Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and Fortran subroutines

I. J. Won* and Michael Bevis*

Abstract

We present two algorithms for computing the gravitational and magnetic anomalies due to an n-sided polygon in a two-dimensional space. Both algorithms have been implemented as subroutines coded in Fortran-77, and listings are provided. Because references to trigonometric functions have been almost completely eliminated, these codes run substantially faster than mosts codes now in existence. Furthermore, anomalies can be computed at any point outside, on, or inside the polygon. Unlike other codes, these algorithms can be used to model subsurface observations.

INTRODUCTION

In a classic paper published in 1959, Talwani, Worzel, and Landisman presented a method for computing the gravitational attraction due to an n-sided polygon. Their algorithm has been widely used in computer programs for twodimensional (2-D) gravity modeling, because any 2-D body of arbitrary shape can be approximated by a polygon, and any 2-D density distribution can be modeled as an ensemble of juxtaposed constant-density polygons.

We present a modified algorithm for computing the gravitational acceleration due to a polygon. By reformulating the expressions presented by Talwani et al. (1959), in a manner suggested by Grant and West (1965) to reduce the number of references to trigonometric functions, we obtain a substantial increase in computational efficiency. By applying Poisson's relation to our expressions for gravitational acceleration, we derive a second algorithm for computing the magnetic anomaly due to a polygon magnetized by an external field.

We present Fortran-77 implementations of each algorithm. These subroutines include a quadrant correction not previously discussed in the literature (as far as we know) which ensures that the gravity and magnetic anomalies can be correctly determined for any point inside, outside, above, or
below the polygon. Most existing computer programs are not as general as those given here. Obtaining the correct answer within the polygon is essential when modeling gravity and magnetic anomaly measurements obtained in tunnels, boreholes, or submarines.

Although there are many codes based on the method of Talwani et al. (1959), we feel that those presented here are worthy of attention because they run an order of magnitude faster and generate correct answers at every point in the 2-D space.

THE GRAVITY ANOMALY DUE TO A POLYGON

Hubbert (1948) showed that the gravitational attraction due to a 2-D body can be expressed in terms of a line integral around its periphery. Talwani et al. (1959) considered the case of an n-sided polygon and broke the line integral up into n contributions, each associated with a side of the polygon. We follow Talwani et al. (1959) by placing the point at which the gravity anomaly is to be computed (i.e., the station) at the origin of the coordinate system (Figure 1) and expressing the vertical and horizontal components of the gravity anomaly as

$$
\begin{equation*}
\Delta g_{z}=2 G \rho \sum_{i=1}^{n} Z_{i} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta g_{x}=2 G \rho \sum_{i=1}^{n} X_{i} \tag{2}
\end{equation*}
$$

where Z_{i} and X_{i} are line integrals along the i th side of the polygon, G is the gravitational constant, and ρ is the density of the polygon. Talwani et al. (1959) derived expressions for Z_{i} and X_{i} that make extensive references to trigonometric functions. Grant and West (1965) reformulated the expression for Z_{i} by making more references to the vertex coordinates $\left\{x_{i}, z_{i}\right\}_{i=1, n}$ and fewer references to angular quantities, and thus reduced the number of trigonometric expressions involved in the computation. We follow Grant and West's approach, and produce a formula for X_{i} as well as Z_{i}. We com-

[^0]

Fig. 1. Geometrical conventions used in expressions for the x and z-components of the gravitational acceleration at the origin due to a polygon of density ρ.

