
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 1, JANUARY 2007 3

Avoiding Pitfalls in Neural Network Research
G. Peter Zhang

Abstract—Artificial neural networks (ANNs) have gained exten-
sive popularity in recent years. Research activities are consider-
able, and the literature is growing. Yet, there is a large amount of
concern on the appropriate use of neural networks in published
research. The purposes of this paper are to: 1) point out common
pitfalls and misuses in the neural network research; 2) draw at-
tention to relevant literature on important issues; and 3) suggest
possible remedies and guidelines for practical applications. The
main message we aim to deliver is that great care must be taken in
using ANNs for research and data analysis.

Index Terms—Data, model building, model evaluation, neural
networks, pitfalls, publication bias, software.

I. INTRODUCTION

ARTIFICIAL neural networks (ANNs) have enjoyed con-
siderable popularity in recent years. They have been used

increasingly as a promising modeling tool in almost all areas of
human activities where quantitative approaches can be used to
help decision making. Research efforts in ANNs are consider-
able, and the literature is vast and growing. This trend will con-
tinue in the foreseeable future. Indeed, ANNs have already been
treated as a standard nonlinear alternative to traditional models
for pattern classification, time series analysis, and regression
problems. In addition to numerous standalone software devoted
to neural networks, many influential statistical, machine learn-
ing, and data-mining packages include neural network models
as add-on modules in their recent editions.

The popularity of ANNs is, to a large extent, due to their
powerful modeling capability for pattern recognition, object
classification, and future prediction without many unrealistic
a priori assumptions about the specific model structure and
data-generating process. The modeling process is highly adap-
tive, and the model is largely determined by the characteristics
or patterns the network learned from the data in the learning
process. This data-driven approach is highly applicable for any
real-world situation where theory on the underlying relation-
ships is scarce or difficult to prescribe but data are plentiful
or easy to collect. In addition, the mathematical property of
the neural network in accurately approximating or representing
various complex relationships has been established and sup-
ported by solid theoretical work [9], [15], [23], [34], [48], [59],
[64]–[67], [125], [126]. This universal approximation capability
is important because many decision support problems such as
pattern recognition, classification, and forecasting can be treated
as function mapping or approximation problems.
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Despite the growing success of neural networks, we have
seen many problems, pitfalls, and misuses frequently emerge
with neural network research and applications in the literature.
ANNs’ powerful pattern recognition ability and flexible mod-
eling approach make them attractive, bringing with them great
opportunities and the strong potential to be useful in solving real-
world problems. But at the same time, this tremendous flexibility
and wide applicability also exposes them to the real danger of
inappropriate uses. For example, ANNs have recently been pro-
moted as a data-mining tool to search for valuable information in
a large database. However, it is often too easy for the technique
to be used instead for data dredging or data snooping [20], [127].
The real danger here is that even if there is no useful information
in the data, neural networks may still find something “signifi-
cant,” misleading unwary users. As Salzberg [104] points out,
“when one repeatedly searches a large database with powerful
algorithms, it is all too easy to ‘find’ a phenomenon or pattern
that looks impressive, even when there is nothing to discover.”
This danger of data snooping is also discussed by many re-
searchers including [22], [58], and [127].

Pitfalls can arise in the use of many quantitative methods.
This can happen when researchers do not have a complete un-
derstanding of the technique or a careful design to avoid pos-
sible abuses, especially when the technique can be “easily”
implemented with an automatic software package. It is well
known that statistics is often misused [2], [62], [69], [75]. As
early as in 1938, Cohen [29] observed various pitfalls in the
use of descriptive statistics in practice. King [76] identifies a
set of serious statistical mistakes appearing in the quantitative
political science literature. Chatfield [17] gives many examples
of common modern-day pitfalls in statistical investigations and
comments that “statistics is perhaps more open to misuse than
any other subject, particularly by the nonspecialist.” Misuses of
discriminant analysis are detailed in [39] for business, finance,
and economics applications, in [147] for medical diagnoses, and
in [146] for psychology problems. The abuse of variance models
in regression is discussed in [118]. Issues of statistical pitfalls
related to model uncertainty and data dredging are discussed
in [20] and [21].

The fundamental principle of ANNs for data analysis and
modeling is the same as or similar to that of statistics, and
in many aspects ANNs can be treated as the nonlinear coun-
terparts of statistical techniques [24], [28], [58], [101], [102],
[108], [111], [124]. Thus, pitfalls in statistical analysis are likely
seen also in neural network research. For example, Schwartzer
et al. [140] list six major types of ANN misuses, which are
similar to those observed in [147] with statistical discriminant
analysis. While any quantitative method is subject to misuses,
methods that are complicated, automatic, and new are generally
more likely to be misused than simple, nonautomatic, and estab-
lished methods. Because of their newness, complexity, and lack

1094-6977/$25.00 © 2007 IEEE



4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 1, JANUARY 2007

of standard modeling procedure, as well as the “black-box” na-
ture, ANNs are even more susceptible to the danger of misuses
than other subjects including statistics. These probably are the
reasons that we see more controversial or contradictory results
reported in neural network research.

Pitfalls and abuses in the neural network research are harm-
ful to the field. Indeed, skeptical opinions regarding neural net-
works as hype or passing fad are abundant [18], [19], [55], [129].
Some of this skepticism may be justifiable given a large number
of problems observed in the neural network community. For ex-
ample, Schwarzer et al. [140] review the literature of neural net-
work applications for prognostic and diagnostic classification in
oenological studies between 1991 and 1995 and find the follow-
ing seven misuses: 1) mistakes in estimation of misclassification
probabilities; 2) fitting of implausible functions; 3) incorrectly
describing the complexity of a network; 4) no information on
complexity of the network; 5) use of inadequate statistical com-
petitors; 6) insufficient comparison with statistical method; and
7) naı̈ve application to survival data. They conclude that “there
is no evidence so far that application of ANNs represents real
progress in the field of diagnosis and prognosis in oncology.”

Therefore, in order for the field to grow in a healthy direction
and achieve significant advances in the future, it is important for
researchers to be aware of potential pitfalls as well as ways to
avoid them. The goals of this paper are to: 1) point out various
common pitfalls and misuses in the neural network research;
2) draw attention to relevant literature on important issues; and
3) suggest possible remedies and guidelines for practical appli-
cations. We will mainly focus on the multilayer feedforward type
of neural networks, although many issues discussed could also
be applied and extended to other types of neural networks. The
focus on feedforward neural networks is due to their popularity
in research and applications as according to Wong et al. [151],
about 95% of business applications of neural networks reported
in the literature use this type of neural model. The main message
we aim to deliver is that great care must be taken in using ANNs
for research and data modeling.

The remainder of the paper is organized as follows. Section II
provides several major factors that contribute to the common
pitfalls in neural network applications. Sections III–IX discuss
various pitfalls in neural network research as well as recom-
mended approaches to avoid them. Finally, Section X provides
concluding remarks.

