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AbstractÐThe currently adopted approach to reduce observed gravity data for geophysical purposes
includes several approximations. These were originally used to reduce computational e�ort, but have
remained standard practice, even though the required computing power is now readily available. In
contrast, more precise gravity reductions are routinely employed in physical geodesy. The di�erence
between simple Bouguer gravity anomalies derived using the geophysical and geodetic approaches can
reach several tens of mmm secÿ2. The geodetic reductions include a more accurate calculation of normal
gravity as a function of latitude, and a free air correction that accounts for the non-sphericity of the
®gure of the Earth. Also important, especially given the advent of Global Positioning System coordi-
nation of gravity surveys, is the need to ensure that the correct vertical and horizontal coordinate sys-
tems are used for the gravity reduction procedure. Errors associated with the use of non-geocentric
horizontal coordinates and ellipsoidal heights are signi®cant when compared with the accuracy of an in-
dividual gravity measurement. A generalised gravity reduction program and a coordinate transform-
ation program are presented which can be employed to reduce geophysical data in a geodetic manner.
# 1998 Elsevier Science Ltd
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INTRODUCTION

Spatial variations in the gravitational attraction of

the Earth's mass are used in both geodesy and geo-

physics. Geodesy uses these variations to study

departures of the ®gure of the Earth from a simpli-

®ed ellipsoidal shape, whereas geophysics uses them

to identify lateral density contrasts in the sub-sur-

face and hence infer the local geology. As the

requirements of these two disciplines are somewhat

di�erent, so are their approaches to convert gravity

observations to a useable form.

Geodesy tends to use more precise reduction

methods, whereas geophysics uses simpli®ed ver-

sions of the same formulae. The adoption of these

simpli®cations is mainly historical, as they were

originally designed to reduce the computational

e�ort. Nowadays, however, the increases in readily

available computing power enable the more precise

gravity reduction techniques used in geodesy to be

routinely applied in geophysics. Existing geophysi-

cal reduction methods are often adequate for the

localised surveys used in exploration for resources,

but the departures from geodetic gravity reduction

become signi®cant for regional surveys (Heck, 1990;

Featherstone, 1995a).

Also of signi®cance for the geophysical reduction

of gravity data is the advent of positioning with

the Global Positioning System or GPS (e.g.

Featherstone, 1995b). It is essential to ensure that
the correct horizontal and vertical coordinate sys-

tems are used during data reduction. For example,
coordinate systems adopted for local surveying and
mapping may not be geocentric, as is assumed in

the reduction equations. If inappropriate coordinate
systems are used, artifacts may be introduced into
the data that can adversely a�ect the derived geo-

logical models (Featherstone, 1993). The correct use
of coordinate systems is also essential for the cor-
rect integration of GPS-positioned gravity surveys
with existing data.

THE GRAVITY ANOMALY

In geodesy, the gravity anomaly (Dg) is de®ned
as the scalar di�erence between the Earth's gravity

on the geoid (gP) and normal gravity on the surface
of the reference ellipsoid (g) at the observation lati-
tude (see Fig. 1). The geoid is de®ned as the equipo-

tential surface of the Earth's gravity ®eld that
corresponds most closely with mean sea-level. Thus,

Dg � gP ÿ g: �1�
Geodesy requires gravity anomalies to be given on
the geoid for the solution of the boundary value pro-
blem of physical geodesy, which is used to determine
the ®gure of the Earth (Heiskanen and Moritz, 1967).
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In geophysics, the gravity anomaly is used
slightly di�erently. It is often de®ned as the scalar

di�erence between the Earth's gravity on an arbitra-
rily de®ned, geoid-related vertical datum (gQ) and
normal gravity on the surface of the reference ellip-
soid at the observation latitude. This is equivalent

to using gravity data given on any other (non-
geoid) equipotential surface of the Earth's gravity
®eld (see Fig. 1). Thus,

Dg � gQ ÿ g: �2�
The geophysical requirements are not so stringent

because only lateral variations in the anomalous
gravity ®eld are important. Moreover, it is prefer-
able to use the mean elevation above the geoid as
the vertical datum. This reduces the magnitude of

the gravity reductions, thus making them less sensi-
tive to errors from any assumptions made, such as
the bulk density of the local rocks. Equations (1)

and (2) become identical at sea when the vertical
datum for the gravity anomalies is inevitably chosen
as the geoid.

