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GRAVITY AND MAGNETIC FIELDS OF POLYGONAL PRISMS AND 
APPLICATION TO MAGNETIC TERRAIN CORRECTIONS 

DONALD PLOyFF* 

Computer programs based on the exact calcu- 
lations of the gravity and magnetic anomalies of 
polygonal prisms are faster in operation and 
more accurate than previous programs based on 
the numerical integration of polygonal laminas. 
The prism programs also are of more general 
application than existing computer programs that 
are based on the exact gravity and magnetic ef- 
fects of rectangular prisms. There are no restric- 
tions on the use of the exact formula for the 
gravitational attraction of a polygonal prism, but 
the formulas for the magnetic effect are restricted 
in that demagnetization is not considered, and a 
finite answer is not obtained in the unrealistic 
circumstance where an observation point coin- 
cides with an edge of the prism. 

Least-squares methods permit calculation of 
the gravity or magnetic effect of models without 

knowledge of the density or magnetization con- 
trasts, respectively, by comparison of the ob- 
served anomalies with theoretical dimensionless 
values to determine contrasts as regression 
coefficients. The coefficient of correlation pro- 
vides a goodness of fit estimate that helps model 
evaluation. After calculating a magnetic terrain 
correction for an outcrop of Quaternary dacite 
and andestite near Clear Lake, Calif., an improve- 
ment of the coefficient of correlation from 88 to 
the 92 percent level indicates that this volcanic 
unit probably extends at least 150 m beneath the 
surface. Application of a magnetic terrain correc- 
tion to disconnected outcrops of Tertiary ande- 
site, eliminates most of a prominent v-shaped 
magnetic anomaly south of the San Juan Moun- 
tains, Colo. 

INTRODUCTION 

Talwani and Ewing (1960) suggested a method 
to calculate the gravity anomaly of a three-dimen- 
sional body by numerical integration of horizon- 
tal polygonal laminas that approximate the shape 
of the body. Bott (1963) and Talwani (1965) later 
suggested methods to calculate components of the 
magnetic field of a horizontal lamina with a po- 
lygonal boundary. Computer programs that im- 
plement the methods have proved valuable in 
three-dimensional gravity and magnetic inter- 
pretation. 

A three-dimensionai body can be represented 
by summing a number of horizontal laminas that 
compose the entire body. A lamina replaces a 
polygonalized contour from the total body. The 

greater the height of observation compared to the 
thickness represented by each Iamina, the more 
accurate will be the result of the numerical in- 
tegration. The use of Simpson’s rule in Talwani’s 
computer programs minimizes the error resulting 
from numerical integration and permits bodies to 
be terminated at the top and bottom by points. 
For a given body, however, different arrange- 
ments of the arbitrarily selected lamina give dif- 
ferent results. The lamina method also has the 
disadvantage that the correct field of a body rep- 
resented by laminas cannot be determined within 
or near a lamina. The facility to calculate anoma- 
iies near bodies w0uid be useful in demagnetiza- 

tion calculations and in the interpretation of un- 
derground measurements or topographic effects. 

The inaccuracy that results from use of the 
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3 LAMINAS -+-L EXACT 
Thus, layers can be used instead of laminas. As 

0 0 b 0 0 0 
shown in the following sections, the integrations 
are relatively elementary. But to my knowledge 
the integrations have not been reported, though 
several papers have been published recently on 
this subject (for example, Grant, 1972; Johnson 
and Litehiser, 1972; Goodacre, 1973; Whitehill, 
1973). The gravity and magnetic values obtained 
by using formulas derived here have been checked 
by using models of rectangular prisms for which 
exact formulas previously have been published. 

The geometric relations of most of the symbols 
used in the following sections are shown in Figure 
2. Exact definitions and supplementary notes- 
needed for a more complete derivation are given 

FIG. I. Total magnetic field of three equally spaced in the Appendix. Further details of the derivations 
laminas compared with exact field of rectangular 
nrism. Contour interval is 200 gammas. Hachures 

are given by Plouff (1975a. b). 

on low side of contours. Each side of body is 4 
The gravity or magnetic effects of a polygonal 

units in length. Depth to top of prism is 0. I5 unit prism are expressed in terms of the summation of 

and depth to bottom is 2.15 units. K = 0.005 the contributions from the individual edges of an 
emu/cc. H = 0.4 oersted. I, = 60 degrees. Lam- 
inas are located at the tou. middle. and bottom of 

n-sided prism. The summation progresses in a 

the prism. Open circles indicate location of field- 
clockwise fashion around the prism as viewed 

points. Shaded pattern indicates location of from above. For the ith edge, paired terms occur 

prism. Note that the contour levels of the two that are functions of the coordinates at the end- 
models differ by about 200 gammas near the north 
and south edges of the prism. 

