Ejercicio q de Tobin IN4203 Macroeconomía

Profesor: Benjamín Villena R. Auxiliar: Miguel Biron L. 23 de Abril de 2010

Modelo de la q de Tobin en tiempo discreto

Una firma desea maximizar el valor presente de sus flujos de utilidad futura. Para eso, debe decidir para todo $t=0...\infty$ cuánto capital utilizar, y cuánto invertir. Suponemos una función de producción f(k) que sólo utiliza capital, y que cumple las condiciones f'>0 (creciente en el insumo), f''<0 (retornos marginales decrecientes). Por otro lado, la firma se ve sujeta a costos de inversión; en particular observa una función de costos c(I), la cual cumple c'>0 y c''>0. Además se usará que c'(0)=0. Por último, la tasa de depreciación del capital periodo a periodo es δ , y la tasa de descuento relevante es r (constante).

- 1. ¿Cómo se interpretan las condiciones sobre la función $c(\cdot)$?
- 2. Plantee el problema de maximización que observa la empresa. ¿Cuántas restricciones existen?
- 3. Escriba el Lagrangeano del problema.
- 4. Muestre que las condiciones de primer orden son:

$$q_t = 1 + c'(I_t)$$

(1+r)q_t = f'(k_{t+1}) + q_{t+1}(1 - \delta)

5. Si la segunda CPO se desarrolla, y además se asume que

$$\lim_{T \to \infty} \frac{q_T (1-\delta)^T}{(1+r)^{T+1}} = 0$$

se obtiene que

$$q_t = \sum_{j=1}^{\infty} \frac{f'(k_{t+j})}{(1+r)^{t+j}}$$

¿Qué significa esta ecuación?

- 6. Basándose en la primera CPO, muestre que la inversión es positiva si $q_t > 1$ y negativa cuando $q_t < 1$.
- 7. Interprete el resultado de la pregunta anterior de la misma manera que se hizo en clases.
- 8. Encuentre los valores de estado estacionario para q^* , k^* e I^* .

Solución

1)

- $c' > 0 \rightarrow$ más inversión (o desinversión) es costoso.
- $c'' > 0 \rightarrow$ más inversión (o desinversión) aumenta el costo marginal de invertir.
- $c'(0) = 0 \rightarrow \text{los costos son mínimos cuando } I = 0.$
- 2) La firma elige las secuencias de capital $\{k_{t+1}\}_{t=0}^{\infty}$ e inversión $\{I_t\}_{t=0}^{\infty}$ que maximizan el valor presente de su utilidad, sujeto a la ley de movimiento del capital:

$$\max_{\{k_{t+1}\}_{t=0}^{\infty}, \{I_t\}_{t=0}^{\infty}} \Pi = \sum_{t=0}^{\infty} \frac{f(k_t) - I_t - c(I_t)}{(1+r)^t}$$

s.t

$$k_{t+1} = k_t(1-\delta) + I_t \ \forall t$$

Dado que la ley de movimiento del capital se debe cumplir $\forall t$, se tienen un número infinito de restricciones. Asimismo, existe un número infinito de variables de decisión, pues la firma elije el nivel de capital y la inversión en todos los periodos siguientes.

3) El Lagrangeano siempre es igual a la función objetivo, más la suma del producto de las funciones de restricción, por su multiplicador asociado. En este caso, esto se traduce a:

$$\mathcal{L} = \sum_{t=0}^{\infty} \frac{f(k_t) - I_t - c(I_t)}{(1+r)^t} + \sum_{t=0}^{\infty} \widetilde{q}_t (k_t (1-\delta) + I_t - k_{t+1})$$

Los multiplicadores asociados a las restricciones son \tilde{q}_t . Podemos re-escribir el Lagrangeano de la siguiente manera:

$$\mathcal{L} = \sum_{t=0}^{\infty} \frac{f(k_t) - I_t - c(I_t) + q_t(k_t(1-\delta) + I_t - k_{t+1})}{(1+r)^t}$$

si definimos $q_t \equiv \widetilde{q}_t(1+r)^t$.

