
Generalized Linear Modeling - Logistic Regression

• Binary outcomes

• The logit and inverse logit

• interpreting coefficients and odds ratios

• Maximum likelihood estimation

• Problem of separation

• Evaluating predictive ability

• Multiple levels of outcome - Ordered and nominal logistic regression

• The proportional odds assumption

• Multinomial regression - generalized logit model
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The logistic function
How is a mother’s gestational weight gain related to the the probability of the baby

being born with a birthweight considered clinically in the High range (i.e. > 4000

grams or > 8.8 pounds).

The outcome variable takes on values of 0 or 1. Rather than fitting Y = Xβ + ε where

we would be modeling E(Y |X) = Xβ, we instead model the E(Y |X) = Pr(Y = 1|X)

with the following nonlinear function called the logistic function

Pr(Yi = 1|Xi) =
exp(Xiβ)

1 + exp(Xiβ)
.

xbeta <-seq(-4,4,by=.1)

proby <- exp(xbeta)/(1+exp(xbeta))
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The logistic model and deriving the logit link
Notice that since Yi is 0-1 we can model it with a Binomial distribution with parameter

πi. So we have

Yi|Xi ∼ Bin(1, πi)

πi =
exp(Xiβ)

1 + exp(Xiβ)

For the ease of estimation we want to rewrite the relationship between π and Xβ so

that Xβ is on a side by itself equal to a nonlinear function of π. This is accomplished

by finding the inverse function for the logistic.

Derive Xβ = log
(

π
1−π

)
...
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The logit link

Define logit(π) = log
(

π
1−π

)
. So rewriting the Binomial model we have

Yi|Xi ∼ Bin(1, πi)

logit(πi) = Xiβ

The logit function is said to be the canonical link for binomial data within the
generalized linear modeling framework since it is the function of the E(Y |X)
for which the predictors are linear.

What do you notice about the logit and its relation to the ODDS?
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Why exponentiating coefficients leads to an Odds Ratio

Consider what happens when X is increased by 1 unit...

log

(
P (Y = 1|X)
P (Y = 0|X)

)
= Xβ

log

(
P (Y = 1|X + 1)
P (Y = 0|X + 1)

)
= (X + 1)β

So taking the difference we have,

β = log

(
P (Y = 1|X + 1)
P (Y = 0|X + 1)

)
− log

(
P (Y = 1|X)
P (Y = 0|X)

)

= log

(
odds(Y |X + 1)

odds(Y |X)

)

= log(odds ratio of Y given one unit increase in X)

Hence, if we take exp(β) we have odds ratio of Y given one unit increase in X.
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High Birthweight example
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HIbwtpounds<-as.numeric(I(bwtpounds>8.8))

plot(totalweightgain,jitter(HIbwtpounds,amount=.05),pch=".") SEE HANDOUT FOR LOGISTIC REGRESSION

lines(loess.smooth(totalweightgain,HIbwtpounds,span=.9)) IN SAS and R.

ctotalwtgn<-factor(cut(totalweightgain,10),ordered=T)

proportionhibwt<-aggregate(HIbwtpounds,by=list(ctotalwtgn),mean)

midpttotalwtgn<-aggregate(totalweightgain,by=list(ctotalwtgn),mean)

points(midpttotalwtgn[,2],proportionhibwt[,2],pch=2,cex=2)
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Fitted values on the linear link and inverse link scale
• ̂logit(π) = ̂log πi

1−πi
= Xiβ̂ ← on the logit scale

• π̂i = logit−1(Xiβ̂) = exp(Xiβ̂)

1+exp(Xiβ̂)
← probability scale

Recall the high birthweight example. We regressed high birthweight on both mother’s

total weight gain AND mother’s baseline BMI category.

logit(π) = −3.57+0.0405∗totwtgain−1.776∗underwt+0.755∗overwt+1.072∗obese
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Compare the differences between what a change in the predictors means on the
two different scales.
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Interpreting the intercept

logit(π) = −3.57+0.0405∗ totwtgain−1.776∗underwt+0.755∗overwt+1.072∗obese

What does the intercept represent? Think about back transforming it.

CODE for plots in R on previous page.....