II. FACTORS CAUSING COMMON PITFALLS

Pitfalls in neural network research arise in many different
forms due to various factors. The most important contribution
to the many pitfalls is perhaps the nonlinear nonparametric na-
ture of the neural network model. While this property is de-
sirable for many real-world applications, it also brings about
more opportunities to go wrong in the modeling and application
process. Compared to their linear statistical counterpart, neural
networks have fewer assumptions, more parameters to estimate,
many more options to select in the modeling process, all of
which open more possibilities for inappropriate uses and prob-
lematic applications. As Granger [56] puts it, “building models

of nonlinear relationships are inherently more difficult than lin-
ear ones. There are more possibilities, many more parameters
and thus more mistakes can be made.”

The second major reason is the lack of a uniform standard in
building neural network models. For example, numerous non-
linear algorithms that are alternatives or variations to the basic
backpropagation (BP) algorithm exist. These algorithms vary in
efficiency and effectiveness in estimating parameters. In addi-
tion, different and sometimes conflicting guidelines are provided
on many factors that could affect ANN performance. The prob-
lem is that ANN models are sensitive to many of these factors.

Pitfalls are more likely to occur to unwary researchers who
lack the expertise and knowledge of the various forms of abuses.
They often have the inappropriate supposition that ANNs can
be built with automatic software, and that users do not need to
know much of the model detail.

Another reason that many inappropriate uses of ANNs are
published is the lack of details on several key aspects of the
model-building process. Authors or researchers often do not
give sufficient detail, essential features, or adequate description
of their study methodology, which hinders easy understanding
or replications for others. On the other hand, reviewers may not
pay attention to these issues. The lack of transparency, thus,
contributes to errors in published research work.

III. BLACK BOX TREATMENT OF ANNS

Neural networks are often treated and used as black boxes.
In a survey by Vellido et al. [119], the lack of explanatory
capability in terms of the “incapacity to identify the relevance
of independent variables and to generate a set of rules to express
the operation of the model” is considered by researchers as the
main shortcoming in the application of neural networks. While
it is true that ANNs are not able to give the same level of insight
and interpretability as many statistical models, it is a pitfall to
treat them as complete black boxes with the assumption that
we know nothing about the nature of the ANN model built for a
particular application except for the output estimate or predic-
tion. Often, “black box” is used either as an excuse to relieve
researchers from exploring further inquiries and examining the
established model more rigorously or as a justification for au-
tomatic modeling so that people with little knowledge of neural
networks and subject matter can do the modeling easily [63].
With this view, users do not need to understand how the model
works and formal statistical tests may not be applied to test the
significance of the model and the parameters. Faraway and Chat-
field [43] have pointed out the potential danger of the opinion
that ANN models can be built blindly in “black box” mode.

Advances in ANN research have suggested that neural net-
works are not totally unexplainable. In fact, there are consider-
able research interests in offering insights into the “black box”
operation of neural networks. One active research area is in the
understanding of the effect of explanatory variables on the de-
pendent variable or output of the model. Numerous measures
have been proposed to estimate the relative importance or contri-
bution of input variables. Some of these measures are reviewed
in [130]. Intrator and Intrator [71] propose a method based on



ZHANG: AVOIDING PITFALLS IN NEURAL NETWORK RESEARCH 5

the robustification technique to interpret neural network results
in terms of the input effects and interactions among input vari-
ables. Another area of research is in rule or knowledge extraction
from trained networks. Benitez et al. [10] and Castro et al. [16]
establish the equality of ANNs to fuzzy-rule-based systems and
propose the methods to translate the knowledge embedded in
the neural networks into more understandable fuzzy rules. Se-
tiono et al. [135], [136] propose the algorithms to discover
rules from networks for regression problems. Andrews et al. [4]
and Tickle et al. [116] survey the techniques used for extract-
ing rules and knowledge embedded in trained ANNs. Tickle
et al. [117] even conclude that after more than 10 years of re-
search in the knowledge discovery in ANNs, we have already
reached a point where the deficiency of the black box nature is
“all but redressed.”

It is a well-known fact that, for classification problems, ANNs
provide direct estimates of the posterior probabilities [52], [100],
[122]. The interpretation of neural network outputs as poste-
rior probabilities is of fundamental importance because many
traditional Bayesian classification methods are established on
the ability to estimate the posterior probability. As summarized
in [122], “Interpretation of network outputs as Bayesian proba-
bilities allows outputs from multiple networks to be combined
for higher level decision making, simplifies creation of rejection
thresholds, makes it possible to compensate for difference be-
tween pattern class probabilities in training and test data, allows
output to be used to minimize alternative risk functions, and
suggests alternative measures of network performance.”

The links and equivalence between ANNs and various tradi-
tional statistical models have been well established. For exam-
ple, Raudys [97] shows that decision boundaries of single-layer
perceptrons are equivalent or close to those of the seven statisti-
cal classifiers. Gallinari et al. [49] and Schumacher et al. [105]
establish the theoretical connection of ANNs to discriminant
analysis and logistic regression. Certain ANN models have been
suggested to be equivalent to conventional time series models.
For example, autoregressive models can be implemented via
neural networks [31]. Connor et al. [30] demonstrate that recur-
rent neural networks are a special case of nonlinear autoregres-
sive and moving average models, while feedforwared ANNs are
a special case of nonlinear autogressive models. Therefore, the
fundamental mechanism of neural networks is the same as or
very similar to many statistical methods in classification and
forecasting.

Many people believe that the functional form of the neural
network model cannot be known precisely. In addition, the ex-
act relationship between inputs and outputs is too complex to
express. This is not true. The general functional form of a sin-
gle hidden layer feedforward neural network can be written as
follows:

yk = α0k +
q∑

j=1

αjkf

(
p∑

i=1

βijxi + β0j

)
+ ε,

k = 1, 2, . . . , r (1)

where {xi} and {yk} are the vectors of the input and output
variables, respectively; p, q, and r are the numbers of input,

hidden, and output nodes; f is a transfer function such as the
popular logistic f(x) = 1/(1 + exp(−x)); {αjk} and {βij} are
the sets of weights from the hidden to output nodes and from the
input to hidden nodes, respectively; and α0k and β0j are weights
of arcs leading from the bias terms, which have values always
equal to 1. Equation (1) suggests that the neural network model
is a weighted sum of a basis function of a linear combination of
input variables.

Of course, the model parameters such as p, q, and r, as well as
{αjk} and {βij}, will vary from application to application. But
the basic relationship specified in (1) is always held. Thus, it is
not difficult to express the trained neural network model with
an exact mathematical relationship, although it can be complex.
This knowledge along with the estimates of weights is often
useful as one may wish to perform further analysis to explore
the property of the relationship and extract the knowledge em-
bedded in the connecting weights. Therefore, totally ignoring
the internal workings of ANNs could result in inappropriate
treatment of neural networks and loss of the opportunity to gain
insights from the established model.

