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EULDPH: A new technique for making 
depth estimates from magnetic data 

D. T. Thompson* 

ABSTRACT 

A method for rapidly making depth estimates from large 
amounts of magnetic data is described. The technique is 
based upon Euler’s homogeneity relationship (hence, the 
acronym EULDPH) and differs from similar techniques 
which are currently available in that no basic geologic 
model is assumed. Therefore, EULDPH can be applied in a 
wider variety of geologic situations than can model- 
dependent techniques. The price paid for this increased 
flexibility is a heavier burden on the interpreter. Successful 
interpretation of EULDPH results is partially dependent 
upon the interpreter’s intuitive understanding of the con- 
cept of the equivalent stratum and also partially dependent 
upon experience with model studies. The theoretical basis, 
the computational algorithm, and applications of EULDPH 
to model and real data are presented. 

INTRODUCTION 

The most universal application of magnetic data has been to 
determine the depth to the top of magnetic sources. For hydro- 
carbon exploration, this is usually equivalent to determining the 
thickness of the sedimentary section. For minerals exploration, 
depth estimates are usually used to determine the depth of ore 
bodies which contain magnetic minerals. Because of the im- 
portance of this application of magnetic data, there has been a 
sustained effort to develop improved techniques which yield 
accurate depth estimates from magnetic data, as evidenced by 
the continuous stream of papers in the geophysical literature 
beginning with Peters’ (1949) classic paper. 

This paper describes a technique developed for making depth 
estimates from magnetic data which uses a significantly different 
concept from most of the methods which have been published. 
Based upon Euler’s homogeneity equation (hence the acronym 
EULDPH), the method reported herein derives a “structural 
index” in addition to producing depth estimates. Used together, 
the structural index and depth estimates can identify and make 
depth estimates for a wide variety of geologic structures such as 
faults, magnetic contacts, dikes. extrusives, etc. 

EULDPH belongs to a class of techniques which are sometimes 
referred to as “automatic” depth estimate methods. These tech- 
niques are designed to provide computer-assisted analysis on 

computer-assisted 

large volumes of digital magnetic data, as opposed to methods 
utilizing rules of thumb. characteristic curves, or iterative or in- 
verse curve matching. which are useful for more detailed analysis 
of isolated anomalies on very limited amounts of data. The so- 
called automatic techniques find application in the rapid analysis 
of large amounts of data; they usually operate directly on field 
data which have been digitally recorded. 

Several computer-assisted methods of the automatic class have 
been reported in the literature. O’Brien (1972) reported on a tech- 
nique which basically locates the vertices of a polygonal model. 
Koulomzine et al (1970) and Naudy (1971) described a method 
which utilizes vertical prism and thin plate models. The most 
successful technique is the method known as Werner deconvolu- 
tion. This method was originally proposed by Werner (1953). 
He showed that the simplified equation for a thin two-dimensional 
(2-D) dike could be written in a form which is linear in the param- 
eters of the dike. By choosing an appropriate number of points 
along a magnetic profile, a system of linear equations could be 
devised, the solution of which gives the position of the dike. 
Hartman et al (197 1) extended the Werner technique to include 
analysis for a variety of magnetic discontinuities through the use 
of the vertical and horizontal derivatives of the total intensity of 
the magnetic field. Subsequent to these and other significant ad- 
vancements at Aero Service, the Werner technique has found 
wide application to the analysis of magnetic data by oil and mining 
companies. 

The potential advantage of EULDPH is that the method does 
not assume any particular geologic model. Thus, EULDPH can 
be applied and interpreted even when the geology cannot be 
properly represented by prisms or dikes. Moreover, EULDPH 
is the only technique among the published automatic techniques 
which theoretically can be applied directly to gridded, mapped 
magnetic data. 

Throughout the following discussion, I emphasize that EULDPH 
is not fully automatic, i.e., it does not produce a geologic model 
from the given magnetic field. Procedures which attempt to do 
this make very restrictive assumptions and can be applied success- 
fully only in specific geologic situations. EULDPH does not 
make any assumptions about the geologic model, and therefore, 
is applicable in a wider variety of situations than other tech- 
niques. The price paid for this increased flexibility is a heavier 
load upon the interpreter. In many cases, the interpretation of the 
EULDPH profiles is nearly unambiguous; in other cases, the 
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interpreter may be required to exercise his geologic knowledge 
of the area in order to choose between two or more possibilities 
pointed out by EULDPH. 