GRAVITY REDUCTION

The reduction of surface gravity data (gS) to gP
(on the geoid) or gQ (another equipotential surface)
removes the gravitational e�ects of topography and

distance from the geocentre. The reduction itself
involves the application of a series of corrections.
These corrections account for the vertical gradient

of gravity near the Earth's surface, the gravimetric
attraction of the topography, and the centrifugal
acceleration and oblate ellipticity of the ®gure of
the Earth.

The following sections summarise the formulae
used in geodesy and geophysics to reduce surface

gravity observations to yield simple Bouguer gravity
anomalies. These comprise the latitude correction
or normal gravity (g), the free-air correction (dgF),
and the simple or slab Bouguer correction (dgB).
The simple Bouguer anomaly is given by:

DgB � gS ÿ g� dgF ÿ dgB: �3�

NORMAL GRAVITY: THE LATITUDE CORRECTION

The latitude correction is intended to eliminate

the centrifugal acceleration that a�ects observed
gravity, and which is a function of latitude. It also
accounts for the oblate elliptical shape of the Earth.

The latitude correction is usually calculated from
an international gravity formula (IGF), whose con-
stants are based upon the mean Earth ellipsoid
adopted by the International Association of

Geodesy (IAG). This mean Earth ellipsoid is chosen
such that its de®ning physical and geometrical par-
ameters closely model those of the Earth (Chovitz,

1981). The most recent mean Earth ellipsoid
adopted by the IAG is the Geodetic Reference
System 1980 or GRS80 (Moritz, 1980), and which

supersedes the Geodetic Reference System 1967
(GRS67).
In geodesy, a closed equation, called Somigliana's

formula (Moritz, 1980), is used to determine normal
gravity on the surface of the mean Earth ellipsoid:

g � ga
1� k sin2f�������������������������
1ÿ e2 sin2f

q , �4�

where k is the normal gravity constant, ga is normal

Figure 1. Surface gravity (gS), geoidal gravity (gP), normal gravity (g) and gravity on arbitrary equipo-
tential surface (gQ). N is geoid±ellipsoid separation, H is height relative to geoid or any other equipo-

tential surface, and h is ellipsoidal height.
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gravity on the equator, e2 is the square of the ®rst
numerical eccentricity, and f is the geodetic latitude

on the mean Earth ellipsoid. The numerical values
of these constants for GRS67 and GRS80 in Table 1
have been taken directly from International

Association of Geodesy (1971) and Moritz (1980),
respectively.

In geophysics, two less accurate Chebyshev ap-
proximations of Equation (4) are utilised to esti-

mate normal gravity. The ®rst has a relative
accuracy of 10ÿ3 mm secÿ2 (Moritz, 1980), and is

given by:

g � ga
ÿ
1� a sin2f� a1 sin

4f� a2 sin
6f� a3 sin

8f
�
:

�5�
The coe�cients in Equation (5) for GRS67 and
GRS80 are listed in Table 2. Note that the value of

normal gravity at the equator need only be given to
nine decimal places in this approximation. The

GRS67 coe�cients were derived from the GRS67
constants e2 and k in Table 1 using the equations

given by Moritz (1980).
The second Chebyshev approximation (Eq. 6) has

a relative accuracy of only 1 mm secÿ2 (Moritz,
1980), hence the need for only six decimal places in

the de®nition of equatorial normal gravity in
Table 3. This approximation is often referred to as
the International Gravity Formula (IGF), and is

the most common formula used to compute the lati-
tude correction in geophysics; see, for example,

Telford, Geldart and Sheri� (1990). This is despite
the fact that the reading error of a gravimeter is

typically one order of magnitude less than the ap-
proximation error associated with this formula.

g � ga
ÿ
b sin2 f� b1 sin

2 2f
�
: �6�

In some instances, the IGF30 (Cassinis, 1930) is

still used to compute the latitude correction, whose

de®ning constants are ga=9.780 490 m sÿ2,
b=0.005,2884, and b1=0.000,0059. As GRS80 is
the more up-to-date and internationally adopted

reference gravity ®eld, it should be used in prefer-
ence to a formula that was derived from surface
gravity data collected over 65 yr ago. Also,
Equation (4) is exact and is easily calculated on a

computer with only a 010% increase in compu-
tation time over Equation (6). Therefore,
Equation (4) with GRS80 constants should be used

in preference.

