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Abstract

The fields of machine learning and mathematical programmiegncreasingly intertwined. Op-
timization problems lie at the heart of most machine leagrapproaches. The Special Topic on
Machine Learning and Large Scale Optimization examinesitiierplay. Machine learning re-
searchers have embraced the advances in mathematicaprmogrg allowing new types of models
to be pursued. The special topic includes models using qtiadlinear, second-order cone, semi-
definite, and semi-infinite programs. We observe that thétgsof good optimization algorithms
from the machine learning and optimization perspectivasheaquite different. Mathematical pro-
gramming puts a premium on accuracy, speed, and robustBgg® generalization is the bottom
line in machine learning and training is normally done dfiel accuracy and small speed im-
provements are of little concern in machine learning. Maeléearning prefers simpler algorithms
that work in reasonable computational time for specific sg¢asof problems. Reducing machine
learning problems to well-explored mathematical programgntlasses with robust general pur-
pose optimization codes allows machine learning reseesdberapidly develop new techniques.
In turn, machine learning presents new challenges to mattieshprogramming. The special issue
include papers from two primary themes: novel machine iagrmodels and novel optimization
approaches for existing models. Many papers blend bothéeemaking small changes in the
underlying core mathematical program that enable the dpval effective new algorithms.

Keywords: machine learning, mathematical programming, convex apétion

1. Introduction

The special topic on “Large Scale Optimization and Machine Learning"seswn the core op-
timization problems underlying machine learning algorithms. We seek to examinetéhaction
of state-of-the-art machine learning and mathematical programming, solicéipey e that either
enhanced the scalability and efficiency of existing machine learning modelatgsrttmoted new
uses of mathematical programming in machine learning. The special topic vedissioot of the
PASCAL (Pattern Analysis, Statistical Modelling and Computational Learniteg)vork of Excel-
lence Workshop on “Machine Learning, SVMs and Large Scale OptimiZatieeid in Thurnau,
Germany from March 16 to 18, 2005.
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Optimization lies at the heart of machine learning. Most machine learning pnehieduce
to optimization problems. Consider the machine learning analyst in action solgngbé&em for
some set of data. The modeler formulates the problem by selecting an apgd@mily of models
and massages the data into a format amenable to modeling. Then the model is ty@ivaly by
solving a core optimization problem that optimizes the variables or paramettrs ofodel with
respect to the selected loss function and possibly some regularizatiaiofunm the process of
model selection and validation, the core optimization problem may be solved mars; tifine
research area of mathematical programming intersects with machine learrongtththese core
optimization problems. On one hand, mathematical programming theory suppléefsiiah of
what constitutes an optimal solution — the optimality conditions. On the other haridematical
programming algorithms equip machine learning researchers with tools fantrdamge families
of models.

In general, a mathematical program is a problem of the form

ming f(s)

subjectto g(s) <0 )
h(s)=0"
seQ

The variables € Q are determined so as to minimize the objective funcfigossibly subject to in-
equalityg(s) < 0and equality constraintgs) = 0. Examples of the s&? include then-dimensional
real numbers)-dimensional integers, and the set of positive semi-definite matrices. Ktyrpiays
a key role in mathematical programming. Convex programs minimize convex optinmZatio-
tions subject to convex constraints ensuring that every local minimum iyslsglobal minimum.
In general, convex problems are much more tractable algorithmically ancetluadly. The com-
plexity of nonconvex problems can grow enormously. General nomsoprograms are NP-hard.
However, local solutions of such problems may be quite useful in machingrigagroblems, e.g.
(Dempster et al., 1977; Bennett and Mangasarian, 1993; Bradley é08l7; Bradley and Man-
gasarian, 1998). Global optimization addresses the issue of noncoptiexization. Integer or
discrete optimization considers nonconvex problems with integer constraints.

A taxonomy of mathematical programs exists based on the types of objeatiye®astraints.
There are now many flavors of mathematical programs: linear, quadretiu;definite, semi-
infinite, integer, nonlinear, goal, geometric, fractional, etc. For examplealdiprograms have a
linear objective and linear constraints. A more complete description of thebéems can be ob-
tained from the mathematical programming glossary (www.cudenverbdoéenbe/glossary/) and
the NEOS optimization guide (www-fp.mcs.anl.gov/otc/Guide/). Each flavor of enalical pro-
gram is a different research area in itself with extensive theory andithligns. Very brief descrip-
tions of the mathematical programs used in this special issue can be founddppbedix. Good
sources for theory and algorithms concerning nonlinear programmingNaeedal and Wright,
1999), (Bertsekas, 2004), and (Bazaraa et al., 2006). An inttioduto convex optimization in-
cluding semi-definite programming can be found in (Boyd and Vandenbgeffl94). Semi-infinite
programming theory and algorithms are covered in (Goberna apd4, 1998). Information about
integer programming can be found in (Nemhauser and Wolsey, 1999).

