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Computing the gravitational and magnetic anomalies due to a polygon:

Algorithms and Fortran subroutines

I. J. Won* and Michael Bevis*

ABSTRACT

We present two algorithms for computing the gravi-
tational and magnetic anomalies due to an n-sided poly-
gon in a two-dimensional space. Both algorithms have
been implemented as subroutines coded in Fortran-77,
and listings are provided. Because reflerences to trigono-
metric functions have been almost completely eliminat-
ed, these codes run substantially faster than mosts codes
now in cxistence. Furthermore, anomalies can be com-
puted at any point outside, on, or inside the polygon.
Unlike other codes, these algorithms can be used to
model subsurface observations.

INTRODUCTION

In a classic paper published in 1959, Talwani, Worzel, and
Landisman presented a method for computing the gravi-
tational attraction due to an n-sided polygon. Their algorithm
has been widely used in computer programs for two-
dimensional (2-D) gravity modeling, because any 2-D body of
arbitrary shape can be approximated by a polygon, and any
2-D density distribution can be modeled as an ensemble of
juxtaposed constant-density polygons.

We present a modified algorithm for computing the gravi-
tational acceleration due to a polygon. By reformulating the
expressions presented by Talwani et al. (1959), in a manner
suggested by Grant and West (1965) to reduce the number of
references to trigonometric functions, we obtain a substantial
increase in computational efficiency. By applying Poisson’s
rclation to our expressions for gravitational acceleration, we
derive a second algorithm for computing the magnetic anoma-
ly due to a polygon magnetized by an external field.

We present Fortran-77 implementations of each algorithm.
These subroutines include a quadrant correction not pre-
viously discussed in the literature (as far as we know) which
ensures that the gravity and magnetic anomalies can be cor-
rectly determined for any point inside, outside, above, or

below the polygon. Most existing computer programs are not
as gencral as those given here. Obtaining the correct answer
within the polygon is essential when modeling gravity and
magnetic anomaly measurements obtained in tunnels, bore-
holes, or submarines.

Although there are many codes based on the method of
Talwani et al. (1959). we feel that those presented here are
worthy of attention because they run an order of magnitude
faster and generate correct answers at every point in the 2-D
space.

THE GRAVITY ANOMALY DUE TO A POLYGON

Hubbert (1948) showed that the gravitational attraction due
to a 2-D body can be expressed in terms of a line integral
around its periphery. Talwani et al. (1959) considered the case
of an n-sided polygon and broke the line integral up into n
contributions, each associated with a side of the polygon. We
follow Talwani et al. (1959) by placing the point at which the
gravity anomaly is to be computed (i.e., the station) at the
origin of the coordinate system (Figure 1) and expressing the
vertical and horizontal components of the gravity anomaly as

Ay.=2Gp} Z, )

i=1

and

Ag, = 26p § X, @)
i=1

where Z, and X, are linc integrals along the ith side of the
polygon, G is the gravitational constant, and p is the density
of the polygon. Talwani et al. (1959) derived expressions for Z,;
and X; that make extensive references to trigonometric func-
tions. Grant and West (1965) reformulated the expression for
Z; by making more references to the vertex coordinates
1%, Z;}i=1., and fewer references to angular quantities, and
thus reduced the number of trigonometric expressions in-
volved in the computation. We follow Grant and West’s ap-
proach, and produce a formula for X, as well as Z,. We com-
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FiG. 1. Geometrical conventions used in expressions for the x-
and z-components of the gravitational acceleration at the
origin due to a polygon of density p.

