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ABSTRACT 

Many computing schemes have been devised for determining the gravity anomalies produced 
by two-dimensional masses. Most of these are based upon the evaluation of an area1 integral and 
require specially constructed templates or tables. In the present paper it is shown that the gravity 
anomaly Ag at the origin of coordinates, produced by a two-dimensionai mass of constant density 
contrast Ap, may be obtained quite simply by means of either of the line integrals 

Ag = aktq$-edz = - 2kAp$zdc9, 

where z is the vertical coordinate, and e the polar coordinate expressed in radians of a point on the 
periphery of the mass in a plane normal to its axis and passing through the origin 

The line integrals are evaluated around the periphery of the mass and are of opposite sign if 
taken in the same direction of traverse, or are of the same sign if taken in opposite directions. 

For use of these integrals no special equipment is required other than a simple template consist- 
ing of radial lines, e=const., and horizontal lines, z=const., which can be constructed in a few 
minutes with protractor and scale. This can be constructed either for I : I or for an exaggerated verti- 
cal-to-horizontal scale. 

A mass distribution is said to be two-dimensional when its density varies as 
the same function of position on each of a family of parallel planes. If one of 
these planes is chosen as the xz-plane in a system of Cartesian coordinates, then 
the density would be an arbitrary function of x and z, but would be constant 
along any line parallel to the y-axis. The computation of the gravitational effects 
of such distributions is much simpler than for three-dimensional distributions, 
since in the former case the integration is limited to a plane, whereas in the latter 
case it must be performed over a volume of space. 

Computations of the effects of two-dimensional masses are of considerable 
interest in gravimetric prospecting because many of the most common of geologic 
structures-folding parallel to a given horizontal axis, parallel faulting, ridge- 
and-valley topography resulting from the erosion of folded structures, etc.-can 
be approximated by such distributions. 

Many computing schemes for the effects produced by two-dimensional masses 
have been described in the literature. Mostly these require the use of special 
templates, mechanical devices, or tables of functions. Moreover, they usually are 
not applicable to masses extending to infinity or lying too near the horizon of the 
station, consequently, the existing methods are often not well suited to comput- 
ing problems encountered in practice where the masses often do extend to infin- 
ity, and, in such problems as terrain connections, also lie near the horizon. A 

* Presented at Los Angeles and Houston meetings of the Society, 1947. Manuscript received by 
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need has therefore 
such calculations, 
below. 
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been felt for a simpler and more versatile method of making 
which has satisfactorily been met by the method described 

THE PRINCIPLE OF THE METHOD 

Attraction of Plane La&au.-In order to understand the principle of the 
method, let us choose a coordinate system with the xz-plane as the plane of 
integration and with the y-axis horizontal and parallel to the strike or axis of the 
mass configuration. Let the x-axis be horizontal and the z-axis vertical and posi- 
tive downward. Let the origin be taken as the point at which the gravitational 
effect of the body will be computed. Since this attraction will be detected by a 
gravity meter only as an increment Ag to the tota! earth gravity g, only the z- 
component of the attraction need be considered and it is this which we seek to 
compute. 

First consider an infinite horizontal plane lamina bounded by the planes z, 
and z+dz (Fig. I). Let dS be an element of area of this plane in three-dimensional 

FIG. I. Attraction of infinite plane lamina. 

space and let p be the volume density of the element. The vertical component, at 
the origin, of the attraction due to this element will be 

kdm 
dg = __ sin (Y = 

KpdzdS . 

