter presents a dynamic equilibrium model of asset pricing under different infor-

mation dispersion setups. The model allows us to clarify the mechanics behind the infinite

regress problem and explicitly demonstrate the effect of information distribution. By an-

alyzing differential information coupled with time evolving fundamentals we are able to

provide new insights about the behavior of prices and returns.

Due to the complexity of the problem, we made a number of simplifying assumptions. It

is reasonable to believe that the intuition we gain from our analysis can be applied to more

realistic models as well. There are several directions in which our research can be developed.

First, it would be interesting to consider a setup with multiple stocks and analyze the effect

of information distribution on cross-correlations of prices and returns19. Next, we consider

myopic investors who do not have hedging demand. This significantly simplifies the model,

since otherwise we would have to solve a dynamic program with an infinite dimensional

space of state variables. The impact of hedging could be non-trivial and needs further

research.

In our model the agents are exogenously endowed with their information and can neither

buy new information, nor release their own information if they find this exchange profitable.

It might be interesting to relax this assumption and to introduce the market for information.

This direction was explored in a static setting by Verrecchia (1982), Admati and Pfleiderer

(1986), and others but dynamic properties of the market for information are not thoroughly

explored20

Although our analysis pertains mostly to asset pricing, the insights about various aspects

of the "forecasting the forecasts of others" problem and iterated expectations, as well as

the intuition behind our results, are much more general and also relevant for other fields.

For example, higher order expectations naturally arise in different macroeconomic settings

(Woodford (2002)), in the analysis of exchange rate dynamics (Bacchetta and Wincoop

(2003)), in models of industrial organization where, for example, firms have to extract

information about unknown cost structure of competitors (Vives (1988)). The application

of our approach and analysis of higher order expectations in these fields might be fruitful

19See Admati (1985), Easley and O'Hara (2004), and Hughes, Liu, and Liu (2005), among others, for a
static analysis.

2 0 See Naik (1997b) for analysis of monopolistic information market in a dynamic framework.
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and need further research.

3.11 Appendix A. Proof of Proposition 1

Our starting point is a representation of equilibrium price (3.2). If all investors know Vt'

and Vt2 then the infinite sum can be computed explicitly and we get

1
Pt = -+O(r + A)

aA
1 + r - a(l - A)

1
- 8t

2(1 + r)

So the only remaining problem is to calculate Q which is endogenous and is determined by

conditional variance of Qt+l. A simple calculation yields

Var(Qt+lli F) 2A2 (1 + r)2b2

(1 + r - a(1 - A))2
(1 - A)2 be
+ 2(1 + r)2

By definition of Q2

=/ g1 
di

a Var[Qt+l Ib]

which gives the following equation for 1

1 1 2A2 (1 + r) 2 b2

a (1 + r - a(l - A))2

or, equivalently,
2A2 (1 +r)2b2, 2_

(1 + r - a(l - A))2

1 1
a Var[Qt+l '

(1 - \)2b2
+ Q2(1 + r)2

(1 - A)2b
+ (1 =0.(I+ r) 2

This is a quadratic equation which has real solutions only if its discriminant is non-negative,

or

2\bvbe (i-X) < 1
1+ r - a(1 - A) a

Under this condition there is a full information solution with 2 as given in Proposition 1.

3.12 Appendix B. Proof of Proposition 2

If investors are hierarchically informed the infinite sequence of iterated expectations col-

lapses to one term t1 = E[Vtl1Ft2], which is a new state variable of the economy. So we
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conjecture that the price is a linear function of state variables:

Pt = Po + Pv1Vt' + PV2 V2 + Peot + a (t' - V1t), (B1)

where Po, Pvl, Pv2, Pe and pa are constants. The dynamics of ý1 can be found from

the filtering problem of uninformed agents. To solve this problem we use the following

theorem21

Theorem 1 (Kalman - Bucy filter)