F1G. 2. Geometrical conventions used with subroutine gz_poly.
Note that the vertices are numbered clockwise. Two stations
are shown, at S, and S, .

pact the notation by eliminating the subscript i. We label any
two successive vertices 1 and 2, and each neighboring pair of
vertices is treated as vertices 1 and 2 in turn. Thus we have

r Tl
Z=AL{91—OZ)+Bln—J, (3
"
and
X:A|:~(B, ~ 8B+ In r—ZJ, )
Ty
where
A:(xz‘xl)(lezz‘xzzll, (5)
(x; —x)" +(z; — z,)
B = ZZ___Z_I’ (6)
Xy — X,
ri=x3+ z3, -
and

The computation of (8, — 0,) requires some care if the algo-
rithm is to be valid for any station location. We obtain 8, and
0, using the relationship

ejztan*(‘—") forj=1,2. (8)
X,
J

In practice we use the Fortran function DATAN2 to compute
the angles 8, and 0,; this function returns values in the range
—m to +n. This can lead to improper evaluation of (6, — 8,)
when the gravity station is located between z, and z,. The
following qualification provides a remedy.

Case 1. If z; and z, have opposite signs, then

if x,z, < x,z, and z, > 0, replace 0, with 0, + 2m:
if x,z, > x,z, and z, > O, then replace 0, with 0, + 2r;
if x,z, = x,z, then X = Z = 0.

(The last subcase merely reflects the fact that if the station lies
on a polygon side, that side does not contribute to Ag,_ or
Ag..)

Other special cases that must be considered in a computer
program are

Case 2.—If{x, =z, =0o0r x, =z, =0,

then
X=7Z=0,
and
Case 3. —If x, = x,,
then
Z=x_In r—z,
ry
and

X = —x,(0, -0,
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THE FORTRAN SUBROUTINE gz_poly

The algorithm discussed above has been implemented as a
subroutine coded in Fortran-77 (Listing 1). The geometrical
conventions used with subroutine gz_poly are illustrated in
Figure 1. The routine computes the vertical component of the
gravity anomaly due to a polygon (Ag.), but not the horizon-
tal component (Ag,), because only the former quantity is mea-
sured and modeled in practice. Modilying the routine to com-
pule the horizontal component Ay, is trivial. (A listing is
available on request.)

The routine is written in double precision to ensure very
accurate solutions even when the polygon has extremely large
aspect ratios (this lengthens execution time only slightly). The
polygon can have any shape as long as it contains just one
bounded area, i.e.. polygon sides should not cross. Note that if
the s-axis is positive downward and the x-axis is positive to
the right, then the polygon vertices must be specified clock-
wise.

It is not necessary for the calling program to transform
coordinates so that the station occurs at the origin; subroutine
gz_poly performs that transformation. The subroutine com-
putes the vertical gravity anomalies at any specified number of
stations in a single call. The stations can be ordered in any
sequence.

The subroutine is considerably faster than most of its prede-
cessors. Running on a VAX-11/750 under VMS, subroutine
gz_poly takes about 0.7 s to compute the vertical gravity
anomaly due to a 1 000-sided polygon at a single station.

THE MAGNETIC ANOMALY DUE TO A POLYGON

Talwani and Heirtzler (1964) introduced a method for com-
puting the magnetic anomaly due to an infinite polygonal
cylinder, by combining the anomalies due to an ensemble of
semiinfinite sills each of which was bounded by one of the
polygon’s sides. The method is computationally effective and
has been widely used. In implementing this method, program-
mers must be cautious about handling a situation in which the
observation point is located between the minimum and maxi-
mum depths of the polygon.

Alternatively, the magnetic anomaly due to an polygonal
cylinder can be derived using Poisson’s relation, from the pre-
vious expressions for the associated gravity anomaly. We
assume the magnetization of the cylinder is induced solely by
the ambient earth’s magnetic field. Then

kH, ¢
" Gp

AH

%
where

AH = magnetic anomaly vector,
Ag = gravity anomaly vector,
k = magnetic susceptibility of polygon,
p = polygon density,
H, = ambient scalar earth magnetic field
strength, and
o = direction of induced magnetization.

Figure 3 shows the geometry and nomenclature, which are
similar to those for the previous gravity anomaly problem.