IV. OVERFITTING AND UNDERFITTING

Overfitting is one of the most cited problems with ANNs. The
topic is well discussed and every neural network researcher is
perhaps aware of the danger of overfitting. Overfitting limits the
generalization ability of predictive models. For neural networks,
it is easy to get a good or excellent result on the in-sample data,
but this by no means suggests that a good model is found. It
is likely that the model memorizes noises or captures spurious
structures, which will cause very poor performance in the out-
of-sample data. Overfitting typically happens when users build
overly large neural networks and/or the in-sample data used to
train networks are small. Therefore, it is more likely to occur
with ANN models than most statistical models due to their
flexible modeling approach and the large number of parameters
to be estimated from the data.

The above fact is well known. The guidelines and techniques
to avoid overfitting are plentiful. Unfortunately, the dangers of
overfitting “are not always heeded” [21]. In the literature, we
see many applications with inappropriate model sizes relative
to sample sizes. For example, Fletcher and Goss [44] use 36
observations in their study of bankruptcy prediction applica-
tion. Davis et al. [138] have only 32 observations in training
a neural network with more than 200 input nodes. Adya and
Collopy [1] find that, among 27 effectively validated studies in
forecasting and prediction, only three attempt to control the po-
tential problem of overfitting. In a review for auditing and risk
assessment applications, Calderon and Cheh [137] report that
most studies suffer from the overfitting or overtraining prob-
lems. Business applications listed in [79] and [119] also indi-
cate many overfitting problems. In a survey on 43 applications
of neural networks for the forecasting of water resources vari-
ables, Maier and Dandy [84] find that, for most applications, the
relationship between the network size in terms of the connection
weights and training sample size is ignored and the number of
hidden nodes used is greater than the theoretical upper bounds.
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Hippert et al. [61] review 40 papers in the applications of ANNs
for short-term load forecasting and conclude that “most of the
papers proposed ANN architectures that seemed to be too large
for the data samples they intended to model. . .. These ANNs
apparently overfitted their data.”

Another related pitfall is to include as many input variables
as possible in the model, believing or hoping that the ANN can
identify the most important and relevant variables through the
linking weights’ adjustment during the model-building process.
Including a large number of unnecessary variables not only in-
creases the model complexity and the likelihood of overfitting,
but also causes more time and effort wasted in training. More-
over, the true pattern may be masked by the irrelevant factors
and their interactions. In [138], for an application of neural net-
works for audit control risk assessment, 210 input variables are
used with only 32 observations in the training sample.

On the other hand, underfitting occurs if a neural network
model is under-specified or not trained well. With underfitting,
the model does not give good fit even to the training set. While
underfitting is usually not a major concern compared to over-
fitting, ignoring the underfitting can also cause problems in
applications, especially when the training algorithm is not ap-
propriately used to guarantee a good solution in the estimation
process.

The phenomena of under- and overfitting are well known
in the statistical literature and are well discussed in the neural
network community with the concept of bias/variance tradeoff
[50]. A large number of research publications have appeared
on the bias/variance issues of neural networks learning (see
[130] for relevant research activities in the classification area).
Although most studies in the area are theoretical in nature, it is
helpful for ANN users to have a clear understanding of the basic
issue of bias versus variance.

Because of the over- and underfitting problems, it is often de-
sirable to report the training process and both the in-sample and
out-of-sample performances. Published research studies, how-
ever, do not do well in reporting the in-sample results. Although
the main focus and interest of ANN applications are on the out-
of-sample performance, it may be difficult to comprehensively
judge the quality of the model without also looking at the in-
sample results. Adya and Collopy [1] find that the most common
problem for effective implementation of the model in published
studies is their failure to report in-sample results. They further
advise, “if a study does not report in-sample performance on
the network, we suggest caution in acceptance of its ex ante
results.”

Building a parsimonious model with minimum number of
input variables and parameters but at the same time achieving
high predictive accuracy is critical to avoiding under- and over-
fitting problems. To this end, researchers should combine both
qualitative domain knowledge and quantitative variable selec-
tion approach to select the most important predictor variables.
Additionally, node pruning and weight elimination methods can
be used to reduce the complexity of the neural model [99]. For
recent reviews on statistics-based and neural-network-based fea-
ture variable selection techniques, readers are referred to [72]
and [130].

V. DATA-RELATED PROBLEMS

ANNs are data-driven methods. Without data, it would be
impossible to build an ANN model in the first place. However,
what data should be used and what quality characteristics the
data should possess are rarely considered by ANN researchers.
In many applications, data are used as if they are free of errors
and are representative of the true underlying process. This is
certainly not necessarily true in many situations. It is well known
that neural networks as well as other modeling techniques cannot
turn garbage inputs into golden information, or “garbage in and
garbage out.” Consequently, the reliability of neural network
models depends to a great extent on the quality of data.

Data used in neural network research typically come from
two sources: The primary source and the secondary source. The
primary data source is the original data collected with a specific
research question to be investigated. On the other hand, the sec-
ondary data source contains data sets that have previously been
used for other purposes. Both primary and secondary data have
been used in neural network research, although the secondary
data source is used much more frequently due to its convenience
and much less effort to obtain. Secondary data are often used
for the purposes of model evaluation, model comparison, and
methodology illustration.

Data stored in organizational databases often contain signif-
icant errors [80], which can affect the predictive accuracy of
neural network models. While Bansal and Kauffman [6] find
that ANN models are more robust than linear regression models
when data quality decreases, results reported in [78] suggest
that error rate and its magnitude can have substantial impact on
neural network performance. Klein and Rossin [78] believe that
an understanding of errors in a data set should be an important
consideration to ANN users and efforts to lower error rates are
well deserved.

In addition to errors in the data set, data representativeness
is another issue that is largely ignored in the literature due to
the convenience of sample selection. If the data are not random
or not representative of the true population, results obtained
from the neural network analysis may not be useful or gener-
alizable. Few studies, however, examine this issue explicitly.
In conventional time series forecasting, it is well known that
nonstationarity can have significant impact on the analysis and
forecasting and preprocessing are often necessary to make data
stationary. In the neural network literature, most studies do not
consider the possible effect of nonstationarity. Although some
researchers explicitly address the issues of model uncertainty
and the shift of underlying data-generating process, others over-
look them entirely, even if the data may indicate some potential
problems.