Consider a discrete linear system of the form

xt = ixt-1 + Fex,t,

Yt = Mxt + Ey,t,

where xt is an n-vector of unobservable state variables at t, Yt is an m-vector of observations

at t. P, P and M are (n x n), (n x r), and (m x n) constant matrices respectively. ex,t and

e,t are r-vector and m-vector white Gaussian sequences: ex,t N(O, Q), ~y,t " .f(O, R),

ex,t and ey,t are independent. Denote the optimal estimation of xt at time t as xt :

xt = E[xtly, : T < t]

and define

= E[(xt - 't)(xt - ~t)'IY : T <t].

Then

it = (In - KM)(.t-1 + Kyt, (B2)

E = (In - KM)(EAV' + rQr'), (B3)

K = (Q(EQ' + rQr')M'[M((PE' + rQr')M' + R]-1, (B4)

where In is the (n x n) identity matrix.

In our case the system of unobservable state variables is Vtl 1 = aVtl + bVE+1. The

partially informed investors effectively observe Zt = (Pvi - pA)Vt' + peOt. We have the
21See Jazwinski (1970) for textbook discussion of linear filtering theory.
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following mapping:

t = Vt, Yt= Zt,

M = pv -pA, R

S=a, F=bv,

= (pebe)2, Q=1.

Applying the Kalman-Bucy filter we arrive at

Vt = a(1 - k(pv1 - pA))l V + k(p V , - pA)Vt, + kpeOt,

where k solves the quadratic equation

pz ba 2(pvi - pA)k2 + (p2b (1 - a2) + b 2(pV1 - PA) 2)k - b2(pvI - PA) = 0.

Equation (B5) implies AR(1) dynamics of the estimation error:

t - Vtl = ac(ýt, - Vtl1) - bvcc' + kbepeee , c = 1 - k(pvl - PA).

Consider now the demand functions of investors and the market clearing condition. The

aggregate demand of partially informed investors is

t2 E[Qt+l J-t2X 2 = (1 - y) E[Qt+I
aVar[Qt+l tF2

Using our conjecture for the price function we can rewrite it as

X= 2 ((1 - A)po a(A + (- A)pv2)Vt2 + a(A + (1- A)pv)v '- (1 + r)Pt)

= 2 ((1 - A)po + a(A + (1 - A)pvi)VtI + a(A + (1 - A)pv2)Vt2 +

+ a(A + (1 - A)pv)(V t - Vt) - (1+ r)Pt),

where, by definition, w2 = (1 - y)/(aVar[Qt+lJ.F2]). Similarly, the aggregate demand of

informed investors is:

X= E[Qt+1 J 1']
x= aVar[Qt+ 1 1]= w1 (aAVt + (1- A)E[Pt+icit ] - (1 + r)Pt),

wl = 7'/(aVar[Qt+I j.1 ]).
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Using (B7) we can rewrite it as

wi ((1-A)po+a(A+(1 -A)pv)Vt+a(A+ (1-A)p2) V 2 +acp1-- A)(tl - 1 + r) Pt

The market clearing condition Xt + X 2 = 1 + Ot gives

Q(1 - A)po - 1 a(A + (1 - A)pv) + a(A + (1 - A)Pv2) V2Pt= QV+ Vt
f•(1+r) l+r 1+r

-(1 + r)t +
Ol(1±+r)

a(w2A + (1 - A)(w2pvl + WlCpA)) (Vt
Q(1 + r)

where Q = wl + w2 . Comparing (B8) with the conjectured expression for price we get a set

of equations for the coefficients Po, Pv' Pv2, py, and pA:

Q(1 - A)po - 1
PO = (1 + r)

a(A + (1 - A)pv2)
1 + r

a(A + (1 - A)pvi)
Pv = lr

a(w2A + (1 - A)(w 2Pvl + WlCpA))
Q(1 + r)

Solving these equations we obtain:

1
P (r + A),

1
Pe + r)

aA
Pv PV2 = + r - a(l - A)'

w2Aa(1 + r)
p (1 + r - a(1 - A))(D(1 + r) -wiac(1 - A))

Coefficients pvl and pv2 are expressed in terms of exogenous parameters of the model. In

order to get Po, Po, and pA we have to compute Var[Qt+llFt1 ] and Var[Qt+I.Ft2 ]. We have:

Var [Qt+IFt'] =

= b2 [(A + (1 - A)(pvi - cpA))2 + (A + (1 - A)pV2) 2] + b2(1 - A)2p2(1 + kpA) 2,

Var[Qt+ I "Ft2 ] = Var[Qt+l ±IjF] + a2 (A + (1- A)(pvi - cp)) 2 Var[' 1 - VtJ "2 ] =

= Var[Qt+ l F2] = Var [Qt+ 1JF] + (A + (1 - A)(pvi - cp2))2 ac b2-
1 - a2c
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As a result, we have the following system of nonlinear equations for Pe, PA, c, w1, w2 and

Q:

1
PA = W2(1 + r)' w2 Aa(1 + r)

p = (1+ r - a(1 - A))(D(1+ r) - wiac(1 - A))'

wI (b2 [(A + (1 - A)(pvi - CPA))2 +± ( (1 - )pv2)2 ] + b2(1 - A)2p2(1 + kpA) 2 = ,

w2 b 1a2( + (1 - A)(p - cA)) 2 + ( + (1 - )P2 )2+

+b (1 - A)2p2(1 + kpA) 2) = 1 -
p2b2ea 2 (1 - C)2 + (pbe(1 - a2 ) + b2V(PVi - pA) 2)(1 - c) - b (pvi - PA)2 = 0,

Q = wl + W2-

The solution to the above system then can be obtained numerically.

3.13 Appendix C. Proof of Proposition 3

To save space we give the proof for a = 1 and 7 = 1/2, and the components Vt1 and Vt2 are

treated symmetrically. The proof for the general case follows the same logic but is more

involved. Denote demeaned price by Pt. We assume that the model has a stationary linear

equilibrium, i.e. Pt is a stationary regular Gaussian process 22 which admits the following

decomposition:

P = bv E fkEi-k + b E fkE lk +be Z fbeR-Ik, (Cl)
k=O k=O k=O

where

b (b + b k+ b2 () 2) < 00. (C2)
k=O

Instead of working with an infinite number of coefficients it is convenient to put the series

in z-representation 23 , i.e. introduce functions f(z) and fe(z) such that

oo oo

f(z) = fkz••k, fe(z)= fezk. (C3)
k=O k=O

22See all relevant definitions in Ibragimov and Rozanov (1978).
23For other applications of z-representation to analysis of rational expectation equilibrium see Futia (1981),

Kasa (2000), Kasa, Walker, and Whiteman (2004).
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Due to (C2) f and fe are well-defined analytical functions in the unit disk Do = {z :

IzI < 1} in the complex plane C. Let L be a shift operator defined as Let = et-. Then

using z-representation we can put the conjectured price function into the following form:

Pt = bvf (L)e + bvf (L)Et- + befe(L)et. (C4)

One can verify that if two random processes xt and yt are

xt = bvf (L)et + bvfx(L)e-i + be f(L)ee

yt = bvf (L)e' + bvfy(L)e-' + befe(L)et

then

1 V1) 2 fX2 ()2 21) b•9(z 1) 1 dzE[xtyt] = b2 (z)f + b2vf (z)f + b (z) fe

It turns out that the notion of Markovian dynamics has a nice counterpart in the fre-

quency domain. We will use extensively the following result from the theory of Gaussian

stationary processes (see Doob (1944) for original results and Ibragimov and Rozanov (1978)

for textbook treatment).