The atmospheric gravity correction

An additional consideration is that the par-
ameters that de®ne GRS67 and GRS80 were deter-
mined using predominantly satellite-derived

geodetic data. As such, the computed normal grav-
ity includes a component due to the mass of the
Earth's atmosphere, whereas gravity observed on or

close to the Earth's surface does not. The atmos-
pheric gravity correction (dgA) is added to the grav-
ity anomalies so as to account for this:

dgA � 8:71ÿ 1:03� 10ÿ3H mm secÿ2: �7�
Equation (7) was derived from a least-squares ®t to
the mean of the United States and COSPAR
International Reference Atmosphere models given

in Ecker and Mittermayer (1969) and the
International Association of Geodesy (1971). This
correction term is typically small for geophysical
surveys, and usually insigni®cant when compared to

errors in the estimates of topographic density used
for the Bouguer reduction. In e�ect, the atmos-
pheric correction term can be considered to be a

bias that is unimportant to geophysical exploration,
but is important in geodesy where the mass of the
Earth is to be preserved.

The coordinate systems required for gravimetry

An ellipsoid is used as the reference surface for

horizontal geodetic coordinates, namely latitude (f)
and longitude (l). Of great importance is that the
geodetic latitude of gravity observations used in

Equations (4)±(6) be given with respect to a geo-
centric, mean Earth ellipsoid.
Historically, di�erent ellipsoids have been chosen

in di�erent parts of the world in order to simplify
surveying and mapping in that region, and these
ellipsoids are not necessarily geocentric. As such, a
single ground point can have more than one set of

Table 1. Physical and geometrical constants required to
compute normal gravity on mean Earth ellipsoid when

using Somigliana's closed formula

GRS67 GRS80

ga (m secÿ2) 9.780 318 455 8 9.780 326 771 5
k 0.001 931 663 383 0.001 931 851 353
e2 0.006 694 605 328 56 0.006 694 380 022 90

Table 2. Physical constants required to compute normal
gravity using eighth-order Chebyshev approximate

formula

GRS67 GRS80

ga (m secÿ2) 9.780 318 459 9.780 326 772
a 0.005 278 966 0 0.005 279 041 4
a1 0.000 023 272 5 0.000 023 271 8
a2 0.000 000 126 2 0.000 000 126 2
a3 0.000 000 000 7 0.000 000 000 7

Table 3. Physical constants required to compute normal
gravity using second-order Chebyshev approximate

formula

GRS67/IGF67 GRS80/IGF80

ga (m secÿ2) 9.780 318 9.780 327
b 0.005 302 4 0.005 302 4
b1 ÿ0.000 005 9 ÿ0.000 005 8
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geographic coordinates by virtue of the ellipsoid
used. For example, map-read geodetic coordinates

in some countries can di�er from geocentric coordi-
nates by up to 1 km. This is signi®cant when com-
pared to the acceptable error in the latitude

(210 metres), which propagates an error in the lati-
tude correction commensurate with the typical read-
ing error of a gravimeter (20.1 mm secÿ2).
Failure to use the geocentric coordinate system,

as required by normal gravity, causes the propa-
gation of systematic errors into the gravity

anomalies (Featherstone, 1993). More importantly,
co-registration errors occur when combining gravity
data coordinated and reduced with respect to di�er-
ent ellipsoids. This e�ect becomes more pronounced

for detailed gravity surveys, and is especially im-
portant now that the Global Positioning System
(GPS) is frequently used as the primary means to

coordinate gravity surveys (e.g. Featherstone and
Dentith, 1994).

COORDINATE TRANSFORMATIONS

GPS readily provides geocentric coordinates that
are directly compatible with GRS80. Therefore, the

GPS-derived geodetic latitude can be used immedi-
ately in Equation (4), Equation (5) or Equation (6).
However, where the coordinates are not geocentric,
the transformation from a local ellipsoid to a geo-

centric ellipsoid can be achieved through the
sequential use of three distinct calculations:

1. Convert the ellipsoidal coordinates (fÐgeodetic

latitude, lÐgeodetic longitude, and hÐellipsoi-
dal height) to Cartesian coordinates (X, Y, Z),
centred on the local ellipsoid (A).

2. Transform these Cartesian coordinates to geo-
centric Cartesian coordinates using a seven-par-
ameter conformal transformation.