We observe that the relationship between available mathematical programmietsrand ma-
chine learning models has been increasingly coupled. The adaptation afmadital program-
ming models and algorithms has helped machine learning research advaseardRers in neural
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networks went from backpropagation in (Rummelhart et al., 1986) to grglthe use of various
unconstrained nonlinear programming techniques such as discusséshodBL996). The fact that
backpropagation worked well in turn stimulated mathematical programmers toomstochastic
gradient descent to better understand its properties, as in (Mangeaadssolodov, 1994). With
the advent of kernel methods (Cortes and Vapnik, 1995), mathematigpnming terms such as
guadratic program, Lagrange multipliers and duality are now very familiar tbweesed machine
learning students. Machine learning researchers are designingmodels and methods to ex-
ploit more branches of the mathematical programming tree with a special emphasiastrained
convex optimization. The special topic reflects the diversity of mathematiogtgmming models
being employed in machine learning. We see how recent advances in matlapatgramming
have allowed rich new sets of machine learning models to be explored witlitaitworries about
the underlying algorithm. In turn, machine learning has motivated advanceatimematical pro-
gramming: the optimization problems arising from large scale machine learnindadadnining
far exceed the size of the problem typically reported in the mathematicalgmoging literature.

This special topic investigates two majors themes in the interplay of machine lgékfiin and
mathematical programming (MP).

The first theme contains the extension of well-known optimization methods to raanirig
models and paradigms. A wide range of convex programming methods is usegte novel mod-
els for problems such as uncertain and missing data, and hypothesis selédtio, methods are
developed for introducing constraints into the learning model in order topocate domain knowl-
edge into graphical models and to enforce nonnegativity and sparsity imsiomality reduction
methods.

The second theme collects works aimed at solving existing machine learningsmuate effi-
ciently. As data set size grows, off-the-shelf optimization algorithms becoatequate. Methods
that exploit the properties of learning problems can outperform generilkematical program-
ming algorithms. Many of the included papers deal with well-known convéxnigation problems
present in ML tools such as the quadratic and linear programs at the fabwes ubiquitous support
vector machines (SVM) in either primal or dual forms. Tree re-weightdidfiropagation is used
to solve LP relaxations of large scale real-world belief nets. We see théethéo top perfor-
mance is creating algorithms that exploit the structure of the problem andapefylcattention to
algorithmic and numeric issues.

Many of the papers cross boundaries of both themes. They make snmajbestia the underlying
models that enable the development of powerful new algorithms. Novel odetre developed for
multi-kernel, ranking, graph-based clustering, and structured learriiihg resulting algorithms
decompose the problem into convex subproblems that can be more re&lg.so

To summarize, in this special issue we see novel approaches to machitiedeandels that
require solution of continuous optimization problems including: unconstraimealdratic, linear,
second-order cone, semi-definite, and semi-infinite convex prograradirst/examine the inter-
play of machine learning and mathematical programming to understand thebtkegiraperties
of optimization methods used for training a machine learning model. We obsextvthéhdesir-
able properties of an optimization algorithm from a machine learning pergeeaxn differ quite
markedly from those typically seen in mathematical programming papers. Téevilhexamine
the papers within and across the two themes and discuss how they contrithéestate of the art.
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2. Interplay of Optimization and Machine Learning

The interplay of optimization and machine learning is complicated by the fact thdtingelearning
mixes modeling and methods. In that respect, ML is much like operations chgg2iR). Mathe-
matical programming/optimization is historically a subfield of OR. OR is concerritbdmodeling
a system. Mathematical programming is concerned with analyzing and solvimgaitiel. Both
OR and ML analysts address real world problems by formulating a mod&ljrdgthe core opti-
mization problem, and using mathematical programming to solve it. According ton(R898) an
OR analyst must trade off tractability — “the degree to which the model admiten@nt analysis”
and validity — “the degree to which inferences drawn from the model holdefl systems”. So at
a high level the OR and ML analysts face the same validity and tractability dilemndas iamot
surprising that both can exploit the same optimization toolbox.