An interesting exception to the above representativeness is-
sue is in a two-group classification with ANNs. Although group
composition of the two classes in the population is rarely equal
(and in many cases extremely unbalanced), it is often beneficial
to include equal number of examples from both the classes to
ensure a good representation of the small group [11], [131].
Wilson and Sharda [128] and Jain and Nag [73] study the effect
of training sample composition on neural classifier performance
and find that using balanced samples from two groups to build
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the network model can yield the best prediction results on the
holdout sample, even if the holdout sample is representative of
unbalanced population. Thus, using unrepresentative in-sample
data in this context is warranted. In other words, using a “rep-
resentative” sample can result in a suboptimal solution in the
practical application of the neural classifier.

Many studies have used data sets stored in online reposito-
ries such as the University of California, Irvine (UCI) machine
learning repository and several well-known forecasting compe-
tition databases. Often these public data sets are used to either
demonstrate the proposed new methodology or compare differ-
ent methods. It is advantageous to have a common convenient
database to serve as a benchmark to test new methods. Fisher’s
iris data for classification and Wolf’s sunspot series for nonlin-
ear time series forecasting are two well-known data sets used by
numerous researchers for many decades. But the problem with
using the same data set repeatedly is that significant results may
be “mere accidents of chance” [104]. Individual data snooping
is possible if an individual becomes familiar with the character-
istics of some data sets and develops specific algorithms tailored
to these data sets. Denton [36] and Salzberg [104] analyze the
danger of the so-called “collective data mining” and show that
using the same data set by more than one investigator distorts
the Type I error rate—the probability of making at least one
mistake. The publication bias against nonsignificant results can
further exacerbate the problem [8].

Another problem with the use of public data is that the data
set may not be a random or unbiased sample even though the
data repository contains a large number of data sets. For exam-
ple, the well-known M1 and M3 forecasting competition data
repositories comprise more than 1000 and 3000 business and
economic time series, respectively, with different types and pe-
riodicities. Yet, few agree that they are random or representative
samples of all possible data series [85], [90]. Therefore, it is
a pitfall to try to generalize the results beyond the data sets
tested. One possible solution to this problem is to increase the
data repository over time to improve representativeness and to
be careful in interpreting results obtained from using such data
sets. Another solution is to use artificial or simulation data to
control the properties of the data for which new methods or
algorithms are targeted. Thus, the use of artificial data can “test
more precisely the strengths and weaknesses” [104] of a new
method.

Sample size of the data set is another important issue in all
quantitative modeling endeavors including neural network anal-
ysis. Some techniques have a higher requirement on minimum
size for data modeling and analysis. For example, in the time
series forecasting context, Box and Jenkins [12] suggested that
at least 50, or better 100, observations are necessary to build a
successful autoregressive integrated moving average (ARIMA)
model. Neural networks are nonlinear nonparametric models
that typically require larger sample sizes than conventional sta-
tistical procedures for model building and validation. In general,
the larger the sample is, the better is the chance for a neural net-
work to adequately approximate the underlying complex pat-
terns without suffering from the problem of overfitting. Raudys
and Jain [98] study small sample size effects and find that small

sample size can make the problem of designing a pattern classi-
fier very difficult. On the other hand, we have seen reports that
larger sample sizes do not always result in better out-of-sample
performances [120]. This could also be true for time series fore-
casting problems in which data may not be stationary or may
contain structural changes over time.

The literature certainly does not give specific guidance on the
sample size requirement for particular applications other than
the general recommendation for larger samples. Indeed, there
is no such thing as “one size fits all” because the appropriate
sample size depends on many factors such as the complexity of
the problem, the number of input variables, the number of pa-
rameters in the model, and the noise in the data. Neural network
researchers, therefore, must be cognizant of the sample size is-
sue in designing their particular models. In particular, smaller
sample size requires researchers to pay closer attention in select-
ing model parameters. Though sample size is often constrained
by the availability of data, the practice of simply accepting a
data set regardless of its sample size should be avoided. If the
sample size is too small, remedial actions such as resampling or
cross-validation techniques may not be very helpful.

An important issue related to sample size is data splitting, or
dividing the data into two portions: an in-sample and an out-of-
sample. The in-sample is used for model fitting and estimation
while the out-of-sample or holdout sample is used to evaluate
the predictive ability of the model. Because of the bias/variance
concern, it is critical to test the ANN model with an independent
holdout data set, which is not used in neural network training.
That is, we must set a portion of the whole available data aside
and never touch it in the model-building process. This practice
is necessary to ensure that the model finally built has a true value
for practical uses. As a consequence, the sample size used to
train the network is smaller than the total number of available
data points. The true size for model building may be further
reduced if the in-sample data are further divided into a training
set for model estimation and a validation set for model selection.

In a recent survey of 43 papers in forecasting water resources
variables using ANNs, it was found that “data division was
carried out incorrectly in most papers. . .. The proportion of
data used for training and validation varied greatly. Generally,
the division of data was carried out on an arbitrary basis and
the statistical properties of the respective data sets were seldom
considered” [84].

There is no consensus on how to divide the data into an in-
sample for learning and an out-of-sample for testing. Picard
and Berk [142] suggest that 25%–50% data are used for val-
idation for linear regression problems and if the emphasis is
on parameter estimation, fewer observations should be reserved
for validation. According to [22], forecasting analysts typically
retain about 10% of the data as holdout sample. Granger [56]
recommends that, for nonlinear modeling, at least 20% of any
sample should be held back for an out-of-sample evaluation.
Michie et al. [88] also recommend holding back approximately
20% of the data for testing and dividing the remaining data into
a training set and a validation set. Hoptroff [63] suggests us-
ing 10%–25% of data as the testing sample while Church and
Curram [27] use “more conservative 30%.” Many other different
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splitting strategies have been used in the literature. When the
in-sample data need to be further split into a training sample
and a validation sample, the issue is more complicated. Hastie
et al. [60], however, note a typical division of 50% for training
and 25% each for validation and testing.

It is important to note that the issue of data splitting is not
about what proportion of data should be put in each subsample.
But rather it is about an adequate sample size in each sam-
ple to ensure sufficient learning, validation, and testing. As the
available data size varies dramatically from application to ap-
plication, the number of observations used in each sample can
differ greatly with the same proportion of data for testing pur-
poses. Although statistical methods such as regression can have
as much as 50% of the data used for testing [109], most neu-
ral network applications may not be able to afford that large
portion and typically a much smaller percentage such as 10%
or 20% should be considered. Nevertheless, it is important to
include a sufficient number of observations in the test sample
so that the model’s generalization ability can be evaluated ade-
quately. Hoptroff [63] recommended at least 10 data points in the
test sample, while the study by Ashley [5] suggested that much
larger out-of-sample size is necessary to achieve statistically sig-
nificant improvements for forecasting problems. Although more
test data are desirable to ensure that the test sample performance
is not due to chance, the tradeoff has to be made between the
in-sample size and the test sample size and typically more data
should be allocated for ANN model construction.