3. Convert these Cartesian coordinates to geodetic
coordinates (f and l only) based on the geo-
centric ellipsoid (B).

Ellipsoidal to Cartesian coordinate conversion

From Figure 2, three-dimensional geometry can

be used to derive the conversion of ellipsoidal coor-
dinates to Cartesian coordinates, which are centred
on the same ellipsoid, and whose axes are aligned

with the minor and major axes of that ellipsoid.
These formulae, also given in Heiskanen and
Moritz (1967), are:

XA � ��� h� cos f cos l, �8�

YA � ��� h� cos f sin l, and �9�

ZA � ���1ÿ e2� � h� sin f, �10�
where the radius of curvature of the ellipsoid in the

prime vertical is:

� � a��������������������������
1ÿ e2 sin2 f

q , �11�

and the constants a and e are those associated with
the local ellipsoid. These data are usually available
from local surveying and mapping authorities or
may appear listed in Defense Mapping Agency

(1987, tables 7.4 and 7.5).
Notice that the ellipsoidal height (h) is required

in Equations (8)±(10). Unfortunately, this coordi-

nate is not always readily available. However, using
the height of the gravity observation above the
geoid (H) instead introduces an error of only a few

centimetres, which is considerably less than the
uncertainty of the seven transformation parameters
(see next).

Seven-parameter transformation

The seven-parameter transformation is applied to
the three-dimensional Cartesian coordinates result-
ing from Equations (8)±(10). It comprises an origin

shift in three dimensions (DX, DY, DZ), a rotation
about each coordinate axis (rx, ry, rz), and a change
in scale (ds), which is usually expressed in parts per

million (ppm). These are applied to the Cartesian
coordinates using matrix algebra: X

Y

Z

!
B

�
 DX

DY

DZ

!

� �1� ds�
1 rz ÿry
ÿrz 1 rx

ry ÿrx 1

0B@
1CA X

Y

Z

0B@
1CA

A

: �12�

Equation (12) is an approximate formula that
holds for small axial rotations (typically less than
5 arcsec), which usually apply when transforming

Figure 2. Geometrical relationship between Cartesian
coordinates (X, Y, Z) and ellipsoidal coordinates (f, l, h).
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coordinates between ellipsoids. The appropriate set
of parameters is usually available from local survey-

ing and mapping authorities. These can usually pro-
vide coordinate transformation accurate to less than
5 m. However, the complete set of seven parameters

is not always available, and three origin shifts can
be used in Equation (12) instead. These may be
listed in Defense Mapping Agency (1987, table 7.5)

and can provide coordinate transformations accu-
rate to approximately 20 m. In this instance,
Equation (12) reduces to:

X
Y
Z

0@ 1A
B

�
DX
DY
DZ

0@ 1A� X
Y
Z

0@ 1A
A

: �13�

Cartesian to geodetic conversion

The conversion of Cartesian coordinates to geo-

detic coordinates can be achieved by inverting
Equations (8)±(10). For the longitude, this gives:

l � tanÿ1
YB

XB
: �14�

However, determination of the geodetic latitude
from a simple inversion requires several iterations.
An improved equation was developed by Bowring

(1976) and has been shown to converge more
rapidly by Laskowski (1991). This is:

u � tanÿ1
ZBb� e2b2 sin3 u

a:
����������������������������������������������
X2

B � Y2
B ÿ e2a2 cos3 u

p !
, �15�

and u is the reduced latitude, which is related to the

geodetic latitude by:

tan f � a

b
tan u �16�

and e2 is the square of the second numerical eccen-
tricity and b is the length of the semi-minor axis of
the ellipsoid.

Equation (15) is solved iteratively using

u � tanÿ1
�

ZBa

b:
�������������������
X 2

B � Y 2
B

p �
�17�

as a ®rst approximation; then u is inserted in
Equation (16) to produce the geodetic latitude.

Equation (18) is included below for the sake of
completeness, but must not be used for gravity re-
duction, which requires heights that are physically

related to the geoid.

h �
������������������
X2

B � Y2
b

q
cos f� ZB sin fÿ a2

�
: �18�

The geometrical constants that must be used in
Equations (15)±(18) are listed in Table 4.