points of that edge. The subscript I refers to the 
first endpoint (or corner) of that edge found in the 
clockwise progression, and the subscript 2 refers 

lamina approximation, and the inability to calcu- to the latter of the two endpoints. The general 
late the field at the same level as the body, can be subscript k refers to either of the endpoints. The 
overcome by integrating the lamina formulas in depths z, to the top or bottom f’ace of the prism 
the direction of depth to give an exact solution for are expressed as absolute values, with the sub- 
a three-dimensional polygonal prism (Figure I ). script I referring to the face closer to the field- 

BASIC ELEM~ENT- 
POLYGONAL PRISM 
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Frc.2. Geometric elements involved in calculation of gravity and magnetic anomalies caused by a 
polygonal prism. The fieldpoint is located at the origin of the rectangular coordinate system. 
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point and the subscript 2 referring to the more 

distant face. Hence, the distance Rk, = \ m+ 

GRAVITY 

Integralion 

The formula for the gravity effect correspond- 

ing to each edge of a horizontal polygonal lamina 

developed by Talwani and Ewing [ 1960. equation 

(S)] includes only terms that can be expressed in 

the form 

A + sin-’ (1) 

where A, CR, and P are constants (see Appendix 

for conversion from the notation of Talwani and 

Ewing to that of this report). These terms can be 

expressed in the equivalent form 

A polygonal prism is formed by integrating a 

sequence of closely spaced, horizontal polygonal 

laminas with respect to the depth z. Integrating 

the lamina formula once by parts, and using 

Peirce’s table (I 929. p. 20, integral 129) after sub- 

stituting a variable q2 for P + z*. gives terms of 

the form 

AZ - z tan-’ (2) 

for the gravity effect of each edge of a polygonal 

prism. 

Substituting this integral for all terms in Tal- 

wani and Ewing’s original equation, the vertical 

component of gravity caused by an n-sided polyg- 

onal prism with vertical sides is 

n 

g = YP 3.n c s,A[z, - z,] i=, 

+ z, tan-’ 22 _ tan-’ 12 _3!$ 1 22 

-1 Zl 2 

- z1 [ tan-l Fgl - 
tan Ii j+ 1 21 

where y is the Universal Gravity Constant and p 
is the density of the prism. The symbol s, = I if 

the center of mass of the prism is below the field- 

point and sm = -1 if the center of mass is above 

the fieldpoint. The symbol sp = I if P is positive. 

and sp = -I if P is negative. For the special case 

of P = 0, the gravity value and volume subtended 

by the corresponding edge of the prism, as viewed 

from the fieldpoint, are zero. Computer time can 

be reduced by determining the sum of angles A 
outside the indicated summation. The sum is 2~ 

for the fieldpoints located over the interior of the 

polygon, zero for exterior points, T over an edge, 

and equal to the interior angle if the fieldpoint is 

located over the intersection of two edges of the 

polygon. 

Kolbenheyer [1963, equation (I I)] derived a 

formula similar to equation (3). But no provision 

was made for fieldpoints located over an edge or a 

corner of the polygonal prism. The arctangent 

terms of Kolbenheyer are of the form 

L tanml _~~.__ r2 + dR 

IPl IPzl 
= tan-’ 

which are equivalent to the terms of equation (3). 

because paired terms of the form tan’ (I/Pz) at 

opposite ends of an edge are of equal magnitude 

and opposite sign. 

Comparison wirh rectangular prism 

The formula for the gravity effect of a rectangu- 

lar prism has been derived independently by the 

author for comparison with terrain correction ap- 

proximation formulas (Plouff, 1966a). The for- 

mula is similar to that of Kellogg (1929, p. 57). 

and it provides a gravity value anywhere inside or 

outside the prism, The value of the vertical com- 

ponent of gravity is 

- u, In(R,,, -k b,) - b, ln(R,,,. -I- a,) 1 , 
(4) 

where RIIA = aL2 + b,’ + zk2 and s=s,s,sk with 

SL = -I and sZ = + I. Gravity values obtained by 

using a computer program that is based on equa- 

tion (3), for any x-y orientation of a rectangular 

prism, agree exactly with those obtained by using 

a computer program based on equation (4) 

(Plouff, l975b, Table 6) 
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Graoily prism example 