As with all profile-oriented interpretation techniques, depth 
estimates inferred from the EULDPH profiles must be corrected 
for strike effects or otherwise weighted according to the position 
of the profile relative to the anomaly. 

THEORY 

In this section the theoretical basis for the EULDPH technique 
will be established, previous work related to the concept will be 
reviewed, and the details of the actual equations used will be 
presented. 

Euler’s equation 

Consider any function of the three Cartesian coordinates X, y, 
and z denoted by f(~, y, z). The plane of observation will be 
taken as the plane z = 0, and positive z is downward. By con- 
vention, then, the x-axis points to the north and the Y-axis points 
to the east. 

The function f (x, y, z) is said to be homogeneous of degree n if 

f(tx, 0, h) = tnf(& Y, 2). (1) 

Moreover, it can be shown that if f (x, y, z) is homogeneous of 
degree n, the following equation is satisfied: 

af af af 
xG+y-+zz=nf. 

ay 

This partial differential equation is known as Euler’s homogeneity 
equation or simply as Euler’s equation. 

Suppose that f (x, y, z) has the general functional form 

where r = (x2 + y2 + z~)~‘~, and N = 1, 2, 3, ; G not 
dependent on X, y, and z. Clearly, equation (3) is homogeneous 
of order n = -N. Many simple point magnetic sources have the 
form of equation (3). The relationship between these simple 
sources and measured magnetic data will be discussed below. 

The structural index 

Consider a point source (point mass, magnetic dipole, etc.) 
located at the point x0, yo, z. relative to the plane of measure- 
ment. The total magnetic intensity will be of the form 

AT(x, Y) =f [(x - xo), (Y - YO), 201. (4) 

Euler’s equation for the functional form (4) can be written as 

aAT aAT aAT 
(x - x0) - + (y - yo) - - z. - = -NAT(x, y). 

ax ay a2 

(5) 

The gradients in the three Cartesian directions can be calculated 
using standard potential theory in the space or wavenumber do- 
mains. In some cases, the vertical gradient may have been mea- 
sured and can be used directly in equation (5). Equation (5) 
could be used to analyze mapped magnetic data. However, for 
the present, attention will be focused upon applying this ex- 
pression to profile or line-oriented data. In this case, the x- 
coordinate is a measure of the distance along the profile. and 
the y-coordinate can be set to zero along the entire profile. 

If the transverse gradient (a ATlay) in equation (5) is now 
assumed to be zero, the second term on the left is identically zero. 

Table 1. Structural indices for simple models. 

Simple model N 

Line of poles I.0 
Point pole 2.0 
Line of dipoles 2.0 
Point dipole 3.0 

This is quite clearly the case if the anomaly is 2-D, i.e., if the 
anomaly is uniform transverse to the profile. Nearly all existing 
profile processes and interpretation aids make the 2-D assumption. 
In order to eliminate the transverse gradient term, however, we 
need only assume that the anomaly is symmetric transverse to 
the profile. This is a less restrictive assumption than that of 
two-dimensionality and provides some interpretational ad- 
vantages. Slack et al (1967) applied similar reasoning in their 
discussion of applications of the measured vertical magnetic 
gradient. As they pointed out, the assumption of transverse 
symmetry, as opposed to the 2-D assumption, provides an ad- 
vantage only when the vertical gradient is measured. In either 
case, equation (5) for profile data then reduces to the expression 

aAT aAT 
(x - x0) - - 

al 
zo - = 

az 
-NAT(x). 