The GPS height transformation

If GPS is used to coordinate a gravity survey, the
height transformation is essential to avoid coordi-

nate-system-related gravity artifacts (Featherstone,
1993). GPS provides purely geometrical heights

above the surface of the GRS80 ellipsoid, which
have no physical meaning as they are not referred
to the equipotential surfaces of the Earth's gravity

®eld. Therefore, they must not be used for gravity
reductions. Firstly, the GPS ellipsoidal heights must
be transformed to geoid-related heights, as would

have been derived from conventional geodetic level-
ling.
As the geoid undulates with respect to the ellip-

soid, ironically due to the e�ects of gravity, the
geoid±ellipsoid separation (N), and hence the trans-
formation, depends upon geographical location.
From Figure 1, the relationship between GPS ellip-

soidal height (h) and geoid-related height (H) is
given algebraically by:

H � hÿN: �19�

Geoid±ellipsoid separations are also usually avail-
able from local surveying and mapping authorities.

However, the position of the geoid is not always
precisely known and may be in error by a few
metres.

THE FREE-AIR GRAVITY REDUCTION

The free-air reduction accounts for gravity obser-
vations not made on the vertical datum surface.
This is accounted for using the vertical gravity gra-

dient as if the observation were made in free-air a
distance H above or below the vertical datum sur-
face. It is essentially a correction to the observed

gravity for the inverse-distance-squared decay of
gravity on moving away from the Earth. The linear
approximation, based upon a spherical Earth

model, often employed in geophysics, is:

dgF � 2�g

R
H, �20�

where �g is the mean gravity on an assumed spheri-
cal Earth of radius R. The frequently adopted nu-
merical value of the free-air gradient is

3.086 mm secÿ2 mÿ1 (e.g. Telford, Geldart and
Sheri�, 1990). The free-air reduction is added to
observed gravity for observations above the vertical
datum surface and subtracted for those below.

In geodesy, this spherical Earth approximation is
considered inadequate because the ®gure of the
Earth is more accurately represented by an oblate

Table 4. Geometrical constants required to compute geo-
centric geodetic coordinates

GRS67 GRS80

a (m) 6 378 160 6 378 137
b (m) 6 356 774.5161 6 356 752.3141
e2 0.006 694 605 328 56 0.006 694 380 022 90
E2 0.006 739 725 128 32 0.006 739 496 775 48

A geodetic approach to gravity data reduction for geophysics 1067



ellipsoid. Therefore, a second-order correction,
based upon a Taylor expansion of normal gravity

above the Earth, is used. This second-order free-air
reduction is derived in Featherstone (1995a) as:

dgF � 2g
a

ÿ
1� f�mÿ 2f sin2

�
Hÿ 3g

a2
H 2, �21�

where f is the geometrical ¯attening of the mean
Earth ellipsoid, m is the geodetic parameter, which
is the ratio of gravitational and centrifugal forces at

the equator, and all other quantities are as de®ned
earlier; also see Table 5. The numerical value of
normal gravity in Equation (21) should be com-

puted using Equation (4).
For instance, the di�erence between the linear

and second-order free-air reductions (Eq. 21 minus

Eq. 20) reaches a maximum of ÿ4.986 mm secÿ2 at
the summit of Mount Everest (f127858' and
H18848 m).

THE BOUGUER GRAVITY REDUCTION

The free-air reduction neglects the attraction of
the topography between the Earth's surface and

vertical datum surface. Essentially, the free-air re-
duction is e�ectively a condensation reduction,
where all topographic masses are condensed on to

the chosen equipotential surface. The Bouguer re-
duction removes the gravitational e�ect of the inter-
mediate topography in two stages. Firstly, the

simple Bouguer reduction (dgB) assumes that the
topography attracts as an in®nitely lateral plate of
thickness equal to the observation elevation, and is
given by:

dgB � 2pGrH, �22�
where G is the Newtonian gravitational constant,
and r is the mean topographic bulk density, which

is often assumed to be 2670 kg mÿ3, an approximate
crustal average.
The second stage accounts for departures of the

topography from this simple plate approximation,
and takes into account the negative gravitational
e�ect of the residual topography. Thus, the gravi-

metric terrain correction is always positive and is
added to the simple Bouguer anomaly in
Equation (3). This terrain correction term is only
pertinent in topographically rugged areas and is

typically one tenth that of the plate reduction. The
computation of the terrain correction has been dis-
cussed previously by LaFehr (1991) and Ma and

Watts (1994) and is thus not considered here.