Theorem 2 Let Xt be a regular Gaussian stationary process with discrete time defined on

a complete probability space (~, Y, p). Let Tt be a natural filtration generated by Xt. The

process Xt admits Markovian dynamics with a finite number of Gaussian state variables if

and only if its spectral density is a rational function eiA.

Remark. It is a well-known result then that a Gaussian process Xt with a rational

spectral density is an ARMA(p,q) process, that is, it can be represented as

Xt - ilXt-1 + - + ± pXtp = Et + 16Et-1 + '+ Oqt-q (C5)

for some /i, i = 1..p, Oi, i = 1..q, and et, t E Z.

Let us reformulate the equilibrium conditions in terms of functions f(z) and fe(z). It

is convenient to start from the filtering problem of each agent. When forming his demand

each agent has to find the best estimate of AVt+i + (1 - A)Pti+1 given his information
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set •"F = { V ,i Ps8} .. Since some components of Pt are known to agent i, observation of

t= {V,/i p8}- is equivalent to observation of. = "{VZ, Z} where

Zt = bvf (L)e> i + befe(L)te.

The filtering problem is equivalent to finding a projector G such that:

E[AVt+l. + (1 - A)Zt+ 1IF.] = G(L)ZI.

By defiition, V + (1 - A)Zi 1 - G(L)Zt, is orthogonal to all Z', s < t:

E[(AV+' + (1 - A)Z 1+ - G(L)Zt) Z,] = 0.

Calculating expectations we get

E[Vt+Ilzs =

E[Zi',Z8] =

E[G(L)ZtZ,] =

1

27i

27ri

a 1

z 1 - az zt- s ( z

i 1 1 f
bvf(Z)t-f +b 2fe(z) Ifez T2 z t-,9 z( 1 ) I

- b G(z)f(z)> f (f + b 2G(z) fe((z) fe dz.

(C9)

Collecting all terms the orthogonality condition (C8) takes the form

k = 1,2,...

where the function U(z) is

U(z) = b2
zf

+ (1-A) bf(z)f+ (1 A) b-f W
- G(z) (bV f(z)f \\Z

This means that U(z) is analytic in Do = { z : z > 1} and U(oo) = 0. In other words, the

series expansion of U(z) at z = co doesn't have the terms z8,s > 0. The demand function
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of i' agent in z-representation can be written as

( aA f (L) - f (0) )
X= -(r + )P + by( (1 + r)f(L) + (1 - A)f() f(O))

+ b (-(1 + r) + G(L)) f(L)et i + be -( + r) + G(L)) f(L)ee. (C12)

The market clearing condition wXt1 + w2Xt2 = 1 + Ot, where wl = w2 = Q2/2 should be

valid for all realizations of shocks, which yields the following set of equations:

aA f(z) - f(O)
aA- 2(1 + r)f(z) + (1 - A) + G(z)f(z) = 0, (C13)1-az z

-Q(1 + r)fe(z) + 'G(z)fe(z) = 1. (C14)

Given these equations U(z) can be rewritten as

U(z) = 2b?,(1 + r)f (z)f (1) + b2v(1 _ A)A{)f (1) - 2bVG(z)f (z)f +2 -1 _ -2

+be(1 -A)fe(z)fe (1)-b + (1 + r)f fe (z)) (C15)

Note that the term b2 (1 - A) ff (1) does not have terms with non-negative powers of

z, so it can be discarded. Similarly, the term - b2fe (1) contributes only the constant

-1b2fe(O). So U(z) takes an equivalent form:

U(z) = 2b2v ((1 + r) - G(z)) f(z)f (1) + b ((1 - A) - (1 + r) x

x fe(z)fe 1) - b fe (0). (C16)

Let us introduce a function g(z) such that g(z) = G(z) - (1 + r). Then equations (C13),

(C14), and (C16) take the following forms:

a(A + (1 - A)f(0))z - (1 - A)f(O)
(1 - az)(1 - A - (1 + r)z + zg(z))'
1

fe(z) = Og(z)' (C18)?Yg(Z>'
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1 1U(z) = -2bvg(z)f(z)f -+ b (1 - A - (1 + r)z + zg(z)) -xz z
x fe(z)fe - b ( + ))fe(0). (C19)

So the rational expectation equilibrium in our model is characterized by functions f(z),

fe(z), g(z) and U(z) such that f(z), fe(z) and g(z) are analytic inside the unit circle, U(z)

is analytic outside the unit circle, U(oo) = 0 and equations (C17), (C18), and (C19) hold.