A small network of gravity stations was estab- 
lished by the author in western Imperial Valley, 
Calif., in association with R. V. Sharp’s study of 
Salton Trough tectonics. One of the principal fea- 
tures of the gravity map (Figure 3) is an elongated 
gravity high that seems well-suited for three-di- 
mensional gravity interpretation. Three small hills 
of Cretaceous granodiorite that crop out along 
the crest of the gravity high indicate a ridge of 
basement rock buried at shallow depth under 
Quaternary deposits. Crystalline rock consisting 
of Cretaceous granitic rocks crop out at Super- 
stition Mountain. and crystalline Cretaceous and 
older metamorphic rocks crop out at the Fish 
Creek Mountains (R. V. Sharp, oral communica- 
tion, 1974). An arbitrary density of 2.00 gm/cc 
was used for the Bouguer reduction to sea level, as 
assumed by Kovach et al (1962), and terrain cor- 
rections were carried to 167 km using a density of 
2.67 gm/cc. 

A succession of models was tried in order to 
account for the positive gravity anomaly. The first 
model was a seven-sided polygonal prism that 
extended from I5 m (50 ft) above sea level to 457 
m (1500 ft) below sea levjel, with sides approxi- 
mately beneath the minus 31 m-gal contour level. 
The location of gravity gradients, especially along 
the northwest edge of the indicated model, sug- 
gests the presence of an uplifted fault block. The 
density contrast p and gravity datum g, were de- 
termined to give the smallest deviation between 
the calculated and observed anomaly and to opti- 
mize the trial-and-error process. Equation (3) 
may be written g=pB. The least-squares process 
was used to determine the intercept g, and the 
regression coefficient p in the equations 

g, = gli + pB. (5) 

used for each station, where g, is the observed 
anomaly and B is a function of the coordinates of 
the body under consideration. Station locations 
that were used for the determination of the sub- 
surface model that seems to account for the ob- 
served gravity high are omitted from the residual 
gravity map (Figure 3). 

A best density contrast of 0.52 gm/cc was deter- 
mined for the indicated model. The average bulk 
density for samples collected from the two north- 
ern outcrops of grandiorite is 2.64 gm/cc which- 
with the determined density contrast-would give 
an average density of 2.12 gm/cc for the Qua- 

ternary deposits between the surface and 762 
m (2500 ft) below sea level. This average density 
for Quaternary deposits seems reasonable. A 
basement high remains to be fitted near the south- 
east corner of the residual gravity map. The 
gradients between the assumed model westward 
toward the Fish Creek Mountains and north- 
eastward toward Superstitition Mountain could 
be removed by a trial-and-error process to build 
up the higher density rock from the base of the 
model to the surface where crystalline rock is 
exposed. The small, closed, residual gravity low 
(-39 mgal contour level) indicates that the Qua- 
ternary deposits probably are thicker in that vicin- 
ity before the basement rises northeastward to the 
surface at Superstition Mountain. 

MAGNETICS 

Solulion of infegrafion 

The gravity effect of a polygonal prism has the 
simple form of equation (3) because only the ver- 
tical component of gravity is calculated, and den- 
sity is a scalar quantity. Either the vertical or the 
total component of the magnetic anomaly, how- 
ever, might be needed. Furthermore, the intensity 
of magnetization is a vector quantity. Therefore, 
the three orthogonal components of the magnetic 
anomaly, 

x = J, v, + J,, v, + Ji v,, , 

Y= J,v,+ J,,v,+ J,V.Y, (6) 

Z = Jr V:, + J,, V, + J, vu; 
[Taiwani, 1965, equation (2)], are calculated. The 
quantities X, Y, and Z are the components of the 
magnetic field of an anomalous body in the direc- 

FIG. 3. Reduction of size of observed gravity 
anomaly by inferring the configuration of a buried 
mass that consists of eight polygonal prisms. 
Gravity contour interval is I mgal. Bouguer re- 
duction density is 2.0 gm/cc. Topographic and 
body contours are expressed in feet relative to sea 
level. Topographic contour interval is 200 ft with 
labeled supplementary contours. Elevation of top 
of each body layer is labeled. The bottom of each 
layer coincides with the elevation of the top of the 
underlying layer and the elevation of the bottom 
of the lowest laver is 2500 ft below sea level. 
Locations of three small outcrops of Cretaceous 
granodiorite are indicated by dotted pattern. 
Large dots indicate locations of gravity stations. 
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Components of the magneticjeld 

lating the values of V once for several 

combinations of J-components. 