A GENERALISED REDUCTION FORMULA

Equations (3), (4), (21) and (22) have been com-
bined to give the following generalised formula,
which applies to both geodesy and geophysics
depending upon the choice of vertical datum. In

geodesy, H refers to the geoid, and usually in geo-
physics, H refers to the arbitrarily de®ned equipo-

tential surface. Normal gravity should always be
computed via Somigliana's formula (Eq. 4), and
must use the geocentric latitude as its argument.
The numerical values of the GRS80 geometrical

and physical constants should be taken from
Tables 1 and 5. The combination yields:

DgB � gS ÿ g
�
1ÿ 2H

a

�
1� f�mÿ pGra

g

ÿ 2f sin2f
�
� d

3H 2

a2

�
, �23�

where d=+1 for H>0 and d=ÿ1 for H<0. For
H=0, Equations (1) and (2) apply, which are iden-
tical at the geoid. Thus,

Dg � gP ÿ g � gQ ÿ g � gS ÿ g: �24�

THE FORTRAN PROGRAMS

Two subroutines, written in FORTRAN77, are
available for public access on the Computers and

Geosciences server (www.iamg.org). The subroutine
COORTRAN transforms the geodetic coordinates
of existing gravity data to a geocentric ellipsoid,
given the appropriate seven transformation par-

ameters and local ellipsoidal constants. The second
subroutine, GRAVRED, applies the generalised re-
duction formulae (Eqs (23) and (24)), together with

the Somigliana closed formula (Eq. (4)) for GRS80
normal gravity.
These subroutines were originally developed to

transform and reduce gravity data from the
Australian Geodetic Datum 1984 to GRS80
(Featherstone, 1995a), and thus uses the ellipsoidal
constants and transformation parameters for

Australia. To apply these subroutines elsewhere
requires the relevant ellipsoid constants and trans-
formation parameters, which are usually available

from local surveying and mapping authorities or
Defense Mapping Agency (1987, tables 7.4 and 7.5).
An obvious test for the COORTRAN subroutine

is to transform the same set of coordinates between
two coordinate systems repeatedly. The reverse
transformation is achieved by changing the signs of

the transformation parameters used in
Equations (12) and (13). The computer rounding
errors in FORTRAN77 double precision mode are
less than a millimetre per complete transformation

Table 5. Physical and geometrical constants required to
compute second-order free-air reduction

GRS67 GRS80

a (m) 637 816 0 637 813 7
f 0.003 352 923 712 99 0.003 352 810 681 18
m 0.003 449 801 434 30 0.003 449 786 003 08
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and do not propagate quickly during repeat for-
ward and reverse transformations. These errors are

numerically divergent, but as the coordinate trans-
formation is usually only required once, millimetre-
level numerical accuracy can be routinely achieved.

However, the accuracy of the transformed coordi-
nates ultimately depends on the accuracy of the
transformation parameters used.

The Bowring (1976) algorithm converges to one
part in 1010 after only three iterations, whereas iter-
ation using the inverse of Equations (8)±(10) con-

verges after ten iterations. This can result in a
threefold reduction in computation time when
transforming coordinates for a large gravity data-
base.

Implementation of the programs

The subroutines can be easily applied either to

newly collected gravity data or to transform existing
gravity databases. Many existing gravity databases
are referred to GRS67, or in some cases, IGF30.

Ideally, these should be updated to the modern and
internationally accepted GRS80, preferably using
the approaches described herein. However, to

update existing Bouguer anomalies to GRS80 and
apply the second-order free-air reduction requires
the original surface gravity observations, elevations
and geodetic coordinates.

If GPS is used to coordinate a gravity survey, the
geodetic latitude provided by GPS can be used
directly in Equation (4) without the need for trans-

formations. However, the GPS-derived ellipsoidal
height must be converted to a geoid-related height
by applying Equation (18). This is essential because

gravity reduction is highly susceptible to elevation
errors. For example, a 20.02-m elevation uncer-
tainty propagates as 20.1 mm secÿ2 in the combined
free-air and simple Bouguer reductions, assuming

an accurate estimate of the topographic density.

A CASE STUDY IN WESTERN AUSTRALIA

An 80.1-km geodetic gravity pro®le in south-west
Western Australia has been chosen to test the geo-
detic gravity reductions, as coordinates determined

using both GPS and conventional survey methods
were readily available (Featherstone, 1993). This
provides a sound geodetic framework in which to

analyse the e�ect of di�erent coordinate systems on
the reduction of gravity data. The pro®le is also
considered typical of a regional scale gravity survey

for the identi®cation of sub-surface structure.
However, this applies equally to all scales and
extents of gravity survey.

