

Profesores: Fernanda Bravo, Daniel Espinoza,

Rodrigo Wolf

Coordinador: Daniel Lillo

Auxiliares: Víctor Bucarey, André Carboni,

Nelson Devia, Diego Vergara

IN3701 – Modelamiento y Optimización Auxiliar 4 29 de Abril de 2010

Problema 1

Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función convexa y sea c alguna constante. Pruebe que el conjunto $S = \left\{ x \in \mathbb{R}^n : f(x) \le c \right\}$ es convexo.

Problema 2

Considere el poliedro generado por el siguiente conjunto de restricciones del tipo $\{a^i x_i \leq b_i : i \in I\}$:

$$x_1 + x_2 \le 3$$
; $x_1 \le 2$; $x_1 - x_2 \le 1$; $x_2 \le 2$; $x_1, x_2 \ge 0$

- a) Grafique el poliedro
- b) Encuentre todas las soluciones básicas. ¿Cuáles de ellas son soluciones básicas factibles?
- c) Encuentre las restricciones activas en los puntos (1,2) y (2,1). ¿Son los vectores $\{a^i : i \in I^*\}$ linealmente independientes?
- d) Escriba el poliedro en forma estándar
- e) Considere el punto (0,2). Encuentre el valor de las variables de holgura en ese punto y determine la base asociada, es decir, los vectores $\left\{A_i:i\in B\right\}$ con $\|B\|=m$ que son l.i.

Problema 3

Considere un poliedro en forma estándar $\{x \in R_+^n \mid Ax = b\}$, donde las filas de la matriz $A \in R^{mxn}$ son linealmente independientes.

- a) Suponga que hay dos Bases distintas asociadas a la misma solución básica x. Muestre esta solución es "degenerada".
- b) Suponga que todas las soluciones básicas factibles son "no degeneradas". Sea $x \in P$ tal que exactamente m de sus componentes son positivas. Muestre que x es una solución básica factible. Qué ocurre si eliminamos el supuesto de "no degeneradas"?.

Problema 4

Para las siguientes afirmaciones, justifique en no más de 5 líneas si éstas son verdaderas o falsas. Entregue argumentos convincentes y formales en su respuesta.

- (a) Existe un poliedro no vacío y acotado, de la forma $\{x \in R^n \mid Ax \le b\}$, en el cual cada solución básica es también un vértice.
- (b) Considere el problema de optimización $Min\ c'x$ con $Ax \le b$. Si incrementamos algún componente de b, entonces el costo óptimo no puede empeorar.

Profesores: Fernanda Bravo, Daniel Espinoza,

Rodrigo Wolf

Coordinador: Daniel Lillo

Auxiliares: Víctor Bucarey, André Carboni,

Nelson Devia, Diego Vergara

IN3701 – Modelamiento y Optimización Auxiliar 4 29 de Abril de 2010

Problema 1

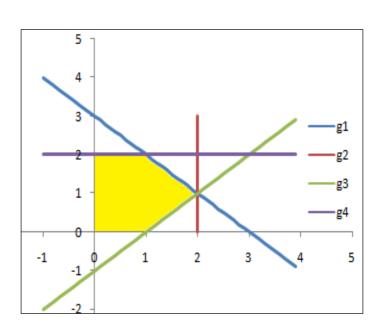
Sean x, y en $S = \{x \in R^n : f(x) \le c\}$ y $\lambda \in [0,1]$. Debemos probar que $z = \lambda x + (1 - \lambda)y \in S$

$$f(z) = f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$$
, ya que f es una función convexa $\le \lambda c + (1-\lambda)c$, ya que x, y pertenecen a S $= c$

Por lo tanto $z = \lambda x + (1 - \lambda)y \in S$, luego S es un conjunto convexo.