\includegraphics[width=3.5in,height=1.9in,angle=0]

{Pics/bwtlogitprobscale.eps}

#### Obtains the predicted values for all observations on the logit scale

logit.scale<-fitlogistic2$linear.predictors

#### Back transforms the logit predicted values onto the original probability scale

probability.scale<-fitlogistic2$fitted.values

par(mfrow=c(2,2))

par(mar=c(2.5,2.5,1,1),mgp=c(1.6,.5,.05))

plot(totalweightgain,logit.scale)

plot(totalweightgain,probability.scale)
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Examining Odds Ratio, Risk Ratio and Risk Difference
Without risk factor With Risk Factor Summary measure

Probability Odds Odds Probability OR RR Rdiff

.05 .0526 .1052 0.117 2 2.35 .067

.2 .25 .5 .33 2 1.65 .13

.5 1 2 .67 2 1.34 .17

.8 4 8 .89 2 1.11 .09

.9 9 18 .95 2 1.06 .05

.98 49 98 .99 2 1.01 .01

• odds = prob/(1-prob), prob = odds/(odds + 1)

• OR = odds given risk factor/ (odds given no risk factor)

• RR = prob given risk factor/ (prob given no risk factor)

• Rdiff = prob given risk factor - prob given no risk factor

Compare the summary measures across the different probabilities. How does the RR

(relative risk) differ from the OR (oods ratio) across the different probabilities? How

does the Rdiff (Risk difference) differ from the RR?
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Examining Odds Ratio, Risk Ratio and Risk Difference
from Chaprter 10 of Harrell F (2001) Regression Modeling Strategies With applications to linear models, logistic regression and

survival analysis.
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Estimation by Maximum Likelihood

• Given independent data Y = Y1, . . . Yn and X = X1 . . .Xn, where Y is the

outcome of interest and X are predictors, and given a parametric model for Yi|Xi,

we can form the likelihood function.

• Generally we can write the model for Yi|Xi as Yi|Xi ∼ Distr(Θ, Xi) where Θ

represents a set of unknown parameters and Dist represents some specific distri-

bution family, e.g. normal, binomial, Poisson, gamma.

• The likelihood is the joint distribution of the observations viewed as a function

of the parameters,

LikelihoodL(Θ|Y ; X) =

n∏
i=1

f(Yi|Xi;Θ)

Log Likelihood`(Θ|Y ; X) =

n∑
i=1

f(Yi|Xi;Θ)

• The goal is to find Θ which maximizes this (log)likelihood function since intu-

itively that value would be the value of the parametric distribution most likely to

have been the one that generated the data.
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Maximizing the likelihood

• This goal of maximizing the likelihood is accomplished using calculus which
provides tools for maximizing functions. The derivative of the log likelihood
is taken with respect to the parameter vector Θ and set equal to 0. The
derivative of the log likelihood is called the score function.

• The maximum likelihood estimates are found by solving the score func-
tion which will yield the values that maximize the likelihood assuming the
likelihood is unimodal. In general this solution must be found numerically
(no closed form).

• Problems can occur when likelihood function is multimodal (only find local
maximum rather than global maximum) or when the maximum is found
along the boundary of the parameter space.

• We use the hat notation, Θ̂, to indicate the MLEs of Θ.

• The second derivative of the log likelihood is called the information and
is used in creating standard errors.
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The likelihood for logistic regression

Given the model

Yi|Xi ∼ Bin(1, πi)

πi =
exp(Xiβ)

1 + exp(Xiβ)

and given n independent observations (Yi,Xi)

L(β|Y, X) =
n∏

i=1

πYi
i (1− πi)1−Yi

=
n∏

i=1

exp(Xiβ)
1 + exp(Xiβ)

Yi 1
1 + exp(Xiβ)

1−Yi

`(β|Y, X) =
n∑

i=1

Yilog

(
exp(Xiβ)

1 + exp(Xiβ)

)
+ (1− Yi)log

(
1

1 + exp(Xiβ)

)

Take derivative of this function w.r.t β set equal to zero and solve in order to
obtain MLE’s for β, ie hatβ.
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Hypothesis testing from maximum likelihood theory
Given some hypothesis: H0 : Θ = Θ0

• Likelihood ratio test - ratio of the likelihood at the hypothesized pa-
rameter value (under the null) to the likelihood of the data at the MLEs.
Typically the likelihood ratio is defined as -2 time log likelihood ratio, i.e.

LR = −2log
LΘ0

L ˆΘ
= −2`Θ0

+ 2` ˆΘ

• Wald Test - generalization of the Z or t statistics. It is a function of the
difference between the MLE and the Θ0 divided by some estimate of the
standard error of the MLE.

W =
Θ̂−Θ0

s.e.(Θ̂)

• Score Test - measures how far away from zero the score function is when
evaluated at the H0. Typically it is standardized by the information.