The lack of guidelines does not mean that data splitting may
be done arbitrarily. When the size of available data set is large
(e.g., more than 1000 observations), different splitting strategies
may not have a major impact on adequate learning and evalua-
tion. But it is quite different when the sample size is small. In
addition, splitting generally should be done randomly to make
sure each subsample is representative of the population. There
is no question of doing this for regression and classification
problems. On the other hand, time series data are difficult or
impossible to be split randomly. For time series problems, data
splitting is typically done at researchers’ discretion. However, it
is still important to make sure that each portion of the sample is
characteristic of the true data-generating process. LeBaron and
Weigend [81] evaluate the effect of data splitting on time series
forecasting and find that data splitting can cause more sample
variation, which in turn causes the variability of forecast per-
formance. They caution the pitfall of ignoring variability across
the splits and drawing too strong conclusions from such splits.
Their finding is in line with that of Faraway [41] who shows that
for regression modeling, data splitting may increase variability
in estimates. Furthermore, data splitting may lose efficiency and
effectiveness in different contexts (see [21], [32], and [42]).

VI. MODEL BUILDING

Building a successful predictive neural network model is not
an easy task. There are many possible ways to build an ANN
model and a large number of choices to make during the model-
building process. Numerous parameters and issues need to be
considered and experimented with before a satisfactory model

may emerge. Adding to the difficulty is the lack of standards
in the process and there are a great number of controversial
rules of thumb and guidelines in the literature. It is important to
note that most empirical rules work only for special problems
or situations, and therefore, treating these rules as universal and
using them blindly is a pitfall that should be avoided.

The major decisions a designer or a builder of a neural net-
work model must make include data preparation, input variable
selection, the network architecture parameters such as the num-
ber of input, hidden and output nodes, node connection, training
algorithm, transfer functions, and many others. Some of these
issues must be solved before actual model building starts while
others are determined during the model-building process. Neu-
ral network design should be treated as a more important issue
than the subsequent analysis because if there are flaws in the
design of ANN model building, then further analyses are worth-
less no matter how good they may look. Unfortunately, great
emphasis is often placed on the analysis of the results rather
than on good design issues in neural network research.

Data preprocessing is often recommended and used to high-
light important relationships and create more uniform data to
facilitate network learning, meet algorithm requirements, or
avoid computation problems. However, the necessity and effect
of data preprocessing on neural network learning and prediction
is still undecided as research findings are often contradictory.
Some researchers conclude that because of the universal ap-
proximation capability, data preprocessing is not necessary and
the model can pick up all the underlying structure from the
raw data. For example, Gorr [54] believes that neural networks
should be able to simultaneously detect both the nonlinear trend
and the seasonality in the data. Earlier studies on seasonal time
series forecasting found that neural networks are able to di-
rectly model the seasonal behavior and preseasonal adjustment
is not necessary [107]. Recent studies, however, suggest that
predeseasonalizing data is critical in improving forecasting per-
formance [89], [145]. Callen et al. [14] report discouraging
results with neural networks for predicting quarterly accounting
earnings. One of the potential reasons is that they do not consider
data preprocessing such as deseasonalization. Thus, ignoring the
potential effect of data transformation or using inappropriate
data preprocessing techniques can reach quite different results
or conclusions.

One related problem with data transformation is that results
with transformed data will have different scale than the original
data. To better interpret the results or to compare them with other
methods built with raw data, the outputs from the ANN models
need to be scaled back to the original data range. From a practical
point of view, the accuracy measure obtained by the ANNs
should be based on the original data scale. In many studies,
however, researchers fail to indicate whether the performance
measures are calculated on the original or transformed scale.

Determining appropriate neural network architectures is one
of the most important tasks and numerous guidelines are avail-
able. Yet, many pitfalls have been observed in building and
selecting ANN models.

For most regression and classification problems, the numbers
of input and output nodes are usually determined based on prior
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or subject matter knowledge. For the time series forecasting
problems, however, both numbers need to be determined via
experimentations. In particular, the choice of input variables is
critical [133]. One of the pitfalls is the use of the linear method
to select model parameters. For example, principle component
analysis (PCA) has been used for feature selection in regression
and classification problems and the ARIMA model has been
suggested and employed for selecting input lag structure in time
series forecasting [83], [114]. Park et al. [91] use both linear
AR model to identify the input lag structure and PCA to deter-
mine the number of hidden nodes. Balkin and Ord [141] apply
the stepwise regression approach to select the inputs to neural
networks. The inappropriateness of these methods is that they
cannot capture nonlinear structures. In addition, linear models
such as PCA are unsupervised learning procedures and do not
consider the correlation between dependent variables and input
variables.

Another related problem in determining input variables is the
tendency to throw a large number of variables to the model
regardless of their relevance or redundancy, hoping ANNs can
pick the most appropriate input variables by adjusting the linking
weights. The potential effects of this practice are the overfitting,
masked patterns, and increased modeling time. On the other
hand, choosing input variables “too carefully” via data snooping
and then reporting the best results as if the input variables are
chosen in the first place can be even more dangerous.

Almost all studies in time series forecasting use one output
node for both one-step forecasting and multistep forecasting.
While single output node networks are suitable for one-step
forecasting, they may not be effective for multistep forecasting
situations as empirical findings [87] suggest that a forecasting
model best for a short term is not necessarily good for a long
term. For this and other reasons [132], it is recommended that
multiple output nodes be used for multistep forecasting situa-
tions. This is consistent with the suggestion in [21] and [22] to
use different models for different lead times.

Neural networks with single hidden layer have been shown to
have universal approximation ability and they are also relatively
easier to train. This is the reason that two or more hidden-layered
networks are rarely used in applications. However, excluding
more hidden layers from considerations may cause inefficiency
and poor performance in neural network training and prediction,
especially when a one-layer model requires a large number of
hidden nodes to give desirable performance. Research studies
in [77], [110], and [134] show that two-hidden-layer networks
can provide more benefits for some problems.

The number of hidden nodes determines not only the network
complexity to model nonlinear and interactive behavior but also
the ability of neural networks to learn and generalize. Too many
or too few will cause the overfitting or underfitting problem.
Unfortunately, there is no unique magic formula that can be used
to calculate this parameter before training starts and it usually
must be determined by the trial and error method. Interestingly,
if the number of hidden nodes could be predetermined, ANNs
would not be called a “data-driven” method because hidden
nodes to a large extent determine the neural network model.
Although empirical formulas or rules are plentiful, users should

be careful in applying them. In the literature, some studies have
blindly used previous empirical rules without further exploring
the possibility that the number is not optimal for their particular
applications, while others choose a particular amount without
reporting how it is obtained.