In ML, generalization is the most essential property used to validate a appebach. For a
practical ML problem, the ML analyst might pick one or more families of learmmadels and
an appropriate training loss/regularization function, and then sear@nfappropriate model that
performs well according to some estimate of the generalization error bast @iven training
data. This search typically involves some combination of data preprocessitignization, and
heuristics. Yet every stage of the process can introduce errorsahategrade the quality of the
resulting inductive functions. We highlight three sources of such ®rrdhe first source of error
is the fact that the underlying true function and error distribution are onvknthus any choice of
data representation, model family and loss functions may not be suitablesfprablem and thus
introduce inappropriate bias. The second source of error stems fediadttthat only a finite amount
of (possibly noisy) data is available. Thus even if we pick appropriatefloagions, models, and
out-of-sample estimates, the method may still yield inappropriate results. Thedhirce of error
stems from the difficulty of the search problem that underlies the given mggeiiilem. Reducing
the problem to a convex optimization by appropriate choices of loss antraions or relaxations
can greatly help the search problem. Note that in many cases the ML modeiadeeonvex by an
appropriate definition of the system boundaries that treats parametexsdsFor example, ridge
regression for a fixed ridge parameter is a convex unconstrainedagiggutogram. The generalized
cross-validation method (Golub and von Matt, 1997) treats the ridge panaasetéthin the system
boundary, and thus requires the solution of a nonconvex problem.

Consider tractability of a given model expressed as an optimization probleth.MA. and MP
seek algorithms that efficiently compute “appropriate” solutions. The ighaémake an algorithm
more efficient — complexity, memory usage, etc. — are the same for both commautiethere
is a large gap between what are considered an appropriate solutionstimotitemmunities. In
MP, “appropriate” solutions are the ones that solve the model with a higteeler accuracy as
measured by the optimality conditions. As in ML, MP has large suites of ben&hpnablems.
A benchmark study, typically would address both the speed of the algorittmseasured, for
example, by performance profiles (Dolan and Bla2002). The quality of the solution would be
measured by the objective value, a measure of the violation of the constemat® measure of
the violations of the Karush-Kuhn-Tucker optimality conditions. Note thatfalhese metrics of
solution quality are rarely reported in the ML literature. In MP, great carg beataken to make
sure that solutions of equivalent accuracy are compared (seedopds (Dolan and Md, 2002)).

In ML, appropriateness is a much harder question due to the sourcesdelingperrors de-
scribed above. A typical benchmarking study reports generalizatiomseand possibly compu-
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tation times. Little or no attention is paid to how well the underlying optimization problas w
solved by any of the metrics typically used in mathematical programming. Comardelerances
are rarely reported and if they are, they typically are quite large4{10 10-°) relative to those
seen in optimization papers. In machine learning the optimization problems béweg soe only
rough approximations of the real problem of finding a model that genesalell. The ML modeler
may change the problem formulation and algorithms, as long as generalizatarciempromised.
The papers in section 6 of this special topic illustrate how minor model refotimigacan lead to
significant improvements in algorithms. In general, it does not make much sensguire a ML
model to converge to a high accuracy solution. When early stopping isassadorm of regular-
ization, then the algorithm may never need to reach the solution. In this sfmg@(Keerthi et al.,
2006) and (Taskar et al., 2006b) develop algorithms relying on earlpisipand find that they offer
advantages over alternative parametric approaches. Thus the Begwabof a machine learning
algorithm is to find a somewhat accurate solution efficiently. An optimization iéthgorthat has
a poor asymptotic convergence rate may work quite well for ML. lll-conditigrof the objective
is typically viewed as a negative aspect of a model in MP, but ill-conditionfrigenloss function
and the resulting slow convergence of gradient methods may prevetittowge Thus not only is
“good” optimization not necessary, but “bad” optimization algorithms can teasetter machine
learning models.

In the ML community, Occam’s razor appears to apply to algorithms as well; simigierithms
are considered to be better. MP seeks robust optimization algorithms thatefindccurate solu-
tions to a broad class of functions with a premium for decreases in botretleadicomplexity and
empirical computation time. The emphasis is on solving the same size problemsTastéeads to
complex algorithms. The effort to implement a simplex method for linear programmmétghing a
state-of-art commercial solver such as CPLEX would be immense. The Blisdls computational
needs are different. An algorithm that solves the problem with good gkrettion in a reasonable
amount of time is a good algorithm. Incremental speed increases are nterssiimg. Simplicity
of the algorithms is considered to be a significant plus. Scalability becomegex iBgue as data set
sizes grow. A general purpose solver is usually not the most scaladilsediecause it was designed
to robustly solve a wide range of problems to high accuracy. Howevekltheptimization can be
tailored to exploit the structure of the optimization model. Robustness and ilik@oridg are not
big issues since the algorithm need only be effective for a narrow cldseaiions and constraints
and high accuracy solutions are frequently unnecessary.

To summarize, desirable properties of an optimization algorithm from the Mdppetive are

e good generalization,

e scalability to large problems,

e good performance in practice in terms of execution times and memory requisemen
e simple and easy implementation of algorithm,

e exploitation of problem structure

¢ fast convergence to an approximate solution of model,

e robustness and numerical stability for class of machine learning models attempted

e theoretically known convergence and complexity.