YZ -7 sm cr’ 
(1) 

where k is the constant of gravitation, r the polar distance of the element from 
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the origin, and cx the angle of depression of r from the horizon of the station. 
But 

(ES sin Q! 
------=dQ 

r2 
(2) 

is the solid angle subtended at the origin by the area dS, so that equation (I) can 
be written more simply in the form: 

dg = kpdzdil (3) 

If we now consider a finite area S of arbitrary shape the attraction at the 
origin due to the enclosed mass will be 

g = kdz S pdf4 s (41 

and if p is constant over S, this simplifies to 

g = kpfidz. (5) 

Likewise, for a given solid angle 0, the attraction of the matter enclosed be- 
tween two horizontal planes z1 and z2 will be obtained by integrating equation (5) 
with respect to z: 

g = kfl S “pdz, 2’ (6) 

and again if p is constant this becomes, 

g = kpQ(zz - zl), (7) 

which is the contribution to gravity at the origin of the mass contained in the 
frustrum of a slant cone with vertex at the origin. 

Attraction of d8dz-Solenoid.-Let us next consider the attraction at the origin 
which will result if we let the element of surface area dS become a narrow linear 
strip of infinite length parallel to the y-axis. Such a strip will be defined by the 
area on the plane z=const. lying between two inclined planes which intersect 
on the y-axis and make with the x-axis angles of 0, and O+d6, respectively (Fig. 2). 

As we have seen from equation (s), the attraction of this strip will be propor- 
tional to the solid angle subtended by it at the origin. The solid angle dD between 
two planes intersecting at an angle d0 will bear the same ratio to the total solid 
angle which the plane angle d0 bears to the total plane angle. The total solid angle 
is the ratio of the surface area of a sphere to the square of its radius, or 47r, and 
the total plane angle is ZT. Thus 

do d0 
--=-f 
q?r 2A 
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or 

da = ad%. (8) 

Ltroducing this into equation (3) then gives for the attraction of such a strip 

dg = zkpd%dz, (9) 

which we shall regard as the fundamental differential equation of the attraction 

of a two-dimensional mass. The intersection of the two planes % and %+d% with 

FIG. 2. Illustration of d&h-solenoid. 

the planes z and z+dz defines an elementary prism or solenoid of infinite length 
and, in terms of the variables % and z, of cross section d%dz. This we shall call the 

d%dz-solenoid. 

For a finite area in the plane of integration 

g = zk SS pdOdz, (10) 

and when p is constant over the area 

g = skp(%t - %I)& - ZI), (rr) 

independently of the absolute magnitudes of either % or z. 

Area1 Integration by Means of A%Az-solenoids.-Equations (9) and (II) afford 
at once a simple basis for the computations of the gravimetric effects of two- 

dimensional masses. The coordinates % and z are taken as the variables of integra- 
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tion, and the plane of integration is divided by radial lines from the origin, 
%=const. with constant spacing A%, and by horizontal lines z=const. with con- 
sta.nt spacing AZ, into a mosaic of A%A~-solenoids. 

If the solenoids are chosen small enough that p may be considered constant for 
each (Fig. 3) the contribution to gravity of a single solenoid will be: 

Ag = zkpAOAz, (12) 

X' X 

I,,\\\\ \ \ 

I\\\\\\ \ \ \ 

FIG. 3. Calculation of gravitational attraction by area1 integration of &&-solenoids. 

and the integration over any area will be approximated by 

i=n 

g = 2 k c piA%As, 
i=l 

(13) 

or, if p is constant over the whole area of integration, 

g = 2 kp c A%Az = 2 kpn&IAz, (14) 

where n is the number of solenoids within the area. 
This constitutes a very simple method of computing the effects of two- 

dimensional masses so long as the area of integration is finite in extent and not too 
near the horizon. Like most area1 integrations, however, it breaks down when 
these conditions are not satisfied, yet despite this handicap the method is still 
valuable in that it gives the computer a simple picture of masses having equal 
gravimetric effects at the station despite variation in size and shape, since for the 
same density the contribution of each unit solenoid is the same. 

Line-integral Method of I&egration.-The method just described represents 
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an area1 integration over the area of cross section of the mass. To avoid some of 

the difficulties inherent in it, let us now consider the corresponding linear integra- 

tions around the periphery of the area. Around an elementary solenoid &da 

(Fig. 4) bounded by the lines B and e+dO, and z and z+dz, consider the line 

integral $Bdz. 