Rearrangement of this expression yields 

aAT aAT dAT 
x0 - + 20 

ax 
- = x ax + NAT(x). 

a2 
(6) 

The derivatives or gradients in equation (6) can be measured or, 
more commonly, calculated from the data. In the event that the 
vertical derivative 8 A T/az is calculated from the observed total 
field AT, the 2-D assumption must be made. The only unknown 
quantities in equation (6) are x0, zo, and N. The coordinates 
(x0, zo) represent the depth and location along the profile 
of the point equivalent source, and N represents the type of source 
which best represents the anomaly. It is easily verified that various 
simple models have prescribed values of N (Smellie, 1956). 
Table 1 lists the structural indices for some simple point models 
[see, for example, Hood (1965)]. The structural index is also a 
measure of how “sharp” an anomaly is relative to its depth. 
Many geologic features have distinctive fall-off rates or structural 
indices. For example, a narrow, 2-D dike has a structural index 
of N = 1 at the magnetic pole, while a contact at the pole has a 
structural index of less than 0.5. The connection between the 
structural index N and real geologic anomalies forms the basis 
for EULDPH and has been discussed by Slack et al (1967), 
Thompson (1973), and Briener (1973), and will be discussed 
further below. 

Implementation 

Equation (6) can be solved exactly for the unknowns x0, zo, 
and N by evaluating the derivatives and total field values at three 
different x-coordinates along the profile. This results in three 
linear equations in three unknowns, which can in principle be 
solved if the determinant of the coefficients is not zero. 

Application of equation (6) directly to observed data is not 
useful for three reasons: 
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Table 2. Structural indices and symbols used to represent the indices. 

Structural index N 

0.5 
1.0 
1.5 
2.0 
3.0 

Symbol 

0 
0 

: 
+ 

(1) 

(2) 

(3) 

Most anomalies, even at the magnetic pole, prefer high 
structural indices, i.e., they are more dipolar in nature. 
However, the lower structural indices are better depth 
estimators (Thompson, 1973). 
The absolute level of the anomalous field AT is rarely 
known. Regional fields or dc offsets due to nearby 
anomalies are almost always present. 
On actual data, anomalies are seldom represented 
exactly by point sources. 

These factors make the exact solution of equation (6) very un- 
reliable and erratic. Methods have been developed to circumvent 
each of these three problems, and they are described in detail in 
the following three paragraphs. 

The problem of forcing the method to give depths for low 
structural indices is solved by performing the analysis for a series 
of prescribed structural indices. At present, EULDPH uses five 
structural indices as given in Table 2. It is still possible to deter- 
mine which structural index a given anomaly prefers by observing 
the grouping or clustering of the indices on the plotted output, as 
will be discussed below. 

The problem of properly removing the bias from the observed 
data is solved in the following way. Assume the anomalous field 
is perturbed by a constant amount B in the window in which 
equation (6) is being evaluated. The observed quantity is 

T(x) = AT(x) + B, (7) 

where B is constant in the coordinate x over the portion of the 

2 

FIG. 1. Schematic representation of a single valid depth estimate. 

profile where the analysis is being made. Solving equation (7) 
for AT, substituting into equation (6), and arranging terms 
yield 

dT 
x0 - + 20 E + NB = x E + NT. 63) 

f3X 

Since actual anomalies are only approximated by simple 
models, the third major problem is solved by creating an over- 
determined set of linear equations. If one evaluates equation (8) 
at four or more points within a window of a profile, an over- 
determined set of equations results. At present an operator con- 
sisting of seven points is used. The seven equations in the three 
unknowns x0, zo, and B are then solved using a least- 
squares procedure. 

The least-squares solution of the overdetermined set of equa- 
tions also yields estimates of the standard deviation of the param- 
eter zo. This quantity ur is treated as an “error bar” on the 
depth estimate and forms the basis for an algorithm that deter- 
mines whether or not a depth estimate is to be retained. 

The results of the procedure consist of both printed and plotted 
data. The procedure is most easily described with reference to 
Figure 1. For a given index (say N = 0.5, for example), window 
length and window position along the profile seven data points 
are chosen, and solutions are obtained for x0, zo, cr,, and B 
[See equation (S)]. If the acceptance criteria are met, the symbol 
for the index is plotted at the (x0, zo) coordinate, and the value 
for +o, is indicated by a vertical error bar. It is easy to see 
that, through the convolution of several windows and the five 
different indices with the entire magnetic profile, a great many 
depth estimates are made. Depending upon the acceptance criteria, 
only those estimates which adequately reproduce the data within 
the window will be accepted for output. 