1269



BENNETT AND PARRADO-HERNANDEZ

3. New Machine Learning Models Using Existing Optimization Methals

The special topic papers include novel machine learning models basa&gstingeprimarily convex
programs such as linear, second order cone, and semi-definite pragrg. The reader unfamiliar
with the basic convex programs can see their definitions in the Appendix. ebe thapers, the
authors develop novel modeling approaches to uncertainty, hypotledstticn, incorporation of
domain constraints, and graph clustering, and they use off-the-shielfiogtion packages to solve
the models.

3.1 Dealing with Uncertainty Using Second Order Cone Programming

The paper “Second Order Cone Programming Approaches for Handlisgind and Uncertain
Data” (Shivaswamy et al., 2006) presents an extension to SVM that déhlsitmations where the
observations are not complete or present uncertainty. The SVM Qicadragram (QP) problem is
cast into a more convenient Second Order Cone Program (SOCPheedainty is represented as
probabilistic constraints (SVM slack variables turn out to be random MasabThey also come up
with an interesting geometrical interpretation of their method as every dataqeong the center of
an ellipsoid and the points within this ellipsoid being assigned to the class of ttex.c€he study
is extended to multiclass classification and regression.

3.2 Convex Models for Hypothesis Selection

Two papers address hypothesis selection. (Zhang et al., 2006) logkardang an ensemble of
classifiers constructed from a pool of already trained classifiersgddilds to make the performance
of the smaller group equivalent to that of the whole pool, thus saving €f@ad computational
resources. Traditionally, this selection process has been carriedsiogt heuristics or by using
greedy search. In (Bergkvist et al., 2006), the goal is to identify a ssualiet of hypotheses that
exclude the true targets with a given error probability.

The first paper, “Ensemble Pruning Via Semi-Definite Programming” (Zhetngl., 2006),
presents an optimization for pruning classification ensembles. The selettiba classifiers is
based on a trade-off between their individual accuracies and theitijspletheir predictions. This
trade-off determines a quadratic integer program, i.e. a QP where theleariaave to be integer
numbers. The authors in (Zhang et al., 2006) propose a chain ofdraretfons of the quadratic
integer program towards a convex semi-definite program (SDP). Exgetal results show that this
approach beats the state-of-the-art greedy search methods. Inadtiéiccheme forms the basis
of a powerful framework for sharing classifiers in a distributed leareimgronment, which enables
the attack of large scale problems.

In the second paper, “Linear Programs for Hypotheses SelectionlaPBiistic Inference Mod-
els”, Bergkvist et al. (2006) introduce an LP for hypothesis selectignababilistic inference prob-
lems motivated by a protein structure prediction problem. The model optimizesgbeted weight
of excluded hypotheses for a given error probability bound. Théwduibles of the LP represent
worst-case distributions of the hypotheses. The authors employ geffaheshelf LP optimizers
but hypothesize that more efficient algorithms which exploit the problerotsiieimay exist.

4. Models with Side Constraints

The next two papers look at traditional machine learning models with additiomnatraints.
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Niculescu et al. (2006), in “Bayesian Network Learning with Paramete&s@aints”, use con-
straints to incorporate domain knowledge into Bayesian networks. The paamines the cases
for parameter sharing and conjugate constrained Dirichlet priors. &imgjoy existing optimiza-
tion algorithms to solve the resulting models. Addition of constraints improvesrgeaion.
Real-world results are presented for hidden process models appliedRtobitdin imaging. They
formally prove that introducing constraints reduces variance.

Non-negative matrix factorisation (NMF) is a very attractive feature eletechnique because
it favors sparsity and data representations based on parts of therprdbdtavever, it also poses a
difficult nonconvex problem that is commonly solved via gradient descEmé paper “Learning
Sparse Representations by Non-Negative Matrix Factorization and 'SE@ker and Schirr,
2006) presents an iterative algorithm to perform a sparse non-negaétrix factorization. They
exploit the biconvex nature of Euclidean NMF and the reverse-corugatsre of the corresponding
sparsity constraints to derive an efficient optimization algorithm. This wagttbagly non-convex
NMF is solved through the iterative application of a series of convex SQGHgms.

4.1 SDP Methods for Graph Clustering

The paper “Fast SDP Relaxations of Graph Cut Clustering, Transdyetial Other Combinatorial
Problems” (De Bie and Cristianini, 2006) proposes an SDP relaxation tootineatized cut prob-
lem. The normalized cut problem arises when one wishes to partition a datdheset similarity
relationships among instances are defined. The mathematical formulation pfdbiem leads
to an intractable combinatorial optimization problem. Spectral relaxation hasuseel to avoid
this intractability. In spectral relaxation, the combinatorial optimization is cast@more simple
eigendecomposition problem that gives the subsets of data. The nemaappn (De Bie and Cris-
tianini, 2006) consists of an SDP relaxation of the combinatorial problentutiret out to be tighter
than the spectral one, although at the expenses of a larger computatiodah. Moreover, they
also present a scheme to develop a cascade of SDP relaxations thatcalfdved of the trade-off
between computational cost and accuracy. This study is extended tceigplécin semi-supervised
learning.