I+ dz 

Starting at the intersection of the lines 0 and z, WC traverse the circuit in the 

sense 2, e+de, z+dz, 8. In making this circuit t/s will be zero on two sides and the 

resulting integral Wi!! be : 

P 
r ed,- = O+ (e+tie)ii,-+ 0 - &la 

= deds. (I:) 

Traversing the circuit in the opposite direction gives the same result but with 

a negative sign. 
Alternatively, consider the integral .$a&, where the circuit this time is tra- 

versed in the sense 8, z+dz, O+dO, z. 

$ 
de = 0 + (Z + dz)de + 0 - zde 

= + d2de. (16) 

Traversing the circuit in the opposite sense again changes the sign. 
Over a finite area S we may obtain the JJ&dz by performing either of the line 

integrals of equations (IS) or (16), and then integrating the results over the area. 

Thus 

(17) 

where the respective line integrals are taken in a positive sense. But as will be 

seen from Figure 5, when a separate line integral is taken around each of the ele- 
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mentary solenoids of the area, each interior path is traversed twice, once in each 
direction, whereas the exterior paths are traversed but once, and always in the 

FIG. 5. Conversion of surface integral to line integral. 

same sense. Hence, the integrals on all interior paths cancel one another while all 
those on the exterior paths are cumulative and of like sign. Consequently 

JJ;Mdr =$*Bds +*0, (18) 

where the respective line integrals are each taken in its positive sense around 
the exterior periphery of the area of integration. 

By combining equations (IO) and (18) the gravimetric effect of a finite mass of 
constant density is thus obtainable by either of the integrals: 

g = &pj? t?dz = z6pj zd0, (19) 

taken in the appropriate sense. 
Illustrative Example.--To illustrate how the method works let us compute the 

attraction of the mass bounded by the planes z1 and z2 (Fig. 6). Employing the 
form 

g = zkp 
$ 

BdZ, 

we circumscribe the mass by traversing the surface zr from x= + ~0 to x = - a, 
then descend to the zs-surface which is traversed from x = - w to x = + 00, finally 
closing the circuit by returning to the zr-surface at x = + 00. 
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FIG. 6. Calculation of attraction of infinite plate by means of line integrals. 

For these four sections of the traverse we have the sum of the four partial 
integrals : 
g = zkp [Is 5=--m 22 &hi+ oliz+ (*O) z=+m.z=q S q.z=--m S z-_II,dz+ s,::-i_ 4. 

The first and third integrals vanish since dz=o, and the fourth vanishes because 
O= o. This leaves only the second integral for which 0 assumes the constant 
value a. Consequently equation (20) reduces by inspection to the familiar result: 

g = mkp S 
.z2 

dz = mrkp(.z~ - z,). 
El 

Let us now solve the same problem by means of the equation 

g = zkp Zd%. 

In this case we begin at the point (x= + ~0, z = ~1) but traverse the circuit in 
the opposite direction. For the four sections of the path we find 

g = a4 J::z_:dB+ Jz::*&:~~+ J*=:_/~+ szI-:,-,~~] * C21) 

In this case the first and third integrals vanish because &I = o, and the integrands 
of the second and fourth integrals assume the constant values, respectively, of 
z2 and ~1. Hence, the equation reduces to 

g = zkp z2 
[s 

,,de + z,s,:I:“d6] 

= zkp(rzz - m) = 27rkp(z2 - 21). 
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Graphical Evaluation of Line Integrals.--It is thus seen that for any path along 

which either 0 or z is constant the integrals can be evaluated by inspection. In 

general, however, this special condition is not satisfied, and the paths along 

which the integrations are to be performed are not capable of simple analytical 

expression. In these cases the integrals must be evaluated approximately by some 
form of graphical and numerical calculation. Thus the integrals (19) can be ap- 

proximated by the summations 

g = zkpxOAz, 

g = zkpc zA0. > 

By taking constant increments AZ or A0, these equations simplify to 

g = 2kpAzx 8, 

g = 2kpABx z, 

(22) 

(23) 

so that their evaluation consists in determining the value of the integrand (0 or z) 
for each increment AZ or A6 around the periphery of the figure, and adding the 
results, the signs being respectively positive or negative as the increment (AZ or 

AC?) increases or decreases. 