The acceptance criterion actually used is empirically derived. 
Clearly, the acceptance criterion must depend upon the depth of 
the estimate, since deeper estimates are by nature less certain. 
Moreover, as mentioned above, most geologic structures are 
better represented by higher indicts, but the lower indices are 
usually more directly related to the depth to the top of the struc- 
ture. The actual value of the acceptance tolerance (TOL) will 
depend upon the quality of the data and must be adjusted by the 
interpreter. For standard high-resolution aeromagnetic data, a 
particular estimate (for a given structural index N and window 
length W) is accepted for plotting if the following inequality is 
satisfied: 

TOL=20+ (9) 
z 

INTERPRETATION 

General considerations 

The fundamental concepts of EULDPH are based on the idea 
of the equivalent stratum. Stated simply, the concept of the equiva- 
lent stratum is that the magnetic anomaly due to a causative body 
with uniform magnetization can be exactly duplicated by placing 
an appropriate distribution of magnetic poles on the surface of 
the causative body. Thus, a thin extrusive magnetic body would 
have positive poles induced on its upper surface and negative 
poles induced on its lower surface At a distance, such a mag- 
netic source would have dipolar characteristics. On the other 
hand, intrusive magnetic bodies which have their origins deep 
within the crust would have poles induced on their upper surface, 
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but the corresponding negative poles would be so deeply buried 
that they would not contribute to the measured magnetic field. 
Such an intrusive body, according to this oversimplified reason- 
ing, would exhibit polar behavior. The idea of using simple 
models to represent magnetic sources has been documented by 
Hood (1965), Smellie (1956), Thompson (1973), and Briener 
(1973), among others. 

It is known from potential theory that there is no unique inverse 
solution to the magnetic problem. Therefore, the representation 
of the anomalous magnetic field as due to a subsurface distribu- 
tion of simple magnetic models is also not unique. The EULDPH 
procedure does not attempt to construct magnetic models of the 
subsurface geology. It only helps the interpreter to construct 
these models by presenting him with a series of possibilities. The 
greatest strength of EULDPH, as compared to other techniques, 
is that the simple models (represented by the structural indices) 
are capable of resolving and sometimes identifying a wide variety 
of geologic situations. In other words, no geologic model is 
assumed in the performance of the EULDPH procedure. 

Figure 2 shows some 2-D magnetic models and their magnetic 
responses. The induced fields due to these models have been 
calculated at the magnetic pole (although this is not a restriction 
on the EULDPH technique) and have been chosen to illustrate 
the ability of the EULDPH technique to determine the type of 
causative body as well as its depth. 

Figure 2a represents a magnetic dike intruded into less mag- 
netic rocks. This feature prefers the higher structural indices as 
evidenced by the tighter clusters representing the 1.5 and 2.0 
indices. However, the 0.5 index is clearly the best depth estimator, 
consistent with our intuitive understanding that a distribution of 
magnetic poles would be induced on the upper surface of the 
causative body. The width/depth (W/D) ratio of this dike is 2.0. 
As the W/D ratio of the dike changes, the EULDPH pattern will 
also change. For large W/D ratios, the procedure will respond as 
though the dike represents two magnetic contacts. For very 
narrow dikes (W/D < 0.5), the response (at the pole) will be 
best represented by a line of poles (N = 1). These results are 
entirely consistent with the discussions by Slack et al (1967) and 
Thompson (1973). As a rule of thumb, for intrusive-type bodies 
the best depth estimator is the 0.5 index. 

Figure 2b represents the magnetic signal and EULDPH re- 
sponses of a fault in basement rocks, with a depth/throw ratio of 
5.0. In this case, the anomaly is best reproduced by the 1 .O index, 
as evidenced by the very tight clustering of that index. Typical of 
faulted structures, which have a slower fall-off rate than do 
intrusive bodies, the high structural indices are poorly grouped 
and erratic. In this example the 1 .O index is also clearly the best 
depth estimator. 