Fig. 2. Geometrical conventions used with subroutine gz_poly. Note that the vertices are numbered clockwise. Two stations are shown, at S_{1} and S_{2}
pact the notation by eliminating the subscript i. We label any two successive vertices 1 and 2 , and each neighboring pair of vertices is treated as vertices 1 and 2 in turn. Thus we have

$$
\begin{equation*}
Z=A\left[\left(\theta_{1}-\theta_{2}\right)+B \ln \frac{r_{2}}{r_{1}}\right], \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
X=A\left[-\left(\theta_{1}-\theta_{2}\right) B+\ln \frac{r_{2}}{r_{1}}\right], \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
& A=\frac{\left(x_{2}-x_{1}\right)\left(x_{1} z_{2}-x_{2} z_{1}\right)}{\left(x_{2}-x_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}, \tag{5}\\
& B=\frac{z_{2}-z_{1}}{x_{2}-x_{1}}, \tag{6}\\
& r_{1}^{2}=x_{1}^{2}+z_{1}^{2}, \tag{7}
\end{align*}
$$

and

$$
r_{2}^{2}=x_{2}^{2}+z_{2}^{2}
$$

The computation of $\left(\theta_{1}-\theta_{2}\right)$ requires some care if the algorithm is to be valid for any station location. We obtain θ_{\perp} and θ_{2} using the relationship

$$
\begin{equation*}
\theta_{j}=\tan ^{-1}\left(\frac{z_{j}}{x_{j}}\right) \quad \text { for } j=1,2 \tag{8}
\end{equation*}
$$

In practice we use the Fortran function DATAN2 to compute the angles θ_{1} and θ_{2}; this function returns values in the range $-\pi$ to $+\pi$. This can lead to improper evaluation of $\left(\theta_{1}-\theta_{2}\right)$ when the gravity station is located between z_{1} and z_{2}. The following qualification provides a remedy.

Case 1.- If z_{1} and z_{2} have opposite signs, then
if $x_{1} z_{2}<x_{2} z_{1}$ and $z_{2} \geq 0$, replace θ_{1} with $\theta_{1}+2 \pi$;
if $x_{1} z_{2}>x_{2} z_{1}$ and $z_{1} \geq 0$, then replace θ_{2} with $\theta_{2}+2 \pi$;
if $x_{1} z_{2}=x_{2} z_{1}$, then $X=Z=0$.
(The last subcase merely reflects the fact that if the station lies on a polygon side, that side does not contribute to Δg_{z} or Δg_{x}.)

Other special cases that must be considered in a computer program are

Case 2.-If $x_{1}=z_{1}=0$ or $x_{2}=z_{2}=0$,
then

$$
X=Z=0
$$

and
Case 3. - If $x_{1}=x_{2}$,
then

$$
Z=x_{1} \ln \frac{r_{2}}{r_{1}}
$$

and

$$
X=-x_{1}\left(0_{1}-0_{2}\right) .
$$

THE FORTRAN SUBROUTINE gz_poly

The algorithm discussed above has been implemented as a subroutine coded in Fortran-77 (Listing 1). The geometrical conventions used with subroutine gz_poly are illustrated in Figure 1. The routine computes the vertical component of the gravity anomaly due to a polygon $\left(\Delta g_{z}\right)$, but not the horizontal component $\left(\Delta g_{x}\right)$, because only the former quantity is measured and modeled in practice. Modifying the routine to compute the horizontal component Δg_{x} is trivial. (A listing is available on request.)

The routine is written in double precision to ensure very accurate solutions even when the polygon has extremely large aspect ratios (this lengthens execution time only slightly). The polygon can have any shape as long as it contains just one bounded area, i.e., polygon sides should not cross. Note that if the z-axis is positive downward and the x-axis is positive to the right, then the polygon vertices must be specified clockwise.

It is not necessary for the calling program to transform coordinates so that the station occurs at the origin; subroutine gz_poly performs that transformation. The subroutine computes the vertical gravity a nomalies at any specified number of stations in a single call. The stations can be ordered in any sequence.

The subroutine is considerably faster than most of its predecessors. Running on a VAX-11/750 under VMS, subroutine gz_poly takes about 0.7 s to compute the vertical gravity anomaly due to a 1000 -sided polygon at a single station.