The magnetic anomaly for a polygonal prism is 

calculated by substituting values from equation 

(9) into equations (6). The z-axis need not be 

vertical in the x-y-z coordinate system if the defi- 

The change T in the total magnetic field at an 

nition of the J-components are consistent with the 

observation point owing to the presence of an 

choice of axes, but display of the model is sim- 

plified, and direct reference to conventional defi- 

anomalous body can be determined from the 

nitions of magnetic inclination and declination 

can be used with the choice of the z-axis as the 

equation 

depth coordinate. Because the time of calculation 

of the summations indicated in equations (9) is 

considerably longer than the simple multi- 

plications indicated in equations (6), proportion- 

ally little execution time is expended by calcu- 

components of the anomalous body, as calculated 

in equation (6). If the anomaly T caused by a 

magnetic body is small compared to the main field 

H, then T can be approximately measured by 

projecting the components of the anomalous field 

in the direction of the earth’s field. Therefore, 

= J3, + J$, + J,&, (l-2) 

where B,, B,, and B, are functions of body coordi- 

T-IX+mY+nZ. (11) 

Substituting values of X, Y. and Z from equation 

nates using V calculated in equation (9). 

(6) into equation (1 I), 

T = JAI VI -I m V2 -I- n V3 ) 

Equation (12) can be used to solve for the J- 

3- JAI Vz -I- nt V, -I- n V5> 

i- J,(I VZ i- m V.? + n V6) 

where 1. m, n are the direction cosines of the 

earth’s field (see Appendix), H is magnitude of the 

earth’s field, and X,Y, and Z are the magnetic 

Table 1. Change in value of V, as edge of rectangular 
prism is approached. [The prism is 2 by 6 units in 
horizontal dimensions and 3.125 units in depth. The 
x-axis (increasing values to north) is parallel to 
the long side of the prism, and the origin of the co- 
ordinate axes is at the center of the prism. Column 
headings indicate fieldpoint height relative to the top 
of the prism. Values are symmetric with respect to the 
plane y = 0. Values are symmetric but algebraic signs 
are reversed with respect to the plane x = 0.1 

x .Y 0.1 0.001 0.00001 zero 

8 
I .o 
I.5 
0.0 

I.1 
I.1 
0.8 
0.6 
5.3 

0.5 5.1 
I.0 3.1 
I.5 I.0 
0.0 I.1 
0.5 I.0 
I.0 
I.5 
0.0 
0.5 
I.0 
I.5 
0.5 
I.0 

0.8 
0.6 

I.1 1.1 
I.1 I.1 
0.8 0.8 
0.6 0.6 

14.5 23.1 
14.3 23.5 
1.7 12.3 
I.0 I.0 
I.1 I.1 
I.0 I.0 
0.8 0.8 
0.6 0.6 

0.3 0.3 0.3 
0.3 0.3 
0.3 0.3 it: 
0.2 0.2 0:2 
0.0 0.0 0.0 
0.0 0.0 0.0 

I.1 
I.1 
0.8 
0.6 
m 
co 

I:0 
I.1 
1.0 
0.8 
0.6 
0.3 
0.3 
0.3 
0.2 
0.0 
0.0 

components of the intensity of magnetization by a 

least-squares comparison of the observed mag- 

netic anomalies TO, with the calculated magnetic 

anomalies T in the equation 

TO = Td + T 

= Tr, + J,B, + J,,& + JA, (13 ) 

for four or more fieldpoints, where T, is value 

determined for a nominal magnetic datum shift. 

The values for Tdr J,, J,, and J, can be determined 

by multiple regression formulas such as those de- 

scribed by Arkin and Colton (1956, page 94). 

Ignoring the effect of demagnetization, the com- 

ponents of the total magnetization vector needed 

in equation (13) are 

J, = KHI + J,L, 

J,, = KHm $ J,M, 

and 
J, = KHn $ J,N, (14) 

where K is the magnetic volume susceptibility, J,. 
is the intensity of remanent magnetization, and L, 
M, and N are the direction cosines of the rema- 

nent magnetization vector. If the magnetic sus- 
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ceptibility of the anomalous body is small com- 
pared to the remanant magnetization, the 
substitution K=O can be made in equation (14). 
Then, equation (13) becomes 

T,, = Td + J,LB, + J,MB, + J,NB,. (15) 

and the magnitude J, of the remanent (or total) 
magnetization vector with its declination D, and 
inclination I,. as defined in the Appendix, can be 
easily determined, 

If the remanent magnetization of an anomalous 
body is small compared to its magnetic suscepti- 
bility, the substitution J, = 0 can be made in 
equation (14). Substituting for the J-components 
in equation (I 3), 

To = Td + KH(IB, + mB, + n&l 
(16) 

= T,, + KB, 

where B is a function of the body coordinates. 
Equation (16). as applied to two or more field 
points, can be solved for the regression coefficient 
K and apparent magnetic susceptibility that de- 
pends on the observed magnetic anomalies T, and 
the calculated magnetic anomalies T = KB. 