5. Refining the Classics: Improvements in Algorithms for Wickly Ssed Models

Widely used methods such as SVM and Bayesian networks have welltadagpe optimization
problems and algorithms. The demand for the ability to learn with massive amdudédaois
increasing. The immediate answer to this demand from the optimization and madhinimde
communities is to try to come up with more efficient implementations of these solid anbleelia
optimization methods.

5.1 Optimization Approaches for Dual SVMs

The SVM formulations for classification, regression, ranking, and liowketection require the
solutions of large dense QPs or LPs. These QP and LP problems were isitisdhd by general-
purpose solvers. Now the demand for more scalable and easier to implemanithalg makes
novel algorithms for SVMs an active and dynamic research area.

The primary challenges in solving the LP and QP arises from the linear iligqemnstraints. If
the set of constraints that are active, i.e. satisfied at equality, are khewithe problems reduce to
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the solution of a set of linear equations. The inactive constraints haviéeat @n the final solution
since they are satisfied as strict inequalities. Thus identification of the actngtraints, or active
set, represents a key step in LP and QP algorithms. One of the most comm®ofgalving these
large QPs and LPs is to use some active set strategy. An active setyststiegates the active set,
solves the problem with respect to the estimated active set, uses the requdate the active set
by adding and dropping constraints, and then repeats until an optimal sakifound. In SVMs,
active set methods have a clear machine learning interpretation. For exar8pl® classification,
the active set in the primal corresponds to data points that are on the maigieroor. In the dual
SVM formulation, there is a Lagrangian multiplier associated with each pointelduhl, the active
set is determined by whether each Lagrangian multiplier is at bound or not.

The paper “An Efficient Implementation of an Active Set Method for SVN&:heinberg, 2006)
adapts “traditional” active set methods to the special structure of SVMaditional active set
methods were not thought to be tractable for large scale SVMs, but tleg papcludes that they
are competitive with popular methods such as SVMlight (Joachims, 199Mli§ is an example
of a restricted active set method in which only a few variables are allowegyoa¥ each iteration.
The restricted active set method in SVMLight decomposes the QP into saleprs, each identified
by a group of variables that form an active set. Only the variables in theaet will be updated
through the solution of the subproblem. These subproblems are solvedallintie optimality
conditions are met. These methods have the disadvantage of slow caomeemgeen close to the
optimal solution. The full active set in this paper avoids this problem. WHheadtive sets are used,
there is a corresponding speedup in the convergence of the optimizatiomdn&tie paper provides
a careful discussion of the details necessary for efficient implementatitive set selection, and
warm starts (very valuable for cross-validation). The computationaltestnd that the full active
set method performs faster that SVMlight. This difference is most markedifiner accuracy
solutions. The full active set method offers a speed scalability tradepéfiforms faster that SVM-
Light but may reach memory limitations sooner since it requires storage of &mfthe size of
the active set.

Reduced active set methods are taken to the extreme result in the pogulantsg minimal
optimization (SMO) method (Platt, 1999). In SMO, all variables except fabaat of two samples
are fixed at each iteration. With the many subsets, the variable selection nhettmues a key as-
pect in the convergence speed of the algorithm. The paper “Maximum-GaikiMy Set Selection
for SVMs” (Glasmachers and Igel, 2006) describes a new strategyect see working set based
on a greedy maximization of the progress in each single iteration. The algar#@sprecalculated
information, which means no increment of the computational burden. Theriexgnts show sig-
nificant run time reductions over the broadly used SMO-based LIBS\Vimi @ al., 2005), so that
full sets can be used, with a corresponding speedup in the convergetie optimization method.

The paper “Parallel Software for Training Large Scale Support Védechines on Multipro-
cessor Systems” (Zanni et al., 2006) develops a multiprocessor solvtref standard SVM QP.
Recent work in MP is used to develop a parallel gradient-projectiondlsmmposition technique
for handling subproblems of moderate size. The subproblems and graeleulations are done
in parallel. Convergence results prove the algorithm converges to an dptitation of the origi-
nal QP. In practice, thanks to a large working set size, the algorithmecges in a few iterations.
Details on how to fully exploit multiprocessors using strategies such as pamiliesl caching are
provided. Results are reported for SVMs trained on millions of data points.
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The paper “Incremental Support Vector Learning: Analysis, Implentiemtand Applications”
(Laskov et al., 2006) aims at the software implementation of an efficientrartal learning algo-
rithm for SVMs. The authors examine incremental SVM learning in two se@esiaactive learning
and limited resource learning. They propose a new storage strategy, sienultly column-wise
and row-wise, combined with a smarter organization of the computations fonitia iteration in
terms of gaxpy-type matrix-vector products. This algorithm drops the tatimme of an incremen-
tal SVM by a factor of 5 to 20.