Figure 2c represents a deep vertical magnetic contact. As 
predicted by Briener (1973), contacts have very low fall-off 
rates and are therefore poorly represented by high structural in- 
dices. This is evident from Figure 2c by the complete absence 
of the 1.5, 2.0, and 2.5 indices. Typical of contacts, the 0.5 
index best represents the anomaly, as evidenced by the relatively 
good clustering of this index. An empirical rule of thumb has 
been devised to estimate the depth to the top of magnetic con- 
tacts: Subtract the distance between the 0.5 and 1 .O index clusters 
from the depth of the 0.5 index. The EULDPH patterns for 
magnetic contacts are quite distinct, and the rule can be applied 
to obtain depth estimates for magnetic contacts. 

The three examples of Figure 2 are not intended to be an 
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FIG. 2. (a) EULDPH response of a 2-D dike. (b) EULDPH response 
of a 2-D fault. (c) EULDPH response of a 2-D contact. 
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exhaustive catalogue of EULDPH responses. In fact, the re- 
sponses of structures to the EULDPH technique vary slightly 
with the geometry of the body and with magnetic inclination. 

EULDPH can be applied to data at any magnetic inclination. 
However, depth estimates are usually more accurate for data 
which have been reduced to the magnetic pole. Work previously 
reported by Thompson (1973) shows that, as the magnetic in- 
clination decreases, simple models tend to overestimate the 
depths to causative bodies. Thus, if EULDPH is applied to data 
at lower magnetic latitudes as well as to the data which have been 
pole reduced, one would normally expect depth estimates to be 
slightly shallower and more accurate on the pole-reduced data. 
Any variations from this pattern would indicate that the assump- 
tions of pole reduction have been violated, i.e., the structures are 
not 2-D and/or remanent magnetization is present. 

An example from West Africa 

Figure 3 shows a high-sensitivity aeromagnetic profile taken 
from the offshore region of western Africa. This profile covers 
the transition from oceanic crust to the south to continental crust 
to the north. For the purposes of clarity, the low-amplitude 
anomalies to the north are not shown on Figure 3. The magnetic --. 
inclination at this latitude is -23 degrees, and EULDPH “picks” 
shown on the figure have been made using the measured data. It 
is clear from the area1 coverage that the magnetic sources can be 
considered 2-D for the purposes of interpretation. 

Also shown on Figure 3 are the data which have been pole 
reduced. It is not possible, due to limitations of black and white 
printing, to show EULDPH picks on the pole-reduced data (the 
current algorithm plots the pole-reduced estimates in red). It is 
sufficient to note that the pole-reduced estimates show a pattern 
very similar to the picks on the measured data but are con- 
sistently deeper. Since it is known from the area1 coverage that 
the anomaly is 2-D, the deeper pole-reduced estimates imply the 
possible existence of remanent magnetization. 

A magnetic model was constructed which consists of a series 
of vertical prisms whose boundaries and depths were constrained 
by the EULDPH picks shown on Figure 3. The good grouping 
of the 1 .O index in the series of estimates in the middle of the pro- 
file suggests that there may be considerable structure associated 
with this group of estimates, while the group of estimates on the 
southern end of the profile is suggestive of a contact. By adjusting 
the remanent magnetizations of the model blocks, a satisfactory 
model was achieved, as shown in Figure 4. 

The EULDPH response shown on Figure 4 was derived using 
the magnetic data calculated from the model at a magnetic in- 
clination of -23 degrees. As with Figure 3, the pole-reduced 
EULDPH model response would normally be displayed in red. 

The constructed model shown in Figure 4 shows the less mag- 

netic continental crust to the north and several more magnetic 
blocks to the south, representing a series of normally and reversely 
magnetized blocks. The magnetic inclinations shown on Figure 4 
are the vector sum of induced and remanent magnetization in 
each block. 

This example demonstrates that EULDPH analysis can provide 
the interpreter with information usually not available from con- 
ventional analysis. 

CONCLUSIONS 

EULDPH represents a significant departure, both in theory 
and practical utility, from conventional methods now available 
to the industry. As with all magnetic depth estimate procedures, 
EULDPH must be used by interpreters who are trained in its use. 
Considerable experience is necessary to implement the procedure 
properly. 

The most important technical limitation of the EULDPH pro- 
cedure is its sensitivity to interference among neighboring 
anomalies. When this occurs, erroneous picks sometimes group 
in a deceptive way. 
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