Problema 2

a)



- b) Soluciones básicas: (0,0), (0,-1), (0,2), (0,3), (1,0), (1,2), (2,0), (2,1), (2,2), (3,0), (3,2).
 Soluciones básicas factibles: (0,0), (0,2), (1,0), (1,2), (2,1)
- c) Punto (1,2): g1, g4

g1:
$$(1,1) \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \le 3$$
, g4: $(0,1) \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \le 2$

Los vectores (1,1) y (0,1) son l.i.

g1:
$$(1,1) \cdot {x_1 \choose x_2} \le 3$$
, g2: $(1,0) \cdot {x_1 \choose x_2} \le 2$, g3: $(1,-1) \cdot {x_1 \choose x_2} \le 1$

Los vectores (1,1), (1,0) y (1,-1) no son l.i.

d) Forma estándar:

$$\begin{aligned} x_1 + x_2 + x_3 &= 3 \\ x_1 + x_4 &= 2 \\ x_1 - x_2 + x_5 &= 1 \\ x_2 + x_6 &= 2 \\ x_1, x_2, x_3, x_4, x_5, x_6 &\geq 0 \end{aligned} \text{ o bien: } \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 2 \end{pmatrix}$$

e) Punto (0,2) Variables:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 2 \\ 3 \\ 0 \end{pmatrix}$$

Escojamos como base las variables no nulas en ese punto:

$$B = \{2,3,4,5\}, ||B|| = 4$$
 (4 es el número de restricciones)

Los vectores de la matriz A asociados son I.i.:

$$A_{\cdot 2} = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}, \quad A_{\cdot 3} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad A_{\cdot 4} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad A_{\cdot 5} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Problema 3

a)

Se debe demostrar que \bar{x} es degenerada, es decir, que tiene más de n-m componentes nulas.

Sean B_1, B_2 dos bases distintas asociadas a \bar{x}

Supongamos que x es no degenerada.

Por definición sabemos que $\overline{x_i} = 0$ $\forall i \notin B_1$ (variables no básicas) y, del mismo modo, $\overline{x_i} = 0$ $\forall j \notin B_2$.

Para las variables básicas: $\overline{x_i} \ge 0 \quad \forall i \in B_1 \text{ y } \overline{x_j} \ge 0 \quad \forall j \in B_2$

Como las bases son distintas, necesariamente existe $k \in B_1$ tal que $k \not \in B_2$ o viceversa.

Como $k \in B_1$ entonces $\overline{x_k} \ge 0$ (variable básica)

y como $k \not\in B_2$ entonces $\overline{x_k} = 0$ (variable no básica)

Pero como ambas bases definen a x se tiene que $x_k = 0$ con $k \in B_1$, es decir, se tiene una variable básica nula. $\to \leftarrow$

Luego, se tienen más de n-m componentes nulas en \bar{x} , por lo que es una solución degenerada.

b) Como $x \in P$ cumple que Ax = b, luego $\sum_{i=1}^{n} A_i x_i = b$

Sean $\{B(1),...,B(m)\}$ los índices de las componentes positivas de x.

Luego $\sum_{j=1}^m A_{B(j)} x_{B(j)} = b$ es un sistema "cuadrado" con solución única, lo que implica

que las columnas $A_{B(i)}$ son l.i.

Si las m columnas son l.i. entonces las m filas también lo son, por lo que se tienen m restricciones activas l.i.

Luego x es una solución básica factible.

Si eliminamos el supuesto de "no degeneradas" el punto x no será necesariamente una solución básica factible, ya que puede ocurrir que un punto interior tenga m componentes positivas, basta considerar el punto donde se produce la degenerancia y moverse hacia el interior del poliedro aumentando las variables básicas que son nulas. Con esto se tienen m componentes positivas en un punto interior.

Problema 4

- (a) Verdadero, Considere $P = \left\{ x \in R \mid -x \le 0, x \le 1 \right\}$. Luego x = 0 y x = 1 son las únicas soluciones básicas, las que además son vértices de P.
- (b) Verdadero. Incrementando una componente de $b\,$, se obtiene un poliedro igual o mayor al original. Por lo tanto el costo óptimo no puede empeorar.

Dudas y/o Comentarios a: ndevia@ing.uchile.cl