Comparison rrirh rectangular prism 

Magnetic values obtained by using a computer 
program, based on equations (6) and (9) for the 
special case of a rectangular prism, exactly agree 
with those obtained by using a computer program 
based on the magnetic values for a rectangular 
prism (Plouff, 1975a, p. 98). The comparison was 
made by using my equations that are similar to 
those of Bhattacharyya (1964), Sharma (1966) 
and Goodacre (1973) for the magnetic effect of 
rectangular prism. 

For a rectangular prism, 

is solved by using Peirce’s (1929) integrals 174, 
138. and 229, respectively. The triplet (al, h,, zk) 
denotes the location of a corner relative to a field- 
point. Next. 

is solved by using Peirce’s (1929) integrals 171, 
140, and I26a. Values for I/,- V, are obtained by 
direct integration or by cyclic permutation of 
X-Y-Z and a,-b,-zk in the values for V, and V,. 

Hence, 

and 

where R,,, = a,’ + h,’ + zb2 and s=s,s,s,, with s, 
= m-1 and.y, = +I. 

Magnetic lerrain correclion e.umples 

Magnetic models can be obtained by using a 
trial-and-error process similar to that used in the 
example for a gravity model. If magnetic rocks 
crop out, polygonal prism formulas can be used to 
determine a magnetic terrain correction. Richards 
et al (1967) discussed a number of useful examples 
in which magnetization parameters were obtained 

FK;. 4. Reduction in size of observed aero- 
magnetic anomaly by removing the effect of to- 
pography with an assumed constant magnetic sus- 
ceptibility. Aeromagnetic map adapted from 
U.S.G.S. (1973). Contours show total intensity 
magnetic field of the earth in gammas relative to 
an arbitrary datum. Contour interval is 40 eam- 
mas. Dashed lines indicate flight path. Survey 
flown at 1372 m (4500 ft) barometric elevation. 
Hachures are on few side’of magnetic contours. 
Shaded pattern on geologic map indicates loca- 
tion of unit of Quaternary dacite and andesite 
(adapted from Brice. 1953: McNitt. 1968a. b). 
Dotted line on geologic map indicates location of 
edge of Clear Lake. Calif. Polveonalized tooo- 
griphic contours are generalizehrfrom standard 
15-minute maps of the U.S.G.S. Topographic 
contours are labeled in units of hundreds of feet 
above sea level; interval is 400 ft with an addi- 
tional contour at 3800 ft above sea level. Dots on 
residual magnetic map indicate position where 
magnetic field is calculated. L-shaped symbols in- 
dicate corners of area in which calculated values 
were used for a least-squares determination of the 
best magnetic susceptibility contrast. 
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by comparing observed magnetic anomalies with 

rectangularly gridded topography. The use of po- 

lygonal prisms by polygonalization (replacing 

curved lines with a finite number of straight line 

segments) of topographic contours, however, is 

an easier procedure to apply and provides a more 

realistic representation of topography. 

The magnetic effect of a prominent magnetic 

high over Mt. Konocti, near Clear Lake, Calif. 

(Figure 4) was largely removed by applying a 

magnetic terrain correction. The apparent mag- 

netic susceptibility [equation (I 6)] for the topo- 

graphic model was computed for two reasons, 

although remanent magnetization is present in 

sample measurements. First, the volcanic rocks 

are relatively young and probably are not rotated 

from their original position (C. 9. Hearn, 1974, 

oral communication); therefore remanent mag- 

netization, if present, is probably aligned nearly 

parallel to the present earth’s field. Second, the 

contributions of a prominent magnetic low, su- 

perimposed on the east edge of the high and on 

the east edge of the unknown deeper rocks be- 

neath the level of the polygonalized topography, 

might interfere with obtaining the true magneti- 

zation direction when the more general equation 

(I 3) is applied. 