Unlikc the gravity anomaly, the magnetic anomaly depends
additionally on the strike of the cylinder. Referring to Figure
3, where

I = geomagnetic inclination,
and

B = the strike of the cylinder measured
counterclockwise from magnetic north
to the negative y-axis,

we can show that

¢ a . ;
— =sinl —+sinBcosl —. (10)
da oz Ox

From equation (9), we may derive the vertical and horizontal
components of the magnetic anomaly as

AH kH, 0 A 11)
:~ Gp a gz (
and
kH, ¢
AH, =22 = ag, (12)
Gp du

where expressions for Ag, and Ag, are given by equations (1)
and (2). Substituting equations (1), (2), and (10} into equations
(11) and (12}, we obtain

. 0z oz
AH,=2kH,[sin ] — +sin fcos | — |, (13)
N oz 0x
and
ox 0X
AH =2kH,{sin ] — +sinfcos ] —]. (14)
’ oz ox

Once AH, and AH_are known, the total field scalar anomaly
AH may be computed by

AH = AH_sin I + AH_sin B cos 1. (15)

The derivatives in equations (13} and (14) are

3 — 2 Z, —
0Z _(o—x) sz‘) [(9, —0) 2y '—2] — P, (16

0z X, — X, F

z) [(0] —0,) + T4 In r_Z] +0,

ﬁ_Z _ 7(x2 — xl)(zz -

ox R? 27X N
amn

[e). ¢ (x; — xl)2 Z, — 2 )
o 0, —0,)—In-2|+0Q 18
En R2 Xz—xn( 1 2) nrl Q (18)
and

5_Z:(x2_x|)(222_21) I3 — o4 (91—62)—lnr—2 + P,

ax R Xy — Xy "

(19)
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VERTICAL SECTION

Sz ¥1xs,,25,)
m»x
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3

FiG. 3. The geometrical conventions used with subroutine m_poly. A right-handed coordinate system is employed, with
the z-axis positive downward. The angles [ and B represent the inclination of the Earth’s magnetic field and the
geomagnetic azimuth (strike) of the polygon, respectively. These quantities are represented by m_poly arguments
“anginc” and “angstr.” Two stations are shown, at S, and S, . In this example the polygon has six vertices.
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where
R* = (x; — x )2 4 (z, — z,)%, (20)
X123 — X2 [ X,(x, — X} — zy(z; — 2¢)
P= 2 2
R r{
_xz(xz_xl)_zz(zz’_zl) i (1)
and

XyZy = X2y | X,(25 —2) + 2{x; — xy)
Q= R

2
T

3 (22)

. Xy(23 — 2y) + 2, (x; — xy)
rs )

Special cases 1 and 2 shown previously for the gravity prob-
lem also apply in the same way for the magnetic anomaly. In
addition, a fourth case is as follows.

Case 4—1If x, = x,, then

o7

)
C

Ny

o
N
)
_
N
o
|
N
=

;:;

and

X (2, —z,)?
D—x:—’—R%(el—eznp.

THE FORTRAN SUBROUTINE m_poly

The algorithm outlined above has been implemented as a
subroutine coded in Fortran-77 (Listing 2). The geometrical
conventions used with subroutine m_poly are illustrated in
Figure 3. The routine computes the x-component, the z-
component, and the total anomalous magnetic field strength
due to an infinite polygonal cylinder magnetized by an exter-
nal magnetic field. It is assumed that the cylinder strikes
parallel to the y-axis in a right-handed coordinate system {x,
y, z}. The vertical, horizontal, and total field strength anoma-

lies depend upon the relative locations of the polygon and’

station in the (x, z) plane, the magnetic susceptibility of the
cylinder, the inclination of the Earth’s (ie., the external) mag-

netic field, the total field strength of the Earth’s magnetic field,
and the geomagnetic azimuth (strike) of the polygon. This last
quantity (f) should be determined with some care. It is the
angle from magnetic north to the negative y-axis measured in
the horizontal plane (Figure 3). The angle is positive when
measured counterclockwise (looking down) {rom magnetic
north. Similarly, some care must be taken in specifying the (x,
z) coordinates of the polygon’s vertices. They must be specified
clockwise when the (x, z) plane is viewed toward the negative
y-axis. The routine will compute the anomalies at any speci-
fied number of stations, and these stations may be specified in
any sequence. The subroutine will perform the transforma-
tions necessary to bring each station in turn to the origin of
the coordinate system.