See handout from Harrel (2002) Chapter 9 Which test statistic to use when
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Look back at confidence intervals from High Birthweight
Example

• Notice difference in CI’s from SAS and R

• SAS creates Wald confidence intervals by default. Estimate +- 1.96 * S.E.

• The confint() function in R creates Likelihood ratio based confidence inter-
vals (done computationally no closed form)

• Adding the option CLodds = PL to the model statement in SAS will pro-
vide the “profile likelihood confidence intervals”. These confidence intervals
based on the likelihood ratio test

• Hauck and Donner (1977) Wald’s test as applied to hypotheses in logit
analysis. Journal of the American Statistical Association, 72:851-863 notice
that the Wald CI can be too large especially when there are strong effects.

• LR confidence intervals considered better. With larger samples they will
be very similarly (asymptotically the same).
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Problem of Separation in Logistic Regression
• An identifiability problem that can arise in logistic regression, called separation,

occurs when a predictor or a combination of predictors are perfectly aligned with

the outcome such that y = 0 for ALL values of that predictor beyond some point

and y = 1 for ALL values of that predictor less than some point.

• Often occurs in small or sparse samples with highly predictive covariates.

• Simples case is in the analysis of a 2× 2 table with one zero cell count.

• For a continuous predictor, separation can be demonstrated by (Draw plot).

• For a categorical predictor separation means that in some category (or with multi-

ple predictors, in some combination of categories) all individuals in that category

either have a 1 or 0.

Leads to non-convergence of the likelihood and/or infinite parameter estimates.
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Solutions to the problem of Separation

Classical solution - Drop the predictor or somehow aggregate levels. Leave
problematic predictors in but only report results for predictors without separa-
tion problem.

Modern solution -
See the website http://www.meduniwien.ac.at/msi/biometrie/programme/fl/
“Logistic regression using Firth’s bias reduction: a solution to the problem of
separation in logistic regression”. Heinze and Ploner, 2004 put together a SAS
MACRO (%fl) and also an R package (logistf()) that uses a penalized maxi-
mum likelihood method to obtain estimates.

We will try it out in the lab.
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Summarizing predictive ability in logistic regression

• An intuitive measure is the error rate - the proportion of cases for which
the prediction of ŷi is the same as yi. Depends on the cutoff value chosen
to define “positive” prediction.

• A natural choice is to take



ŷi = 1 if π̂i ≥ p̂

ŷi = 0 if π̂i < p̂
(1)

where p̂ is the overall proportion of 1s in the sample. That is, p̂ = Ȳ .

• Comparing ŷi to yi yields a 2× 2 table. The error rate is the proportion of
observations on the off-diagonal

• To get this in SAS, use the ctable option after the model statement, can
get error rate for any cutoff value

• To get this in R, calculate directly using predicted probabilities.

See page from Harrell about why this simple measure should gener-
ally be avoided
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Summarizing predictive ability in logistic regression
Better measures:

• R2 or max-rescaled R2 - function of the likelihood ratio test. Unlike linear regres-

sion it is not necessarily the case that more predictors lead to higher R2 values.

The maximum possible value of generalized R2 is not 1.0 as it is for linear re-

gression. Max-rescaled R-Square divides by this maximum value to fix this so its

maximum is 1.

• c index - rank correlation between the predicted probability of response under

the fitted model and the actual response. It is equivalent to the area under a

receiver operating characteristic (ROC) curve. The larger the area under this

curve, the better the predictions. The maximum area is 1.0, and an area of 0.5

implies random predictions (i.e., a prediction of success is as likely whether success

or failure is the truth). Harrell (1998) gives a guideline of C exceeding 0.80 as

implying useful predictability of the model.

• AIC is only useful as a comparative fit index and is a penalized function

of the log-likelihood, penalized by the the number of parameters in the model -

when comparing two models, smaller values are better.

See handout for obtaining these in SAS and R
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Dealing with more than two outcome levels -
Ordered categories
Examples: tumor stage (local, regional, distant), disability severity (none, mild, mod-

erate severe), Likert items (strong disagree, disagree, agree, strongly agree)

• Dichotomize at some fixed level corresponding to a logical outcome of interest,

e.g. maybe it is particularly of interest to distinguish between tumors detected

at the regional stage and those at the distant stage, hence we could dichotomize

the stages at that point.

• Could treat the ordered categories as a continuous variable. If it is reasonable to

assume that a unit difference between one level and the next is constant, then

this can be a reasonable approach. Often Likert items are simply treated as if

they are continuous scores with unit increments 1,2,3,4.