A preliminary calculation was made for a topo- 

graphic model with a base level at 488 m (1600 ft) 

above sea level, which resultd in a best-suscepti- 

bility of 0.0035 emu/cc. Next, a model with a base 

level of 366 m (I200 ft) above sea level was tested, 

which resulted in a best-susceptibility of 0.0033 

emu/cc. The latter model was used to produce the 

residual map in Figure 5 because the coefficient of 

correlation between the observed and calculated 

anomalies improved from 88 to 92 percent, where 

100 percent would be perfect agreement. This use- 

ful statistical test, equivalent to the goodness-of- 

fit test of Richards et al (1967) provided an objec- 

tive criterion for extending this volcanic unit 

downward into a calderalike form. A prominent 

residual magnetic low, however, remained to be 

explained. Nearby occurrences of olivine basalt 

float of low magnetization (C. 9. Hearn, 1974, 

oral communication) suggest the existence of a 

larger concealed mass of similar rock with low 

magnetization above 1067 m (3500 ft) elevation 

east of the crest of Mt. Konocti. Truckborne mag- 

netometer traverses at lower elevations to the 

south and west indicated large variations of mag- 

netization within this Quaternary volcanic unit by 

recording changes up to 2000 gammas in 0.5 km 

distance. Residual magnetic highs that nearly en- 

circle the magnetic low indicate that, except at the 

location of magnetic low, the total magnetization 

(expressed in terms of magnetic susceptibility) 

should be higher than the computed value. 

A substantial reduction in the size of a promi- 

nent V-shaped magnetic anomaly (Figure 5) lo- 

cated near the southwest edge of the San Juan 

Mountains, Colo., was similarly achieved by ap- 

plying a magnetic terrain correction. The topogra- 

phy that was polygonalized corresponds to the 

area of outcrop of the Huerto Formation, a Ter- 

tiary volcanic unit that consists of dark andesitic 

flows and breccias (Steven et al, 1969). Using 

equaiion (I 5) a “best” intensity of total magnet- 

ization of 0.0040 emu/cc was determined for a test 

area and applied to a larger area in order to derive 

a residual map (Figure 5). Ignoring the effect of 

magnetic susceptibility, the best declination is 

N7W, the best inclination is 42 degrees down- 

ward, and the coefficient of multiple correlation, 

relating the calculated to the observed anomalies 

in the test area, is 89 percent. Modeling the topog- 

raphy was complicated by the northward wedg- 

ing-out of the Huerto Formation, the occurrence 

of faults boundaries for the southeast outcrops, 

and the need to exclude overlying formations and 

estimate the position of the concealed lower con- 

tact of the Huerto Formation. Despite these 

FIG. 5. Reduction in size of observed aero- 
magnetic anomaly by removing the effect of to- 
pography with an assumed constant magnet- 
ization. Aeromagnetic map adapted from 
Popenoe and Steven (1969). Contours show total 
intensity magnetic field of the earth in units of 
hundreds of gammas relative to an arbitrary da- 
tum. Contour interval is 100 gammas. Dotted 
lines on aeromagnetic map indicate flight path. 
Survey flown at 4267 m (14,000 ft) barometric 
elevation. Hachures on low side of magnetic con- 
tours. Topographic contours are labeled in units 
of thousands of feet above sea level; interval is 500 
ft. Shaded pattern indicates location of the 
Huerto Formation and striped nattern indicates 
location of Carpenter Ridge’Tuffon geologic map 
(Steven et al. 1969). Polveonalized toooeranhic 
contours that depict a model of the HuerTo bar- 
mation are generalized from Steven et al (1969). 
Dashed contours indicate estimated position of 
concealed edge of Huerto Formation. Dots in- 
dicate boundary of uniformly spaced gridwork of 
positions where magnetic field is calculated. L- 
shaped symbols indicate corners of area in which 
calculated values were used for a least-squares 
determination of the best magnetic susceptibility 
contrast. 
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problems, and the coarseness of the selected con- 
tour intervals for modeling topography, the rela- 
tively small residual anomaly indicates success of 
this analysis. 

The residual magnetic map (Figure 5) includes 
some apparent correlations with topography that 
indicate large-scale variations of magnetization 
within the Huerto Formation. For example, the 
elongated magnetic high enclosed by the 800- and 
900-gamma contours and the nearly circular low 
enclosed by the 500- and 600-gamma contours 
(located to the west of the test area) indicate 
higher and lower rock magnetizations, respec- 
tively, compared to the nominal value determined 
in the least-squares process. The residual closed 
low located to the north of the test area no longer 
extends downward to the 400-gamma level be- 
cause the dipole-low effect to the north of the 
model has been removed. This residual low and 
the low to the northeast is mostly related to the 
effect of the reversely magnetized Carpenter 
Ridge Tuff (Popenoe and Steven, 1969) a crystal- 
p-oar rhyuiite welded tntfT of Tertiary age (Olson 
et al, 1968: Steven et al, 1969). The magnetic ridge 
between the two lows (Figure 5) reflects the ab- 
sence of rock in the topographic low between the 
two outcrops of Carpenter Ridge Tuff. The nar- 
row magnetic low that extends more than 16 km 
southeastward from the closed residual low at the 
500-gamma level, located near the southeast cor- 
ner of the area, indicates the strongly reversed 
magnetization of the Carpenter Ridge Tuff. 