Now let us turn to the main part of the proof. By Theorem 2, if the system {V1, V 2, 0, P}

admits Markovian dynamics, then its joint spectral density should be rational, which, in

turn, implies that function g(z) has to be rational as well. Given relationships (C17) and

(C18), functions f(z) and fe(z) should also be rational. So to prove that our model has

non-Markovian dynamics we have to show that there do not exist rational functions f(z) and

fe (z) solving equations (C17), (C18), (C19) and satisfying all conditions specified above.

We construct the proof by contradiction. Suppose that function g(z) is rational. For

further convenience we introduce the function H(z) such that

g(z) = (zg(z) + 1 - A - (1 + r)z)H(z) (C20)

Consequently, in terms of H(z), the function g(z) is

zo - z 1 - A
g(z) = (1+ r) H_(z) _ zo (C21)

The following lemmas describe the properties of H(z).

Lemma 5 H(z) is rational, H(z) y 0 for z E Do, and H (zo) = "

Proof. Since fe(z) = 1/(f2g(z)), we have

1 1 - zH(z)
(z) = (1 + r) (zo - z)H(z)(

Statements of the lemma now follow from the fact that fe(z) is rational and analytic in

Do.

Lemma 6 (z - zl)H(z) , where zi = (1- A) is analytic in Do.
, aCA+C1-A)f (0))
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Proof. Substituting (C21) into (C17) gives

f(Z) a(A + (1 - A)f(0)) zi - z (1 zH(z)). (C23)
(1 + r) (1 - az)(zo - z)

The lemma now follows from analyticity of f(z) in Do.

Substitution of (C22) and (C23) into U(z) results in

(z - zj)(I - zj)U(z) = -2b2 2(X + (1 - A)f(0))2  Z - ()

x H(z)H (1) +b• - b 1 + fe(0). (C24)z 2zH(z)g (e(0). (C24)

Also from (C22),
1

fe (0) = 1 (C25)Q (1 - A)H(O)'
Since g(z) does not have poles in Do (and consequently g ( ) does not have poles in D,),

analyticity of U(z) in D, implies analyticity of Ug(z) = U(z)g (1) in D,. Using (C25) we

see that

Ug(z) = -2b2a 2(A + (1 - A)f(0)) 2 (Z - )( Z)(1 - az)(1 - a)

xH(z)H ( + b~ 2 () + b (C26)z R2zH(z) 2 2M

must be analytical in D,. This means that the pole 1/a in (C26 ) must be cancelled. It

might happen only due to one of the following reasons:

1. H(1/a) = 0,

2. H(a) = 0,

3. zl = a, or, equivalently, f(0) = A

4. z, = 1/a

5. The pole in the first term is cancelled by a pole in the second term.

It is easy to notice that the first reason does not work since in this case a pole in the

second term appears. Similarly, the fifth possibility cannot realize. The equation zl = 1/a

is inconsistent unless A = 0. The second option contradicts the condition that H(z) does
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not have zeros inside the unit circle. This leaves only the third possibility should realize

and we can fix the value of f(0). Consequently, we rewrite Ug(z) as

a22 (1 1 1 1Ug(z) = -2b 2 H(z)H + b2 - (-+ )b (C27)
( - a2 2zH(z) 2 2Q

with the condition

(1 - and U9 (oo) =0. (C28)1 +r 1- A
Now we will show that there is no such rational function H(z). Assume for now that H(z)

has a pole Zh. From Lemma 6, Zh = a or Zh E D,. If zh E D. and zh o00, then, for

analyticity of U(z) in D,, we have to have H(1/zh) = 0, but it contradicts Lemma 5. If

Zh = a then U(z) has a pole at 1/a. Indeed, if a is a pole of H(z) then 1/a is a pole of

H(1/z). The only possibility to cancel it in the first term of U(z) is to have H(1/a) = 0.