Training a neural network is a complicated issue because of
the nonlinear optimization involved. A good training algorithm
can make a difference in adequate model estimation. Therefore,
users should use more efficient algorithms whenever possible.
Because of the local minima problem inherent in nonlinear op-
timization procedures, finding a global optimal or better local
solution is the goal in the training process. Because of the sen-
sitivity of neural network estimation to the initial conditions,
using multiple random starting points to reduce the risk of bad
local minima is often recommended. Nevertheless, many stud-
ies still use older less efficient BP algorithms due to easy access
and availability in software, and do not consider multiple train-
ing methods. Curry and Morgan [33] discussed many problems
with the basic BP training algorithm.

Common practice in building a neural network model is to
divide the available data into two portions: An in-sample for
model building and a holdout sample or out-of-sample for model
testing or assessment. The in-sample data may be further split
into a training sample for model fitting and a validation sam-
ple for model selection. It is important to note that except for
the training sample, the nomenclature for the other two sam-
ples is not used consistently in the literature. That is, a “vali-
dation (or test) sample” in one study may become a “test (or
validation) sample” in another one. It can be further compli-
cated if all available data are divided into only two portions, the
later part is sometimes called “test” sample while other times
“validation.” This inconsistency may cause confusion to some
researchers.

The major pitfall in ANN model building is the use of the
whole data set to do model estimation and model selection. This
can happen in two forms. The first is that researchers divide
the data into only two portions of a training set and a test (or
validation) set and then choose the model based on the best
performance of the test set. The second is that researchers do
have three portions of training, validation, and test samples. But
rather than using the last sample as an independent one for model
evaluation, they use it repeatedly to fine tune the model estima-
tion and selection process conducted on the first two parts of the
data. Of course, without appropriate evaluation, the model de-
veloped may not have any value for practical uses as the model
is tailored too much to the data on hand and the true perfor-
mance on unseen data cannot be assessed. However, this lack
of independent holdout samples for a genuine out-of-sample
evaluation is fairly common in published research as Duin [38]
points out, “there will be a strong temptation for the researcher
to do some more tuning when he finds out that his neural net-
work performs relatively badly. Papers that emphasize that this
has not been done are very rare.” Lisboa [148, p. 29] notes
that in most medical applications of ANNs, “there is no attempt
to separate a design data set, used for training and parameter
tuning, or testing, from a validation set used for performance
estimation.”
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It should be noted that if the cross-validation approach is
used to select the best model, then the validation sample result
should not be treated as the true performance of the model.
To test a model selected this way, an independent validation
sample must be used. It is, however, possible to combine the
first two parts of the data (training and validation) to reestimate
the model parameters. Of course, there is no guarantee that
this will yield better results out of sample. If this strategy is
used in the research, it is important to make it clear in the
publication.

It is important to note that it is possible to use only two data
sets for model building and testing. This is typically the case
when researchers apply some special in-sample model-building
and selection procedures. Some of the pruning methods such as
node and weight pruning [99] as well as constructive methods
such as the upstart and cascade correlation algorithms [40], [47]
belong to these methods. In-sample model selection approaches
based on traditional information-based criteria such as Akaike’s
information criterion (AIC) and Bayesian (BIC) or Schwarz
information criterion (SIC) have been proposed and used in
time series studies [21], [43]. However, these in-sample model
selection criteria are developed based on the assumption of
asymptotic normality of the maximum likelihood estimators.
Although suitable and commonly used for linear parametric
models, in-sample criteria are not directly applicable to and
theoretically justified for neural networks [3]. Furthermore, the
effectiveness of these criteria for nonlinear neural network mod-
els has not been supported by empirical studies as Swanson
and White [112], [113] and Qi and Zhang [95] find that the
in-sample criteria such as AIC and BIC cannot provide a reli-
able guide to out-of-sample prediction performance. The use of
these information-based selection criteria in practice, therefore,
should be with caution.

Another major pitfall in the published research is the lack of
detail of the model-building process. Some studies simply list
the architectures used without giving any indication on how a
particular architecture is selected. Others give some vague justi-
fication without giving further detail. In fact, statements similar
to “our networks used ten nodes in the hidden layer, which
was found to be sufficient for all the models” [27] and “we
tried and tested a number of different architectures of the neural
network. . .. The results reported here are based upon the best
ANN forecast” [14] are common. This lack of clear documenta-
tion of the model-building process is a serious problem reported
in several recent surveys of ANN applications [61], [79], [84].

Without sufficient detail of the modeling process, it is difficult
or impossible to judge if the research design is conducted appro-
priately as well as how much tuning is done. Of course, tuning
the parameters in the training set is acceptable. But if the test set
is also involved, then it is problematic. Furthermore, as repeated
tuning of modeling parameters could be done during the process,
it is impossible for others to replicate the study if the authors
do not report this tuning process as results obtained from neural
networks can vary dramatically depending on numerous factors
including weight initialization, learning rate, momentum, train-
ing length, stopping condition, and whether or not using special
techniques such as weight decay and node pruning are used. As

replicability is a critical principle of scientific research, lack of
detail can be detrimental to the neural network field.

One recent example of the importance of replication is given
by Racine [96] who tries to repeat a previous study by Qi [94].
Although the complete design was not detailed in the original
article and recalled from the author, Racine was able to conduct
an approximate replication study by using the same data, soft-
ware, and modeling approach as in Qi [94] as well as several
different scenarios when exact detail was not available. His re-
sults suggest that “both replicability and the claimed superiority
of the ANN are elusive” [96, p. 380]. Another example is the
attempt by Zhao et al. [143] to replicate a previous study by Hill
et al. [144] for a time series forecasting. They find that while the
general conclusion of good neural network performance is still
valid, they are not able to achieve the same magnitude of the
improvement reported in [144] due to the lack of information on
several key factors in the original study, which does not permit
reproducing them.

Thus, it is imperative to report the detail of the ANN model de-
sign and model-building process. The minimum detail should in-
clude the architectures experimented, data splitting and prepro-
cessing, training settings such as weight initialization method,
learning rate, momentum, training length, stopping condition,
algorithm used, and model selection criterion. If special proce-
dures such as regularization, weight decay, or node pruning are
employed, it is necessary to give the detail or references.

VII. SOFTWARE USES

There are many software packages available in ANNs, rang-
ing from stand-alone freeware or shareware to expensive com-
mercial packages. These packages vary greatly in features,
options, training algorithm, programming capability, and user
interface. While the availability of powerful and easy-to-use
ANN software greatly enhances the research capability and re-
search activities, it also increases the risk of misuse and er-
ror [33]. The real danger is the tendency for ANN users “to
throw a problem blindly at a neural network in the hope that it
will formulate an acceptable solution” [46].

It is unwise to believe each software package has the same
capability to perform modeling and predicting tasks and can be
relied upon to give satisfactory results. It is especially dangerous
to believe that the software can be used in a purely automatic
mode and that users without much knowledge of ANNs can
build ANN models easily and successfully. If a user does not
have knowledge of the many important issues in ANN model
building mentioned earlier and are not aware of the choices,
assumptions, default settings, training algorithm, and limitations
of the package, it is not unlikely that dubious results will be
generated. Even with a good solid software package, users still
face a large number of important choices and decisions to make,
and using the default settings is not always the best strategy.