THE MAGNETIC ANOMALY DUE TO A POLYGON

Talwani and Heirtzler (1964) introduced a method for computing the magnetic anomaly due to an infinite polygonal cylinder, by combining the anomalies due to an ensemble of semiinfinite sills each of which was bounded by one of the polygon"s sides. The method is computationally effective and has been widely used. In implementing this method, programmers must be cautious about handling a situation in which the observation point is located between the minimum and maximum depths of the polygon.

Alternatively, the magnetic anomaly due to an polygonal cylinder can be derived using Poisson's relation, from the previous expressions for the associated gravity anomaly. We assume the magnetization of the cylinder is induced solely by the ambient earth's magnetic field. Then

$$
\begin{equation*}
\Delta \mathbf{H}=\frac{k H_{e}}{G \rho} \frac{\grave{c}}{\partial \alpha} \Delta \mathbf{g} \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta \mathbf{H} & =\text { magnetic anomaly vector }, \\
\Delta \mathbf{g} & =\text { gravity anomaly vector }, \\
k= & \text { magnetic susceptibility of polygon }, \\
\rho= & \text { polygon density }, \\
H_{e}= & \text { ambient scalar earth magnetic field } \\
& \text { strength, and } \\
\alpha= & \text { direction of induced magnetization. }
\end{aligned}
$$

Figure 3 shows the geometry and nomenclature, which are similar to those for the previous gravity anomaly problem.

Unlike the gravity anomaly, the magnetic anomaly depends additionally on the strike of the cylinder. Referring to Figure 3 , where

$$
I=\text { geomagnetic inclination }
$$

and
$\beta=$ the strike of the cylinder measured counterclockwise from magnetic north to the negative y-axis,
we can show that

$$
\begin{equation*}
\frac{\partial}{\partial \alpha} \equiv \sin I \frac{\partial}{\partial z}+\sin \beta \cos I \frac{\partial}{\partial x} . \tag{10}
\end{equation*}
$$

From equation (9), we may derive the vertical and horizontal components of the magnetic anomaly as

$$
\begin{equation*}
\Delta H_{z}=\frac{k H_{e}}{G \rho} \frac{\partial}{\partial \alpha} \Delta g_{z} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta H_{x}=\frac{k H_{e}}{G \rho} \frac{\partial}{\partial \alpha} \Delta g_{x} \tag{12}
\end{equation*}
$$

where expressions for Δg_{z} and Δg_{x} are given by equations (1) and (2). Substituting equations (1), (2), and (10) into equations (11) and (12), we obtain

$$
\begin{equation*}
\Delta H_{z}=2 k H_{e}\left(\sin I \frac{\partial Z}{\partial z}+\sin \beta \cos I \frac{\partial Z}{\partial x}\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta H_{x}=2 k H_{e}\left(\sin I \frac{\partial X}{\partial z}+\sin \beta \cos I \frac{\partial X}{\partial x}\right) . \tag{14}
\end{equation*}
$$

Once ΔH_{z} and ΔH_{x} are known, the total field scalar anomaly ΔH may be computed by

$$
\begin{equation*}
\Delta H=\Delta H_{z} \sin I+\Delta H_{x} \sin \beta \cos I . \tag{15}
\end{equation*}
$$

The derivatives in equations (13) and (14) are

$$
\begin{gather*}
\frac{\partial Z}{\partial z}=\frac{\left(x_{2}-x_{1}\right)^{2}}{R^{2}}\left[\left(\theta_{1}-0_{2}\right)+\frac{z_{2}-z_{1}}{x_{2}-x_{1}} \ln \frac{r_{2}}{r_{1}}\right]-P, \\
\frac{\partial Z}{\partial x}=\frac{-\left(x_{2}-x_{1}\right)\left(z_{2}-z_{1}\right)}{R^{2}}\left[\left(\theta_{1}-\theta_{2}\right)+\frac{z_{2}-z_{1}}{x_{2}-x_{1}} \ln \frac{r_{2}}{r_{1}}\right]+Q, \tag{17}
\end{gather*}
$$