5.2 Optimization Approaches for Primal SVMs

In SVMs and other kernel methods, the computational cost of predictiogel imstance is directly
related to the number of nonzero components or support vectors in ttiietppe function. Thus
methods with a reduced number of support vectors are needed. Ormaeippo doing this is to
optimize the SVM in the primal form while directing invoking the representer #reoto allow
generalization of kernels. In these direct or primal methods, the predfctimtion is assumed to
consist of a linear combination of basis functions formed by the kernelr Wak has established
that sparse and reduced sparse or reduced complexity SVM funcaongecachieved by either
introducing one-norm regularization or by introducing early stoppindegres.

With respect to greedy construction methods, the paper “Building Sugectidr Machines with
Reduced Classifier Complexity” (Keerthi et al., 2006) contains a vergiefii algorithm to develop
a compact support vector machine. The efficiency of the method reliestoralprimal method
approach to the optimization and a cheap and accurate selection criteri@mrief basis functions.
The experimental work presents a wide and systematic comparison with Stagart column
generation methods. This comparison points out the excellent capabilities alffbrithm in terms
of compression in the number of basis functions, as well as a classificatioraag comparable to
that of the full SVM.

Primal or direct kernel SVM models formulated with absolute value type Icasg@®ne-norm
regularization produce LP core optimization problems. The one-nornra@separsity with the
degree of sparsity controllable by a tradeoff parameter. Robustajgneapose LP optimization
tools that exploit advanced numerical analysis are available that canlyediadh accurately solve
massive problems. But these codes have several drawbacks frdimenbarning perspective: they
are expensive to buy, they are complicated to implement, they do not exmblepr structure, and
finally they are designed to find highly accurate solutions while in machineitggtinis may not be
necessary. Thus alternative efficient and easy to implement LP algoritihioR SVM type models
are sorely needed.

The paper “Exact 1-Norm Support Vector Machines Via Unconstca@envex Differentiable
Minimization” (Mangasarian, 2006) introduces a Newton method for exaotirg the 1-norm
SVM problem. It shows that the general LP problem can be recast amamstrained undiffer-
entiable piecewise quadratic function using a dual exterior penalty fundtiatike prior penalty
formulations like (Fung and Mangasarian, 2004), the penalty parameteites firhe author in-
troduces a generalized Newton method for solving the revised problemre$hking algorithm
outperforms CPLEX, a widely used commercial LP package.
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5.3 LP Relaxations for Belief Propagation

The paper “Linear Programming Relaxations and Belief Propagation — AtirieadStudy” (Yanover
et al., 2006) introduces a very efficient method to find the most probabfegocation of a graphical
model by relaxing the corresponding integer program to a LP. The baslisehat the resulting LP
has a large number of constraints and variables and it cannot be solviEskiop machines using
commercial LP solvers. Fortunately the Tree-Reweighted Belief PropadaiitBP) algorithm can
be used to solve the LP. Results show that the special purpose TRBRVEP@dperforms CPLEX
and can be used to solve large scale problems that are not tractable wEXCHie CPLEX model
represents the graph as a matrix while TRBP directly represents the graph.

6. New Algorithms Starting from Reformulated Models

The special issue also illustrates how small reformulations of the model canryigtti better
algorithms. In the final four papers, we see how existing formulationsedoenmulated to admit
new types of algorithms. In (Sonnenburg et al., 2006) and (Shalew$hwnd Singer, 2006),
the revised formulations and novel algorithms can more effectively expdeitial structure thus
reducing the problem to a series of familiar, more easily solved problems.

6.1 Large Scale Multi-Kernel Learning Via Semi-Infinite Programming

The success of a kernel method is highly dependent on the choicenel KEhe multi-kernel learn-
ing (MKL) strategy is to consider a suite of kernels and let the algorithm demidhe choice of ker-
nel. The paper “Large Scale Multiple Kernel Learning” (Sonnenbtia).e2006) proposes a hovel
semi-infinite linear program (SILP) for the problem of learning with multiplenkds. Semi-infinite
linear programs have a finite number of variables, a linear objective,raimfigite number of linear
constraints. For SVM classification, the SILP solution is also optimal for the.ld#adratically
constrained quadratic program in (Bach et al., 2004). The SILP isdabkiag a column generation
method which alternates between solving a restricted master problem andfreltBstricted mas-
ter problem is solved using the corresponding off-the-shelf singleekérarning algorithms for the
given loss. The LP is solved by a generic LP solver. The algorithm is efegtive at seeking an
approximate solution to the SILP. The authors show how the method can Ineledt® a variety of
loss functions. Discussion of valuable details and variations of the algon#eded for large scale
problems are provided. Large scale results are achieved using patgbethms. They provide
results for problems with up to 10 million data points and 20 kernels.