4) Para encontrar la primera CPO, derivamos \mathcal{L} con respecto a I_t .

$$\frac{\partial \mathcal{L}}{\partial I_t} = 0 = \frac{-1 - c'(I_t) + q_t}{(1+r)^t}$$

Reescribiendo la ecuación, llegamos a lo buscado:

$$q_t = 1 + c'(I_t)$$

Para la segunda CPO, derivamos \mathcal{L} con respecto a k_{t+1} . Notar que k_{t+1} aparece en la sumatoria dos veces: para el periodo t y el t+1.

$$\frac{\partial \mathcal{L}}{\partial k_{t+1}} = 0 = \frac{-q_t}{(1+r)^t} + \frac{f'(k_{t+1}) + q_{t+1}(1-\delta)}{(1+r)^{t+1}}$$

Reordenando lo anterior llegamos a la ecuación pedida:

$$(1+r)q_t = f'(k_{t+1}) + q_{t+1}(1-\delta)$$

La primera CPO muestra la relación que existe entre la q_t y la inversión I_t del periodo correspondiente. La segunda CPO rige la evolución temporal de la q_t .

5) Esta ecuación se interpreta como que q_t es equivalente al valor descontado asociado a las utilidades futuras que entregará la unidad marginal extra de capital. Usualmente, la condición extra

$$\lim_{T \to \infty} \frac{q_T (1 - \delta)^T}{(1 + r)^{T+1}} = 0$$

se interpreta como que se está asumiendo que no se considerarán casos de burbujas en el valor bursatil de la firma, en que el valor de la firma q_t crece indefinidamente. En otras palabras, q_t no puede crecer a una tasa mayor que la tasa a la que la firma descuenta los flujos futuros.

- $q_t < 1$: Si $q_t < 1$, esto significa que $c'(I_t) < 0$. Por otro lado, dado que c'(0) = 0 y además $c'(\cdot)$ es creciente (porque $c''(\cdot) > 0$), se concluye que $I_t < 0$.
- $q_t > 1$: deducción simétrica al caso anterior.
- 7) Una interpretación de la q de Tobin, es que q corresponde al ratio del valor de una unidad de capital dentro de la empresa (q) sobre su costo de reemplazamiento (que asumimos igual a 1), es decir el valor de una unidad de capital fuera de la empresa. Por lo tanto, el valor de q nos define los incentivos para invertir de la empresa: si q > 1, la empresa invierte puesto que el valor del capital es mayor dentro de la empresa y si q < 1, la empresa vende su capital.
- 8) Estado estacionario (SS o «Steady State») implica que las variables en el sistema cumplen $x*=x_t=x_{t+1} \ \forall t$. Imponiendo esto en las CPO y en la restricción, encontraremos los valores SS para k^* , I^* y q^* .

En la CPO 2:

$$-[f'(k_{t+1}) - r] = (q_{t+1} - q_t) - \delta q_{t+1} - rq_t$$
$$-[f'(k^*) - r] = 0 - \delta q^* - rq^*$$

Con esto obtenemos:

$$q* = \frac{f'(k^*)}{r+\delta}$$

De la CPO 1:

$$q^* - 1 = c'(I^*)$$
$$I^* = c'^{-1} \left(\frac{f'(k^*)}{r + \delta} - 1 \right)$$

Por último, de la ley de movimiento del capital:

$$k^* = (1 - \delta)k^* + I^*$$
$$\delta k^* = I^*$$

Para encontrar tales valores, se debe resolver el sistema de tres ecuaciones. En particular, ya que encontramos expresiones para q^* y I^* en función de k^* , podemos encontrar primero k^* juntando la segunda y la tercera de las ecuaciones anteriores:

$$k^* = \delta^{-1} I^*$$

$$k^* = \delta^{-1} c'^{-1} \left(\frac{f'(k^*)}{r + \delta} - 1 \right)$$

Para encontrar k^* , se debe resolver la última ecuación para k^* . Posteriormente, se podrán obtener los valores de q^* y I^* .