Most ANN software packages serve only as a convenient
means to do nonlinear optimization inherent in any neural net-
work training. They do not address adequately the issue of data
splitting, model selection, and model evaluation. The method
used for choosing the number of parameters is often not well
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implemented. In addition, many vendors of ANN software do
not address the overfitting problem and use the result from the
training data as a selling point for their algorithms [35].

MATLAB Neural Network Toolbox is one of the most pop-
ular commercial packages in the market. Yet, many problems
experienced with the software such as the reliability and numer-
ical accuracy have been reported by Gencay and Selcuk [51].

Curry and Morgan [33] raise the concern of inappropriate use
of training algorithms, especially the widely used BP algorithm
in many ANN software packages. Because of its popularity, the
BP algorithm may be the default of many packages even though
it has many weaknesses. Because of this limitation and because
of unwary users who may not be aware of the internal workings
of the algorithm, “commercially available software should be
used with great care” [33, p. 131].

Therefore, it is critical to fully understand the capabilities as
well as the limitations of the software. Users should be famil-
iar with the many default values on key parameters and default
settings and, if possible, how to make changes on these val-
ues. Small toy problems should be tried to gain confidence on
the capability of the software before serious applications are
implemented.

VIII. MODEL EVALUATION AND COMPARISON

Once the modeling process is completed, model performance
must be tested or validated using the data not used in the model-
building stage. In addition, as ANNs are often used as a nonlinear
alternative to traditional statistical models, the performance of
ANNs needs to be compared to that of conventional methods
to show the value of ANN models. As noted in [1], “if such
a comparison is not conducted, it is difficult to argue that the
study has taught us much about the value of ANNs.”

There are many problems in neural network research with
regard to an appropriate evaluation and comparison of neural
network models. According to Adya and Collopy [1], “a sig-
nificant portion of the ANN research in forecasting and predic-
tion lacks validity” in terms of: 1) comparison with established
methods; 2) use of true out-of-sample for testing; and 3) use
of a reasonable test sample size. Flexer [45] criticizes the lack
of statistical evaluations in published studies and proposes the
minimum requirements for such evaluations.

As pointed out earlier, one of the major pitfalls in the lit-
erature is the failure to use independent holdout samples for
out-of-sample evaluations. Sometimes, the holdout sample is
clearly not used and other times, it is not clear if the holdout
sample is used to find the best model or fine tune the network
parameters. It is worthwhile to reemphasize that the holdout (or
test) sample should not be used in the model estimation and
selection process. If it is, then it is not a genuine out-of-sample.
Unfortunately, many ANN researchers overlook this point and
regard the accuracy measures obtained in this way as being a
true out-of-sample testing result. As the real prediction accuracy
will be generally worse than that found for the holdout sample
that has already been used in the model-building process, it is
almost certain that the reported ANN performance is overstated.

Prechelt [92] examines nearly 200 papers on ANN learning
algorithms published in four leading neural network journals and
finds that many of them are not evaluated thoroughly enough to
be “acceptable.” He defines the criteria for acceptable evaluation
as: 1) use of at least two real problems; and 2) comparison with at
least one alternative algorithm. Unfortunately, 78% of published
studies do not meet this minimum standard. In a survey [45] of
two leading journals in neural networks, only three out of 43
papers clearly use the third independent data set. Adya and
Collopy [1] find that 21 out of 48 (44%) studies in business
applications are not effectively evaluated or validated. Vellido
et al. [119] give similar findings. Maier and Dandy [84] report
that among 43 ANN applications to water resource variable
forecasting, “only two papers used an independent test set in
addition to the training and validation sets.” In a review of
neural networks used for short-term load forecasting in the last
decade, Hippert et al. [61] conclude that most ANN models are
“not systematically tested.” The same problem is also reported
by a number of other survey studies such as [137] and [140].

To adequately evaluate the true performance of a model,
enough sample size should be allocated to the holdout test sam-
ple. With too few observations in the testing set, it is possible
that the results obtained are due to chance. One of the problems
reported in [1] is the insufficient sample size for validation.
For evaluation purposes, they find that 40 or more cases for
classification and 75 or more observations for forecasting are
reasonable. Ashley [5] has recently studied the issue of how
much out-of-sample data are necessary in order for the forecast-
ing improvement to be statistically significant. His simulation
results suggest that at least 100 observations are necessary in
order for a 20% forecasting error reduction to be statistically
significant at the 5% level.

A major problem in evaluating the ANN classifiers is the
failure to consider the relative cost of misclassification. Many
studies only use the overall classification rate as the sole per-
formance measure of the capability of the model, taking no
account of different misclassification errors, which are typically
more critical for various decision-making situations. Berardi
and Zhang [139] discuss the effect of unequal misclassifica-
tion costs on classification as well as decision making and find
that misclassification cost could have significant impact on the
classification results and ignoring the cost information could
adversely affect the decision making. In a survey of neural net-
work applications in auditing and risk assessment, Calderon and
Cheh [137] find that almost all the studies do not take different
costs into consideration.

Many pitfalls lie in the inappropriate comparison of ANN
models with other models in statistics, machine learning, and
data mining. Either there is no comparison at all or the com-
parison is not done in an entirely satisfactory manner. Often
the comparison is made based on simple measures of accuracy,
and statistical significance is mostly overlooked. In addition, the
comparison to important benchmark models is not often con-
ducted. For example, in the financial time series literature, the
random walk model often emerges as the dominant one among
many linear and nonlinear methods. In classification problems,
it is well known that by chance alone, one can achieve high-hit
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rate if the classes are very unbalanced. Therefore, it is important
to compare the performance of neural networks to that of the
benchmarks. It is possible that ANNs may outperform another
statistical model but both fail to show significant improvement
over the benchmark models.

Other pitfalls on comparing classifiers have been pointed out
by several authors [38], [92], [104]. Duin’s [38] major con-
cern is the user-dependent nature of neural network results, and
neural network investigators may have “a strong temptation”
to do more tuning if they find their models performing rela-
tively poorly. Therefore, the performance reported can be bi-
ased. Prechelt [92] reports that 33% of 190 studies he examined
have no comparison with other algorithms. Salzberg [104] finds
that the literature largely ignores the experimentwise overall er-
ror in comparing multiple classifiers and discusses the major
problem of the practice of using simple t-tests to compare mul-
tiple algorithms on multiple data sets even if the test sets are not
independent.

Adya and Collopy [1] propose the following three valida-
tion criteria to objectively evaluate the performance of ANNs:
1) comparing to well-accepted models; 2) using true out-of-
samples; and 3) ensuring enough sample size in the out-of-
sample (40 for classification and 75 for time series forecasting).