But in this case a pole in the second term arises. So H(z) does not have poles in C. As a

result, the only possibility is Zh = oo. This means that H(z) is a polynomial. Let wo E C

be a zero of H(z). Because of Lemma 5, wo can be only in Do. However, this means that,

unless H(1/z) or H(z) have a pole at wo, U(z) is not analytic in D,. We know that H(z)

(and consequently H(1/z)) do not have poles in C. Thus we can conclude that H(z) does

not have zeros. Hence by Liouville's theorem H(z) = H = const. We have two equations

that this constant has to satisfy:

1 + r a2 2
H = -2b2  aA H2 b2 = 0.

1-A' (1 - a2)2 Q E

Obviously, these conditions are inconsistent and this concludes the proof.

3.14 Appendix D. k-lag revelation approximation

In the k-lag revelation approximation all information is revealed to all investors after k

periods, so the information set of investor i is Pt = {V, : 7 < t; V,- i, 0, : 7 < t - k}. It

means that the state of this economy Tt is characterized by the current values of V 1, Vt2

and Ot and by their k lags:

't = (V't,V t-1, ... >t-k, Ot-k)', where VC, = (V1, V,2, O)'.
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Demand of type i investors is

Xt' = wiE[Qt+lljtf] = wi(aAVti - (1 + r)Pt + E[aAVt - i + (1 - A)Pt+l t']),

where wi are endogenous constants given by

7
•W = aVar[Qt+1 I'.l]'

We look for the equilibrium price process as a

Po + P'Qt, where P is a (1 x 3(k + 1)) constant

is:

¢bt+1 = a¢¢t+,+1,

aere
where a= 0

0

01,
0)

1-7

aVar[Qt+l VFt]

linear function of state variables, i.e. Pt =

matrix. In the matrix form dynamics of VPt

( (beI P 61 , Var(o) = 0

,/13
0

0

0

Consequently, dynamics of 1 t can be described as:

/

t+1 = As+ t + Bct1 +1, where Aq =

S.. o

0

0
... O3
... O

.· . .Is

0

0
bi)

Here 13 is a 3-dimensional unit matrix. Now demand can be rewritten as

Xt = wi((1 - A)po + aAVti - (1 + r)Pt + E[aAVt- i + (1 - A)PAyTtl I7]).

Introducing (1 x 3(k + 1)) constant matrices V1 = (1, 0, 0,..., 0) , V 2 = (0, 1, 0, ... , 0) and

V = (1, 1, 0,...,0) we get

Xt = wi((1 - A)po - (1 + r)Pt) + wi(aAV + (1 - A)PAw)E[etljt-].

Thus, we have to calculate E['|t It]. Denoting time t observations of agent i as yt = (Pst, Vti) '

we can gather all his relevant observations in one vector Y i = (Yt4, Yt-i,... Yt-k+l1, t-k)"
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It is also convenient to introduce a set of P,, 7 = t - k + 1...t to separate the informative

part of the price:

Pt = Pt - Po,

t-1 = Pt-1 - P - pk t-k- 1,

~t-k+l = Pt-k+l - PO - P2Vt-k-1 - pk1 t-2k.