DISCUSSION 

Existing computer programs, including inter- 
active graphics programs based on the gravity or 
the magnetic effect of rectangular prisms, can be 
replaced by the more general polygonal prism 
programs with the exception of programs using 
rectangularly gridded models or automated in- 
version programs, such as that suggested by 
Whitehill (1973). Inversion programs, however, 
can be coordinated with polygonal prism pro- 
grams to the advantage of both. For example, the 
3-D iterative gravity program of Cordell and Hen- 
derson (1969) can be used to minimize the trial- 
and-error aspect of the polygonal prism program. 
A more realistic-appearing contoured representa- 
tion of the model generated by the iterative pro- 
gram can then be used as initial input to the 
polygonal prism program, after which additional 
refinements can be made. The existence of dupli- 
cated terms, that are summed in polygonal prism 

equations (3) and (9) and rectangular prism equa- 
tions (4) and (I 7) would optimize a coordination 
between gravity and magnetic programs. 

Except for the need to ignore the effect of de- 
magnetization and avoid locations on the edges of 
magnetic models, equations (3) or (9) can be used 
to determine the respective gravity or magnetic 
anomalies anywhere outside or inside the polyg- 
onal prism. Therefore, these equations can be ap- 
plied to interpret measurements in conditions 
such as drape-flying, tunnels, and boreholes. Ex- 
amples were given in an earlier section where re- 
sidual aeromagnetic maps that result from deter- 
mining magnetic terrain corrections can be used 
to aid geologic mapping. Topography also can be 
polygonalized to provide magnetic terrain correc- 
tions for ground surveys. Modeling topography in 
the form of layers of polygonal prisms is partic- 
ularly adapted for magnetic calculations because 
of the sensitivity of using the geometry of the 
upper and lower faces of the model (except near 
the equator) to express the polarized magnetic 
effect of the~model. 

Polarization, however, is not involved in the 
gravity effect of an anomalous body. Therefore 
the building blocks used to construct a model for 
gravity terrain corrections can take other forms. 
Gridded models that incorporate rectangular 
prisms were suggested by Bott (1959) and Kane 
(1962). These authors substituted the effect of a 
part of an annular ring (cylindrical compartment) 
as an approximation for a rectangular prism to 
avoid the expense of calculating equation (4). Bott 
(1959) also suggested the further approximation 
of concentrating the mass of the prism along a 
vertical line element located at its center. This 
approximation was applied by Plouff (1966a. 
1966b) to rectangularly gridded compartments 
with geographic boundaries. The line-element 
approximation results in smaller but more accu- 
rate gravity values near the fieldpoint, as com- 
pared to rectangular or polygonal prisms. The 
line-element gravity values are more accurate be- 
cause the ground surface near the fieldpoint tends 
to slope on the average through the location of the 
fieldpoint, rather than to be horizontal with sharp 
vertical boundaries at arbitrary locations. as as- 
sumed for the prism models. 

Gridded models of terrain, unlike polyg- 
onalized models, permit correction for the effect 
of the earth’s curvature and also have the advan- 
tage of using cost-saving approximations without 
loss of accuracy. This is done in gridded models 
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by using the apparent elevations of the top and 

bottom of the rectangular prism or line element as 

viewed along the horizon of the fieldpoint. Add- 

ing finer detail or expanded information to a po- 

lygonalized model is cumbersome, compared to 

universally gridded models (Plouff, 1966) where 

various levels of rectangular compartment sizes 

can be added to the model in blocks--“maps”. 

Only one map needs to reside in the com- 

puter memory at a time in this system, whereas 

topographic information for an entire region 

must be stored in polygonal systems. At loca- 

tions far from the fieldpoint, a coarse grid can 

be used with little loss in accuracy, whereas the 

polygonalized model would require time-consum- 

ing calculation of unnecessarily fine elements of 

topography. 