• Both above methods are suboptimal since they either throw out information

(dichotomizing) or make uncheckable assumptions (treating as continuous)

• A popular way to model the ordered categories directly is using an ordered

logistic regression, also called ordinal or cumulative logistic regression and

also called a “proportional odds model” which aptly states the model’s main

assumption

20



Ordered logistic regression
Let Yi take on categories 1, 2, . . . K, the ordered logistic regression model is

Yi ∼ Multinomial(π1, π2, . . . πK)

log

(
πj+1 + . . . + πK

π1 + π2 + . . . πj

)
= log

(
Pr(Yi > j)

Pr(Yi ≤ j)

)
= β0j + βX

and β01 ≥ β02 . . . ≥ β0(K−1)

where j = 1 . . . K − 1. Hence we are modeling the log odds of being greater than the

cutoff value j as compared to being less than it and a similar expression applies for

j at all K − 1 levels. For example, if K = 4 then we are modeling the odds of: 2,3,4

vs. 1; and 3,4 vs. 1,2; and 4 vs. 1,2,3

Note that the intercept parameter β0j is different for each j allowing the jump in

probability from one level to the next to differ, but that the β relating the predictor

X to the logit of the outcome is constant across all j.

This constant β - interpreted as the “log odds ratio of being at a higher level compared

to a lower level associated with a unit increase in X” - is a strong assumption and is

referred to as the “proportional odds” assumption and should be tested against the

data.
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Proportional odds model in SAS and R

• In SAS: See “Using the proportional odds model for health-related out-
comes: Why, When and How with Various SAS procedures by Marc Gameroff.
We will go through the example in that handout. PROC LOGISTIC
works.

• In R: Can use the lrm() function in the Design Package (see https://www.ats.ucla.edu/stat/R/dae/ologit.htm.
for an example). This is the same function that can be used to get the c-
index and R-square for logistic regression. The proportional odds model
can also be fit using polr() in the MASS Package, and the vglm() function
in the VGAM Package.

See handout for “Fitting ordered logistic regression in SAS and R” where
mother’s baseline bmi category is regressed on age and parity.
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Assessing the proportional odds assumption The ordered logis-

tic regression model basically assumes that the way X is related to being at a higher

compared to lower level of the outcome is the same across all levels of the outcome.

The global test for proportional odds considers a model

log

(
Pr(Yi > j)

Pr(Yi ≤ j)

)
= β0j + βjX

and tests whether β1 = β2 = . . . βK−1 for all p elements of β hence it is a test with

p ∗ (K − 2) degrees of freedom. This test is known to be problematic since it is

“anti-conservative” (rejects more than it should) plus as a global test it does not tell

us where the problem of non-proportionality is or how practically important it is.

Discuss in DETAIL the following paper in class: Bender R and Grouven U (1998)

Using Binary Logistic Regression Models for Ordinal Data with Non-proportional

Odds, J Clin Epidemiology, 51(10) 809-816.

• recommends considering separate tests for each covariate (from unadjusted mod-

els)

• recommends comparing slopes from separately fit logistic regression models

• discusses PPOM - partially proportional odds model and generalized logit models
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Dealing with more than two outcome levels - Nominal
categories
Examples: consumer brand choice (Geico, State Farm, Acuity, Progressive), home-

less sleeping situation (on street, with friend/family, hotel, shelter), parenting style

(authorative, authoritarian, permissive, neglectful)

• Could run separate logistic regression models, one comparing each pair of out-

comes. In fact this is quite similar to what the multinomial logistic regression

model does.

• Could collapse categories so there were only two and then do a logistic regression,

but this would lose information that may be of interest across categories

• Multinomial logistic or “generalized logit” models are a way to fit a nominal

category outcome in a regression framework.
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Multinomial logistic model - Nominal categories
Let Yi take on categories 1, 2, . . . K, the general multinomial model is

Yi ∼ Multinomial(π1, π2, . . . πK)

log

(
πj

πK

)
= log

(
Pr(Yi = j)

Pr(Yi = K)

)
= β0jK + βjKX

where j = 1 . . . K − 1 and K is fixed as the reference group. Hence we are mod-

eling the log odds of being at any particular level j as compared to being in the

reference class K and this relationship is allowed to be different across the covariates.

For example, if K = 4 then we are modeling the odds of: 1 vs. 4; and 2 vs. 4; and 3 vs. 4

• In SAS: use PROC LOGISTIC and add the /link=glogit option on the model

statement

• In R: use multinom() in the nnet library of the MASS package, or vglm() in the

VGAM package.
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