6.2 Better Ranking by Exploiting Structure

General purpose optimizers frontiers can be pushed forward in partcases by exploiting prob-
lem structure. Often optimization problems can be cast onto simpler onesgudkimat the objective
function follow certain structure. This is the case in the paper “Efficiemtrhieg of Label Rank-
ing by Soft Projection onto Polyhedra” (Shalev-Shwartz and Sing@6R0rhe authors develop a
fast and frugal algorithm for learning rankings by comparing the ptedigraph with the feedback
graph resulting in a QP with linear constraints. The algorithm decomposerdbleqm into a series
of soft projections that can be efficiently solved using an iterative algorifhe algorithm covers a
large class of ranking and classification problems including multiclass and ®dMs. It reduces
to SOR in the classification case (Mangasarian and Musicant, 1999).
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6.3 Max Margin Methods for Structured Output

Two of the papers tackled maximum margin methods for outputs defined dmsgvgpeformulating
the problem and developing algorithms that could exploit the special steucture first looks at
hierarchical classification and the second looks at methods for moreafistrectured data.

Maximum margin classification methods have focused on binary output problérase meth-
ods have succesfully adapted to multicategory classification by analyzipgablem as a collection
of binary problems (Rifkin and Klautau, 2004). However, emerging ages where the output is
modeled by a vector demand a more careful analysis since their binarizat@weis (i) an expo-
nential number of subproblems and (ii) the loss of the information encoded sirilctured output.
In this sense, (Taskar et al., 2006a) proposes an interesting combinatioaphical models and
maximum margin classifiers where the former allows use of the structuredtanfpumation and
the latter provides a reliable classification technology. Tractability from thiengation point of
view is achieved through the grouping of the variables of the optimizatiorigmoimto marginals
defined by the graphical model.

The paper “Kernel-Based Learning of Hierarchical Multilabel Classiitcy Models” (Rousu
et al., 2006) provides a more efficient framework for scenarios wieresector output describes
a hierarchical relationship. Their formulation requires the solution of &laogle quadratic pro-
gram. This method’s efficiency relies on a decomposition of the core probkensingle variable
subproblems and the use of a gradient-based approach. More@veptilmization is enhanced by
a dynamic program that computes the best update directions in the feasible se

The paper “Structured Prediction, Dual Extragradient and Bregmajed®ions” (Taskar et al.,
2006b) proposes simple scalable maximimum margin algorithms for structuregt oudgels in-
cluding Markov networks and combinatorial models. The problem is to taksrntgadata of in-
stances labeled with desired structured outputs and a parametric scoritigritand learn the pa-
rameters so that the highest scoring outputs match as closely as possil#sited dutputs. Prior
maximum margin approaches produced QP models (Taskar et al., 2008)inBiyg of the prob-
lem one level up as a convex concave saddle point model, the authocaitalize on the recent
advances in optimization on extragradient methods (Nesterov, 2003)exttagradient approach
produces a simple algorithm consisting of a gradient and projection steghé-class of models
considered, the projection requires solution of dynamic program or nlefiesv models for which
very efficient algorithms exist. The method is regularized by early stoppitgrestingly the path
of the extragradient algorithm corresponds closely to the parametric sopath of the regularized
margin methods in their experiments. This demonstrates the interplay of the optimiigioithm
and regularization: the path of the optimization algorithm is part of the regataizand there is
no need to accurately solve the model.

7. Conclusion

Research in ML and research in MP have become increasingly coupleteddarchers are making
fuller use of the branches of the MP modeling tree. In this issue we see 8&Rrohers using
convex optimization methods including linear, nonlinear, saddle point, semiténfsecond order
cone, and semi-definite programming models. The availability of general MRImadong with
robust general purpose solvers, provide tools for ML reseasd¢baxxplore new ML problems. The
resulting ML models challenge the capacity of general purpose sohariing in the development
of novel special purpose algorithms that exploit problem structures@ bpecial purpose solvers
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do not necessarily possess the traits associated with good optimization afgorftractability and
scalability are valued in both ML and MP communities. Typically, MP demands lipatitams find
high accuracy solutions and that they be robustness across widesotdgg®blems. In contrast,
ML algorithm need to find good solutions to narrow classes of problems wahialpstructure.
Models may be reformulated to allow better algorithms provided that generafizatiomproved
or at least not compromised. High accuracy is not required becaube afiherent inaccuracies
in the machine learning models and the fact that inaccurate solutions areratelipesought as a
form of regularization, for example as in early stopping. Also, ML puts nadra premium on
algorithms that are easily implemented and understood at the expensearfr@@rée/complexity
improvements that are typically studied in mathematical programming. In this spagi@allarge
scale problems were successfully tackled by methods that exploited botlowbe MP models
and their special structure and state-of-the-art MP methods. The kigsai illustrates the many
forms of convex programs that can be used in ML. But we expect theplateof MP and ML will
increase as more branches of the MP tree are incorporated into ML addrtiends of large scale
ML models exceed the capacity of existing solvers.
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Appendix: Standard Convex Programs

This section reviews the basic convex optimization mathematical programming nugdel# this
special issue.