Now we can put all observations in a matrix form:

where H i

hi

hiJ

hiJ2

hi k

-I

0

0

J=

0

\0

0 ... 0

13 ... 0
• °- •

0 0 ... 13

0 0 ... 0

We use the following well-known fact: if (9, Y) are jointly normal with zero mean, then

E[TIY] = O'Y, where p = Var(Y)-'E(Y,@'),

Var[xIIY] = Var(T) - E(YF')'Var(Y)-'E(Y4" ' ) .

In our particular case we have:

Var(Yt) = HiVar(x1t)HI'.

E(Y'i') = H'Var('et)

From the dynamic equation for Tt we find that

Var(Ft) = ApVar(Tt)Aq + BRVar(e4f)B,.
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Iterating we get
oo

Var('t) = A',BVar(,E)BAA's
1=0

Thus, the demand of agent i is

X = i((- A)po - (1 + r)Pt) + wi(aAV + (1 - A)PA,)Var(Wt)H ' (HiVar(xt)H') - 1Hzg t.

The imposing of the market clearing condition gives

1(1 - A)po - Q(1 + r)Pt

+ wl(aAV + (1 - A)PA¢)Var(yt)H I ' (H 1V a r ( Wt ) H I ' ) - ' H l t

+ w2(aAV + (1 - A)PA,)Var(xt)H2 '(H2Var(xIt)H 2') -1 H2 't = 1 + Oet,

where E = (0, 0, 1,0, 0,..., 0) and 2 = wl + w2. Rearranging terms we get:

Pt = (1 - A)P - 1 1 (aAV + (1 - A)PAp)Var(It)x
f2(1 + r) + (1 + r)

(C31)

x [wlH"' (H'Var(Tt)Hy' ) - H' + w2H2'(H2Var(t)H2') -1H2] t
1

Q(1 + r)
(C32)

Comparing this equation with the price representation Pt = Po + Pxt we get a set of

equations:
O(1 - A)Po - 1

= (1 + r)
1

or Po (r+ A)'
52(r + A) '

2(1 + r)P = (aAV + (1 - A)PAp)Var(xQt)x

x (wlH1'(H1Var(Tt )H1') - 'H1 + w2 H2'(H2Var(1jt)H2'-1H2) -2 . (C33)

This system of equations on matrix P shoud be supplemented by two equations determining

wl and w2. By definition, wi are determined by conditional variances Var[Qt+l1 t ]

Var[Qt+l ilt] = Var[AVt+l + (1 - A)Pt+jIYf] = Var[(AV + (1 - A)P)Tt+Il Y]

= (AV + (1 - A)P)Var[xIt+•1l t(AV + (1 - A)P)'.
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From (C30) we get

Var[[Ft+l Ft] = A (Var(Et)-Var(t)H H i' V ar( t)Hi) -1H V ar(Wt))A' +BpVar(E) )B.

So the additional equations are

1 = (AV + (1 - A)P)(Ap,(Var(xt) - Var(Lt)Hi(Hig Var(It)Hig ) -1Hi'Var( t))A'Wi
+ BpVar(e )B~)(AV + (1 - A)P)'. (C34)

As a result, when all information is revealed after k lags the equilibrium condition trans-

forms into a complicated system of non-linear equations(C33) and (C34) determining P,

Wl and w2. Numerical solution to these equations give us an approximation to the original

heterogeneous information equilibrium.

k-lag approximation allows us to calculate explicitly the decomposition of higher order

expectations over the state variables Tt. Indeed,

w[Ve ] = (wlE[Vtj 1j] + w2E[Vtjlt])

= (wlVE[tIFt'] + w 2VE[I' F2]) = V(wI+W 2 2) t (C35)

where

Ii = Var(Wt)Hi' (HiVar(xt)Hi')-  H'.

Iterating we get:

w[Vt+j= E'[ -V (wII 1' + w212 ) 2 t+l]

= V (wiln + n2 2) AS (wl'I1 + W2 2)t,.

tw 1 l...t+,[V+,] = v (w i1 + 2) [A ( (WII w2+ 2)•- l
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