$\frac{\partial X}{\partial z}=-\frac{\left(x_{2}-x_{1}\right)^{2}}{R^{2}}\left[\frac{z_{2}-z_{1}}{x_{2}-x_{1}}\left(\theta_{1}-\theta_{2}\right)-\ln \frac{r_{2}}{r_{1}}\right]+Q$,
and

$$
\begin{equation*}
\frac{\partial Z}{\partial x}=\frac{\left(x_{2}-x_{1}\right)\left(z_{2}-z_{1}\right)}{R^{2}}\left[\frac{z_{2}-z_{1}}{x_{2}-x_{1}}\left(\theta_{1}-\theta_{2}\right)-\ln \frac{r_{2}}{r_{1}}\right]+P, \tag{19}
\end{equation*}
$$

Fig. 3. The geometrical conventions used with subroutine m_poly. A right-handed coordinate system is employed, with the z-axis positive downward. The angles I and β represent the inclination of the Earth's magnetic field and the geomagnetic azimuth (strike) of the polygon, respectively. These quantities are represented by m_poly arguments "anginc" and "angstr." Two stations are shown, at S_{1} and S_{2}. In this example the polygon has six vertices.
where

$$
\begin{align*}
R^{2}= & \left(x_{2}-x_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2} \tag{20}\\
P= & \frac{x_{1} z_{2}-x_{2} z_{1}}{R^{2}}\left[\frac{x_{1}\left(x_{2}-x_{1}\right)-z_{1}\left(z_{2}-z_{1}\right)}{r_{1}^{2}}\right. \\
& \left.-\frac{x_{2}\left(x_{2}-x_{1}\right)-z_{2}\left(z_{2}-z_{1}\right)}{r_{2}^{2}}\right] \tag{21}
\end{align*}
$$

and

$$
\begin{align*}
Q= & \frac{x_{1} z_{2}-x_{2} z_{1}}{R^{2}}\left[\frac{x_{1}\left(z_{2}-z_{1}\right)+z_{1}\left(x_{2}-x_{1}\right)}{r_{1}^{2}}\right. \\
& \left.-\frac{x_{2}\left(z_{2}-z_{1}\right)+z_{2}\left(x_{2}-x_{1}\right)}{r_{2}^{2}}\right] . \tag{22}
\end{align*}
$$

Special cases 1 and 2 shown previously for the gravity problem also apply in the same way for the magnetic anomaly. In addition, a fourth case is as follows.

Case 4.-If $x_{1}=x_{2}$, then

$$
\begin{aligned}
& \frac{\partial Z}{\partial z}=-\boldsymbol{P} \\
& \frac{\partial Z}{\partial x}=\frac{-\left(z_{2}-z_{1}\right)^{2}}{R^{2}} \ln \frac{r_{2}}{r_{1}}+Q \\
& \frac{\partial X}{\partial z}=Q
\end{aligned}
$$

and

$$
\frac{\partial X}{\partial x}=\frac{\left(z_{2}-z_{1}\right)^{2}}{R^{2}}\left(\theta_{1}-\theta_{2}\right)+P
$$

THE FORTRAN SUBROUTINE m_poly

The algorithm outlined above has been implemented as a subroutine coded in Fortran-77 (Listing 2). The geometrical conventions used with subroutine mpoly are illustrated in Figure 3. The routine computes the x-component, the z component, and the total anomalous magnetic field strength due to an infinite polygonal cylinder magnetized by an external magnetic field. It is assumed that the cylinder strikes parallel to the y-axis in a right-handed coordinate system $\{x$, $y, z\}$. The vertical, horizontal, and total field strength anomalies depend upon the relative locations of the polygon and station in the (x, z) plane, the magnetic susceptibility of the cylinder, the inclination of the Earth's (i.e., the external) mag-
netic field, the total field strength of the Earth's magnetic field, and the geomagnetic azimuth (strike) of the polygon. This last quantity (β) should be determined with some care. It is the angle from magnetic north to the negative y-axis measured in the horizontal plane (Figure 3). The angle is positive when measured counterclockwise (looking down) from magnetic north. Similarly, some care must be taken in specifying the (x, z) coordinates of the polygon's vertices. They must be specified clockwise when the (x, z) plane is viewed toward the negative y-axis. The routine will compute the anomalies at any specified number of stations, and these stations may be specified in any sequence. The subroutine will perform the transformations necessary to bring each station in turn to the origin of the coordinate system.