In the event that the Earth’s magnetic field is vertical
(inclination = +90 degrees), the strike (B) is undefined and
irrelevant and can be set to any value.

The algorithm does not include the effects of demagnetiza-
tion (Grant and West, 1965), and thus it is not suited for
modeling the anomalies due to bodies whose magnetic suscep-
tibility exceeds about 0.01 emu. Although rocks rarely have
magnetic susceptibilities this large, nevertheless this limitation
must be kept in mind.

Note that the user may choose any units for H,, the local
value of Earth’s total magnetic field strength, and the values of
the vertical, horizontal, and total anomalous field strengths
will be returned in those same units. Some care should be
taken in specilying the magnetic susceptibility, however, be-
cause even though magnetic susceptibility is a dimensionless
quantity, it differs by a factor of 4n between the SI and emu
systems of umits (k,,, = 4rky,). If the user wishes to use the
emu system, then the subroutine argument “suscept” is just
the magnetic susceptibility k. . In this case the chosen units
of H will usually be gammas. However, if the SI system is
used, then the argument “suscept” must be set to 4mkg; . In this
case the appropriate units for H would be nanoteslas. Spatial
coordinates may be given in any unit of length, provided the
unit chosen is employed consistently.
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APPENDIX

LISTING 1

=D, 0d0

237



238

trrougheut.

Loplieis reat*gia-h,o-c0
real*s xvinverth, aviovert).x
real*s anom z(nstni,anom xin

BEIETRISERT

paremeter |

I
parameter D odtnop 180, Gab

dsintany:ncrdir
dsintansstrdtr) *deoslang
Ca=l 0dDEsuscept * i

do 106G 15-1,nutn

sl1s)

rst=zniis)

x2-xviictli-xst

zémaviicerli-ust
cnd if
X1, 0.Cd0 Lardg. al.e
Gote S0
el
thl vanzizl,x1)
end if

110 %x2.eg.0.0d0 .and. zZ2.e¢. D006 ithen

yotu 50

datan(zi,x2)

10¢ asignil.0d0,z)) e,
cestr xl%z2 - x2%z]
1iitest Lyt 0.0dO)then

1zl Lge. CG.0doithes
else i (test Lat. 0.0du

P22 Lue. G.0d0) U
else

yoro 50
end i

wrd U1

s(nstnd, zsinstn]

rstn),anom t{nstn)
o Lwo

S2 0GB )

¢ daop ovel stations

oo over vertices

translate origin

q-0.060 ther tgr= 0.0
! tevwinatle Lhin pass thro loop

L gz-
! terminate Lhis pass tnre Loop

ds1gn(].0d0,72) dthen

thi+ewe
Ythen
<hl+iwo pod
DoBTatlion on polygon 2=0.0
! terminate this pass thro .cop

de:

Won and Bevis

106G

x1¥x14zl*z]
v x2Ax24n2422
xZIAr2I+221%27]

Vil
ln-0.vinTdlog (r 2o, T1s)

p-ixelz/rzlsy={xl*x2l-z1*z21) /xls -
G=ixzl2 r218 )% (xR z2leal=x2])/rls

1f{xél.eq.0.0clithen

dze=-p
Grx=q-z2lsvrlafrls
dxa=y

Gxxpduilstt il r2ls

olse
lax2l-e21/xil
z2lox21*n2l
i112+z21dxZ *r 0y r2ls
ix=itl2%z2ldxil-vInd/r2ls
deve-px2ls*iz
dzx=q-xilz21%fz

Xz

Gxzoq-xAls*lx
cxgspAxiied]Fix

[ER SIS |
e (Ul Shrr o2 RaEx +

1 (cirdrzbcLeaxx) A

enu de 1 oend ol vertex lo

w_zt1s)
Ao x (s
GrenLiis

cl*hztc2¥ix

s o '
return
rd

(x2%% :2%221)/r2s)
(x2*2Z1t22*x2)1)/r2s)

¢ end cf station loop