Despite the disadvantages of polygonalization 

methods compared to grid methods as applied to 

gravity terrain corrections, magnetic terrain cor- 

rections seem well adapted to the polygonal prism 

concept. Computer costs related to preparing the 

examples of the present report tended to be min- 

imized at the expense of human costs, by using 

hand methods of polygonalization which sub- 

jectively produce fewer polygon edges than would 

digitizing-machine methods. The effectiveness of 

three-dimensional model programs is greatly en- 

hanced by a contour display of the results. Ex- 

cluding plotter costs and the use of hand polyg- 

onalization, the central processor time needed to 

execute the contour program used to obtain the 

results in this paper was approximately the same 

as the computer time needed for calculating the 

anomalies. The execution time for calculating the 

gravity or magnetic effects of polygonal prisms 

approaches 1.6 msec/fieldpoint/edge on an IBM 

370 computer. By comparing the basic formulas, 

it is estimated that the computer time used for 

calculating the gravity or magnetic effect of a 

prism is less than the computer time needed to 

calculate the effect of two polygonal laminas that 

might replace the prism. The representation of a 

prism by only two laminas, however, would result 

in dubious values (Figure I), negating any pos- 

sible savings in cost when using laminas. 
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APPENDIX 

DEFINITIONS 

Symbols in Talwani’s notation are indicated in 
parentheses. Where a symbol in parentheses oc- 
curs only on the left side of an equal sign, the 
symbol does not appear in the main sections of 
the present paper but was used in the derivation. 
The subscript k refers to either the vertex i or i+ I 
of the ith side of the polygon. The subscript e 
refers to the earth’s magnetic field. and the sub- 
script r refers to the remanent magnetic field. D is 
the cylindrical angle of declination measured posi- 
tive clockwise from the direction of the positive x- 
axis. I is the spherical angle of inclination meas- 
ured positive downward. H is the magnetic field 
strength of the earth’s field. J, is the intensity of 
remanent magnetization. If H arbitrarily is set 
equal to zero, then J,, L, MN, D,, and I, refer to 
the total magnetization of the induced and rema- 
nent fields. K is magnetic volume susceptibility. 
The product KH is the intensity of induced mag- 
netization. 

A= 

(l-1,) = 
c= 

Ck = 
db = 

kl) = 
I= 

L= 
111 = 

M= 

II = 

N = 

P= 
t-2 T  

rh 
P = 

RR2 = 

R,,' = 

s= 
As = 

Ax = 
A_l’ = 

i(jk = 

LIST OF DEFINITIONS 

cos-’ [(x1x2 + J$yz)I(r,r2)1 = (A$) 

P/S 
Ay/As 
P(XR Ax + y& Ay)/(r, As) = cos Bh 
.x,s + C’R c= - rhck 
P/C 
cos I, cos D, 
cos I,. cos D, 
cos I, sin D, 
cos I,sin D, 
sin I, 
sin I, 
(s,yz - .X&)/AS = SkC ~~ y&s =@,) 
2 + y” + 22 
sa2 + yR2 = dh2 + p2 
rR2 + 2’ 
rR2 + z,= 
A.x/As 
,/‘(Lx)~ + (A,)’ = Id, -- dz( 
x.J - s, 

$‘2 ~ 1’1 
(0, or 4, for gravity) = (b, or y, for 
magnetics) 

SUPPLEMENTARY NOTES 

Repeated use of the relation, 

tan- ’ ” + ’ = tan-’ ~1 + tan-’ b, 
1 - ub 

is made in equations (3). (4). (Y), and (17) to 
decrease computer times. Two forms of the loga- 
rithm terms 

In [(R + d)/dm] = 

0.5 In [(R + d)/(R - d)]. 

appear when alternate methods of integration are 
used. The form on the left is used throughout the 
paper because the denominator of that term is not 
a function of the horizontal coordinates and can- 
cels when paired terms are combined. The form 
on the right would require two tests instead of one 
for R = (dl 

If the perpendicular distance P from the field- 
point to a vertical side of the polygonal prism is 
zero, then the volume contribution of that side is 
zero and the gravity contribution [equation (3)] is 
zero. For magnetics, if P = 0, then W = 0 and V6 
= 0 [equation (9)3. The values of the other volume 
integrals, however, are not zero, because Tal- 
wani’s original definitions of integration direc- 
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tions have been retained. Integrals V,. V,, and V3 

are taken over the volume between the given side 

of the prism and the plane x = 0, while integrals 

V, and V, represent the volume between that side 

and the plane JI = 0. 

Also referring to equation (9) if P = z = 0. d, 

< 0, and d2 < 0, then (R,, + d,)/(R,, + dz) = 
d.Jd,. If (Pa+ 2,“) << dk2 and dk < 0, then the 

substitution, (RR, + dk) = -(P + z12)/(2dk), is 

needed to retain significant figures and to prevent 

calculating the logarithm of a digitally computed 

zero. Use of the relation V, = -(VI + V,) permits 

some savings in computer time and array storage 

reduction. If the prism is located above the field- 

point, the algebraic sign of answers obtained by 

using equation (9) should be reversed, in order to 

retain absolute values for depths and a clockwise 

progression of vertices. 