Statistical testing should be considered in most of the com-
parisons. As many comparisons are based on the same hold-
out sample, special matched sample statistical procedures can
be used. To compare accuracies of several classifiers, the F+

statistic based on repeated measures analysis and described by
Looney [82] is recommended. If only two classifiers are in-
volved, then the binomial test [104] for dependent samples or
the Goldstein test [53] for independent samples can be used.
In addition, the Kappa statistic has been increasingly recom-
mended as an appropriate measure for agreement between clas-
sifiers when the data are categorical [149], [150]. For time series
forecasting, researchers should consider the Diebold–Mariano
test [37].

Many studies use only one training sample and one vali-
dation or testing sample to compare different models. Results
based on one comparison may suffer from sample biases [106]
or random influences [45]. This is largely due to the unsta-
ble nature of the neural network model in model building and
estimation [13], [122]. Therefore, it is often desirable to use
multiple runs or samples. Bootstrap and other resampling tech-
niques are useful in this regard to evaluate ANN performance
statistically [25]. Major multiple sample approaches to classifier
evolutions can be found in [72]. Although bootstrapping may
be difficult for time series forecasting problems, using multiple
cross-validation techniques [68], [74] and multiple test peri-
ods [115] can be helpful.

It is also important to note that while summary measures
such as the overall error rate or average absolute error are
useful to give overall performance of the model, they do not
provide useful information for decision makers regarding indi-
vidual case decisions. In addition, they do not provide evidence
on the quality of each point estimate or prediction. For classi-
fication problems, the receiver-operating characteristics (ROC)
curve [57] is better used as it is a more comprehensive perfor-

mance measure than the single classification error measure. One
important feature of the ROC curve is its ready incorporation of
prevalence and misclassification cost factors, which are critical
for many decision-making problems where different misclas-
sification errors carry significantly uneven consequences. Lis-
boa [148] points out that although ROC is the de facto standard in
medical diagnosis, it is unfortunate that “scant attention is given
to the usually skewed nature of the data.” On the other hand, con-
fidence or prediction intervals should also be used in conjunction
with the point estimates or predictions for forecasting especially
time series forecasting problems [26], [35], [70], [103]. The use
of confidence interval provides a means to assess the reliability
of the model and its estimates.

IX. PUBLICATION BIAS

Publication bias against nonsignificant results can promote
some pitfalls in neural network research. It encourages data
snooping by repeatedly tuning the model architectures and other
parameters if initial results on the holdout sample are not satis-
factory. Although mixed findings do appear in published studies,
the general tendency in neural network research discourages
the negative results reported with ANNs. Overall, it is much
easier to publish positive findings than to publish negative re-
sults [8], [19].

Many large quantitative competitions in forecasting [86] and
classification [88] show that no single method including neural
networks is dominantly the best for every problem in every
situation. Thus, to prove that neural networks are universally
the best can be futile. However, in ANN research, studies are
plentiful aiming to show and claim the best performance of
ANNs for all problems. Often times, the conclusion is drawn
on the limited empirical evidence based on a limited number of
data sets. Therefore, readers of these findings must be aware of
the fact that the obtained results may not be able to generalize
beyond the data sets used in the particular study. It is quite
possible that a particular method or algorithm for ANNs works
well for a fairly large number of problems, but there are possibly
many other problems or data sets, for which the method may
perform badly.

The problem can be this. If a researcher tried a number of
data sets and chose to report only the good results with his/her
method, then the study is easy to get through the review process
for publication. However, if he or she honestly reports mixed
results with the method, it is difficult or impossible for the study
to be published. This is an awkward situation. On one hand, we
accept the reality that there is no such thing as the best method
or algorithm for any problem. On the other hand, we are not
ready to publish mixed results in one study. Of course, with
mixed findings, researchers must seek to address under what
conditions or for what types of problems the proposed method
works best. Addressing such issues, however, is not always an
easy task.

Another major problem in the published articles is that many
applications of ANNs do not reveal the detail of many aspects
of the modeling process including data, data processing, exper-
imental design, model selection, parameter, and other tunings



ZHANG: AVOIDING PITFALLS IN NEURAL NETWORK RESEARCH 13

made during the process. This can hide pitfalls and misuses
of the technique employed in studies. It will also affect the
objective and rigorous evaluation of the methods used. More
importantly, it prevents the possibility of replication, a “key
requirement of genuine scientific progress” [19].

Reviewers of academic journals should set high standards
in reviewing articles. They should demand more detailed de-
scriptions on several key modeling parameters as well as the
model-building experiment. Analysis of the results is certainly
important but only after the modeling exercise is done flawlessly.
On the other hand, we should be more open-minded to accept
mixed or negative findings toward ANNs for well-planned and
executed studies.

X. CONCLUSION

In this paper, we present many pitfalls in neural network
research and applications. We believe that the key to avoiding
pitfalls in neural network research is the awareness of the poten-
tial pitfalls and their harms to the research study. It is important
to realize that there are numerous ways that ANN techniques
can be misapplied and misused. Unwary investigators are more
likely to incur pitfalls. Furthermore, an awareness of the prob-
lems can lead to healthy skepticism and higher standards in the
interpretation of reported findings in the literature. We also offer
many insights and good practices that can help neural network
researchers and practitioners in their endeavor to improve the
quality of research and application.

There is no doubt that ANNs can be one of the most useful
tools in one’s toolkit for quantitative modeling. ANNs are good
alternative candidates to traditional modeling techniques for
tasks of pattern recognition, pattern classification, system con-
trol, and forecasting. The promises and opportunities of neural
network research are evident, judging by the growing literature
and numerous exciting business, industrial, and medical appli-
cations. Despite the skepticism, the field of neural network is
well past the stage of a “passing fad.”

However, ANNs are not a panacea for all problems under all
environments. They cannot replace all other data analysis meth-
ods from statistics, machine learning, and data mining. They are
not without problems and difficulties. It is incorrect to believe
that like statistics, ANNs are already an established field and
the application of ANNs can be as easy as running automated
software. It is important to note that the uncritical use of the
very flexibility inherent in the nonlinear capabilities of neural
networks can easily generate implausible solutions, leading to
exaggerated claims of their potentials. It is equally important
to note that there are still many practical and theoretical prob-
lems that hinder the development and practical use of neural
networks.

As pointed out earlier, ANNs can be treated as statistical
methods. Consequently, general guidelines and good practices
from statistics can and should be considered and followed in
ANN research [17], [93]. Neural network community may gain
much by listening to Kingman’s address to statisticians: “even
if statistics can never be a closed profession, it would be both
foolish and irresponsible to deny a collective responsibility on

the part of the statistical community, a responsibility to en-
sure the highest possible standards of competence, integrity and
judgment. . ..” If not, “the credibility of statistics as a whole is
threatened” [77].
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