Figure 3 illustrates the numerical di�erences
among simple Bouguer anomalies reduced from the
same observational data using the following three
sets of coordinates:

1. GPS-derived WGS84 ellipsoidal coordinates

alone, denoted by (fWGS84, hWGS84);
2. Australian coordinates on the Australian

Geodetic Datum 1984 (AGD84) and the
Australian Height Datum (AHD), denoted by

(fAGD84, hAHD);

3. WGS84 geographical coordinates and the geoid-
derived AHD elevation, determined using

Equation (19), denoted by (fWGS84, hWGS84±
NWGS84).

Figure 3c shows the geodetically reduced gravity

data, using Equation (23) with GPS-derived
WGS84 ellipsoidal coordinates in conjunction with

the AUSGEOID93 Australian geoid model (Steed
and Holtznagel, 1994). At the scale of Figure 1,

there is little resolvable di�erence between pro®les
B and C. Nevertheless, a small di�erence does exist

that varies approximately linearly from 0.9 mm secÿ2

and 1.1 mm secÿ2, and is predominantly due to the

di�erence in normal gravity due to the use of
AGD84 geodetic latitude in Equation (4). This

di�erence can increase ®vefold for other geodetic
coordinate systems, and is often larger than the

typical reading error of a gravimeter.
For the purposes of a localised geophysical sur-

vey, this can be treated as a bias or regional trend,
as it is only the residual Bouguer gravity anomaly

which gives detailed information of near-surface

geological structure. Therefore, the choice of geode-
tic latitude is not necessarily critical in the data re-

duction for a single survey. However, it must be
considered if GPS-derived and existing data are to

be integrated with one another.
Of more interest is pro®le A, in which the GPS-

derived WGS84 ellipsoidal coordinates alone are
employed to reduce the gravity data. The most sig-

ni®cant di�erence exists in the shape of the gravity
anomaly, which is illustrated more clearly in

Figure 4. The di�erence is irregular and uncorre-

Figure 3. Simple Bouguer anomalies derived from (a)
WGS84 ellipsoidal coordinates alone (dashed line), (b)
AGD84 geodetic coordinates and AHD heights (dotted
line), and (c) WGS84 geodetic coordinates and GPS-geoid

derived AHD heights (solid line) (units in mgal).
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lated with the Bouguer anomalies in Figure 3. It
varies between 54.1 mm secÿ2 and 55.5 mm secÿ2 and

causes errors in both the high and low frequency
components of the gravity anomaly.
The di�erences displayed in Figure 4 are due to

the susceptibility of the free-air and Bouguer re-
ductions to changes in the vertical datum surface.
The pro®le in Figure 4 is equivalent to the appli-

cation of the free-air and Bouguer reductions to the
geoid±ellipsoid separation (N). It is, therefore, evi-
dent that the deduced geological model will be
di�erent for pro®les A and C in Figure 1, especially

when attempting to delineate the more subtle geo-
logical features. For this reason alone, the rigorous
Equation (23) should be employed for gravity data

reduction, and especially so when GPS is used to
provide vertical control for a gravity survey.
For the 30 gravity observations used in this

example, the exact geodetic reduction only adds an
extra 010% to the computation time on a Sun
Sparcstation model 30, when compared to the con-

ventional geophysical gravity reduction. This illus-
trates that the precise geodetic reduction of gravity
data collected for geophysical purposes can now be
applied without the need for the approximations

used only for historical reasons.

CONCLUDING REMARKS

Gravity data collected for geophysical purposes
should be reduced using the precise geodetic

approach described herein. This is easily im-
plemented, does not introduce a signi®cant increase
in computation time, and avoids the approxi-

mations used in the geophysical reduction formulae.
Of most importance is the correct use of coordi-

nate systems for gravity reduction. This is necessary

now that the Global Positioning System is used
widely to provide three-dimensional coordination of
gravity surveys. Geocentric geodetic coordinates are

required to apply meaningful gravity reductions and
to avoid the introduction of artifacts into the grav-

ity anomalies, which will alter the geological models
derived from these data.
Moreover, coordinate transformations are

required for the correct co-registration of GPS posi-
tioned gravity data with existing data.
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