The principle of such a graphical evaluation is illustrated in Figures 7 and 8. 

The performance of the integration is facilitated if there is superposed upon the 

figure to be integrated a network of lines 0 = const., z = const. at constant spacing 

AB and AZ, respectively. From this, for each increment of the variable of integra- 

tion around the periphery of the figure, the value of the integrand can be read off 

graphically. 
Such an integration is also invariant with respect to distortion as may be seen 

by imagining the &-network, as well as the figure to be integrated, to be drawn 
upon a sheet of thin rubber. Integrations performed before and after giving this 

sheet an arbitrary distortion would still give the same results since the measuring 

device is deformed in the same manner as the thing to be measured. 

This fact is useful in many geological calculations where the horizontal dis- 

tances are commonly of the order of IO-fold, or more, times the vertical distances. 

In such cases it is often convenient to draw cross sections with a large vertical 

exaggeration. The foregoing integrations are still valid for such cases provided 

the &-diagram is drawn with the same vertical exaggeration. 

Each of equations (24) consists of two essential factors, the constant 2kp and 
the purely geometrical factor Azz0, or Aecz. It is only the latter which is in- 
volved in performing an integration. Of the two geometrical components, the 

angle 0 is dimensionless, and z has the dimensions of length. It is convenient, 

therefore, in making calculations to draw the lines z-constant directly upon the 

cross section to be integrated and with a spacing in accordance with the vertical 

scale of the cross section. This eliminates completely any further consideration of 
the scale of the drawing. 
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Suppose, for example, that IO meters has been chosen as the interval for AZ. 
All that is necessary then is to space the lines, z=const., IO meters apart in ac- 
cordance with the vertical scale of the drawing. 

This leaves only the radial lines, O=const., to be accounted for. Since it is 
often desirable to make computations at successive points along a profile it is 
convenient to draw the radial lines, B=const., on a transparent template. Since 

FIG. 7. Geometrical elements involved in evaluating _f’edz. 

FIG. 8. Geometrical elements involved in evaluating $s&. 
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6 is dimensionless such a template will be equally applicable to any cross section 
of whatever scale provided only that the template has the same vertical exag- 
geration as the cross section. In practice only a few different vertical distortions 
are commonly employed, such as, say, I : I, I : 5, I : IO, etc. Angle templates for 
each of these can be constructed, and when the proper one of these is placed over 
the cross section containing both the figure to be integrated and the lines, z= 
const., nothing more remains to be done except to read off the numbers and talley 
the results. 

Either an area1 or a linear integration may be employed, depending upon the 
nature of the figure. 

Optimum Size of ABAz-Solenoid.-A final word may be said about the opti- 
mum size for a A0Az-solenoid. This may well vary with the nature of the problem. 
One useful choice might be of a unit solenoid which would produce an increment 
of gravity of 0.01 milligal (IO-~ gal) when filled with a material whose density 
is I gm/cm3. Solving equation (12) with these numerical data gives 

AeAz = %. = 
10-S 

akp z X 6.67 X IO-* 
= 75.0 cm. 

Thus if AB were I radian, z would be 75 cm. ; if it were 0.1 radian, AZ would be 
7.5 meters, etc. 

A convenient interval for A0 would appear to be about 0.05 radians (ca. 2.5’) 
for which AZ would be 15 meters (45.8 ft.), which should suffice for many geologi- 
cal calculations. In general, however, the choice of the optimum size for the 
ABAz-solenoid would depend upon the problem under consideration and should 
be made to suit one’s individual needs. 