Quadratic Programming

Quadratic programming is used extensively in machine learning and statistiesiS€ of the least
squares loss function in methods such as ridge regression and thenZegprlarization in most
support vector machine models both lead to quadratic programming models.dfatjogrogram

(QP) has a quadratic objective with linear constraints.

Based on (Nocedal and Wright, 1999), we provide a brief review aflcatic programming and
the reader can see (Nocedal and Wright, 1999) for more details. Heeajeuadratic program can
be stated as

mins 3SQs+c’s
subjectto gs<b; iel 2
ajs=Db;j jee

where the HessiafQ is an x h symmetric matrix, | and are finite sets of indices aray, i € | U¢€
aren x 1 vectors. IfQ is positive semi-definite, i.es Qs> 0 for anys, then the problem is convex.
For convex QP, any local solution is also a global solution. A QP can alWwaysolved or shown to
be infeasible in a finite number of iterations. The following necessary dfidisaot Karush-Kuhn-
Tucker (KKT) optimality conditions of QP are formed with the use of Lagramgnaultipliersa; for

1276



CONSTRAINED OPTIMIZATION IN MACHINE LEARNING

the inequality constraints arfi) for the equality constraints:

Primal Feasibility a;’s < b; iel
aj's=Db;j jee

Dual Feasibility Qs+ y; a0+ YjcajBj =0 (3)
a; >0 iel

Complementarity a;(a’s—bj)=0 iel

Note that if there are no inequality constraints<D), then a KKT point can be found by simply
solving a system of linear equations.

Problems with inequality constraints represent more of a challenge. Two fawiiligP methods
prevail: interior point methods and active-set methods. We focus on the $attee active set
algorithms are a key component of this special topic. The optimal active thet $2t of constraints
satisfied as equalities at the optimal solutions. Active set methods work by gredkilcated guesses
as to the active set and solving the resulting equality constrained QP. lbdssegs are wrong, the
method uses gradient and Lagrangian multiplier information to determine doitsti@add to or
subtract from the active set.

Classical SVMs and the many subsequent variations require the solutoQ®fproblem.

Linear Programming
Linear programming optimizes a linear function subject to linear constraintse 8irear functions
and constraints are convex, an LP is always a convex program. Lpnegramming can be thought
of as a special case of the QP with the Hes€pgaqual to 0. The general linear program can be
stated as
mins C's
subjectto as<b; i€l (4)
ajs=b; jee

Interior point methods and simplex methods (active set methods) are botly wsdel within gen-
eral purpose LP solvers.

Second-Order Cone Programming
The second-order cone program (SOCP) problems have a lineatiebjesecond-order cone con-
straints, and possibly additional linear constraints:

mins C’s
subjectto ||Ris+di|l2<as+b; i€C (5)
ajs=bj jee

whereR; € R"*" andd; € R". Consult (Boyd and Vandenberghe, 2004) Chapter 4 for an intro-
duction to SOCPs and their application to learning type problems. SOCPs areftenssolved
using interior point algorithms. See (Mittelmann, 2003) for a benchmarkroéngé purpose SOCP
algorithms.

Semidefinite Programming
Semidefinite programs (SDPs) are the generalization of linear programs teasatin standard
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form an SDP minimizes a linear function of a matrix subject to linear equality @inttrand a
matrix nonnegativity constraint:

mins (C,S)
subjectto (A;,S)=b; i€l (6)
S>0

whereS, C, andA; are inR™" andb; € R. HereS = 0 meansS must be positive semidefinite
and(C,S) = trace(CS). SDPs are most commonly solved via interior programming methods. A
comparison of SDP codes can be found in (Mittelmann, 2003).

Semi-infinite Programming
Semi-infinite linear programs (SILPs) are linear programs with infinitely mangtcaints. A SILP
minimizes a linear objective subject to an infinite number of linear constraints:

mins  3C's
subjectto as<0 aea (7
bs=0 bes

wherea and3 are sets (possibly infinite) af vectors. Reviews of semi-infinite programming can
be found in (Hettich and Kortanek, 1993) and (Reemtsen and Ruckm@g8), while the book
(Goberna and Gpez, 1998) gives extensive coverage of the topic.
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