In the event that the Earth's magnetic field is vertical (inclination $= \pm 90$ degrees), the strike (β) is undefined and irrelevant and can be set to any value.

The algorithm does not include the effects of demagnetization (Grant and West, 1965), and thus it is not suited for modeling the anomalies due to bodies whose magnetic susceptibility exceeds about 0.01 emu. Although rocks rarely have magnetic susceptibilities this large, nevertheless this limitation must be kept in mind.

Note that the user may choose any units for H_{c}, the local value of Earth's total magnetic field strength, and the values of the vertical, horizontal, and total anomalous field strengths will be returned in those same units. Some care should be taken in specifying the magnetic susceptibility, however, because even though magnetic susceptibility is a dimensionless quantity, it differs by a factor of 4π between the SI and emu systems of units ($k_{\text {emu }}=4 \pi k_{\text {si }}$). If the user wishes to use the emu system, then the subroutine argument "suscept" is just the magnetic susceptibility $k_{\text {emu }}$. In this case the chosen units of H will usually be gammas. However, if the SI system is used, then the argument "suscept" must be set to $4 \pi k_{\mathrm{SI}}$. In this case the appropriate units for H would be nanoteslas. Spatial coordinates may be given in any unit of length, provided the unit chosen is employed consistently.

REFERENCES

Grant, F. S., and West, G. F., 1965 , Interpretation theory in applied geophysics: McGraw-Hill Book Co.
Hubbert, M. K., 1948, A line-integral method of computing the gravimetric effects ol two-dimensional masses: Geophysics, 13, 215-225.
Talwani, M., and Heirtzler, J. R., 1964, Computation of magnetic anomalies caused by two-dimensional bodies of arbitrary shape, in Parks, G. A., Ed., Computers in the mineral industries, Part 1: Stanford Univ. Publ:, Geolegical Sciences, 9, 464-480.
Talwani, M., Worzel, J. I.., and Landisman, M., 1959, Rapid gravity computations for two-dimensional bodies with application to the Mendicino submarine fracture zone: J. Geophys. Res., 64, 49-59.

APPENDIX

LISTING 1


```
\(4 x=0.000\)
```



```
\(x-x \div(1)-x=5\)
0
\(1 \begin{aligned} & 1: 30 \\ & x\end{aligned}\)
\(x=(a+1)-x \leq=\)
\(z 0(2+1)\)
ル!
```



``` (h): watay \(\langle 42 \times \times(4)\) il
```



``` \(\operatorname{micto}_{11}^{11}\)
```



```
- Nal 11
```



```
rot.Ar
```

30

LISTING 2


```
    Ther number of sitatiols
    yecturs contaisis'tse exordmates os -m,
```



```
    Ne (sea:) Folyogn
```



```
throumbout,
M,M,N*)
```



```
M,
```



```
|=ds+atam}:ac*lt.t:
```



```
do lob 1,5-1,3:stn
! jowi: wvel stations
do loc 1,s-1
M M = = .0.0.0
```



```
    1)(racgnvert)etu=:
        l}\begin{array}{l}{x2=x(1)-x=t}\\{z2=\pi(1)-zet}
    C150
```



```
    end i:
```



```
    N\mp@code{No}= datan2(z%,x2)
```



```
        M,
```



```
    wal:
##t=2与!!a;
    Mse
    encl :f = datan2(2%.x2)
```


[^0]: Manuseript received by the Editor November 22, 1985; revised manuscript received May 14, 1986.
 *Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Box 8208, Raleigh, NC 27659-8208.
 1.1987 Society of Exploration Geophysicists: All rights reserved:

