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Computing the gravitational and magnetic anomalies due to a polygon: 

Algorithms and Fortran subroutines 

I. J. Won* and Michael Bevis* 

- 

ABSTRACT 

We present two algorithms for computing the gravi- 
tational and magnetic anomalies due to an n-sided poly- 
gon in a two-dimensional space. Both algorithms have 
been implemented as subroutines coded in Fortran-77, 
and listings are provided. Because references to trigono- 
metric functions have been almost completely eliminat- 
ed. these codes run substantially faster than mosts codes 
now in existence. Furthermore. anomalies can be com- 
puted at any point outside. on, or inside the polygon. 
Ilnlike other codes, these algorithms can be used to 
model subsurface observations. 

INTRODUCTION 

In a classic paper published in 1959, Talwani, Worzel, and 
Landisman presented a method for computing the gravi- 
tational attraction due to an n-sided polygon. Their algorithm 
has been widely used in computer programs for two- 
dimensional (Z-D) gravity modeling. because any 2-D body of 
arbitrary shape can be approximated by a polygon, and any 
3-D density distribution can be modeled as an ensemble of 
juxtaposed constant-density polygons. 

We present a modified algorithm for computing the gravi- 
lational acceleration due to a polygon. By reformulating the 
expressions presented by Talwani et al. (1959), in a manner 
suggested by Grant and West (1965) to reduce the number of 
references to trigonometric functions, we obtain a substantial 
increase in computational efficiency. By applying Poisson’s 
relation to our cxprcssions for gravitational acceleration. we 
derive a second algorithm for computing the magnetic anoma- 
ly due to a polygon magnetized by an external field. 

We present Fortran- implementations of each algorithm. 
these subroutines include a quadrant correction not pre- 
viously discussed in the literature (as far as we know) which 
ensures that the gravity and magnetic anomalies can be cor- 
rectly determined for any point inside, outside, above, or 

below the polygon. Most existing computer programs are not 
as general as those given here. Obtaining the correct answer 
within the polygon is essential when modeling gravity and 
magnetic anomaly measurements obtained in tunnels, bore- 
holes, or submarines. 

Although there are many codes based on the method of 
Talwani et al. (1959). we feel that those presented here are 
worthy of attention because they run an order of magnitude 
faster and generate correct answers at every point in the 2-D 
space. 

THE GRAVITY ANOMALY DUE TO A POLYGON 

Hubbert (1948) showed that the gravitational attraction due 

to a 2-D body can be expressed in terms of a line integral 
around its periphery. Talwani et al. (1959) considered the case 
of an n-sided polygon and broke the line integral up into n 
contributions, each associated with a side of the polygon. We 
follow Talwani et al. (1959) by placing the point at which the 
gravity anomaly is to be computed (i.e., the station) at the 
origin of the coordinate system (Figure I) and expressing the 
vertical and horizontal components of the gravity anomaly as 

n 
A<]; = 2Gp 1 z, (1) 

i= I 

and 

where Zi and Xi arc line integrals along the ith side of the 
polygon, G is the gravitational constant, and p is the density 
of the polygon. Talwani et al. (I 959) derived expressions for Zi 
and Xi that make extensive references to trigonometric func- 
tions. Grant and West (1965) reformulated the expression for 
Z, by making more references to the vertex coordinates 
.(-xi, -i}izl,n and fewer references to angular quantities, and 
thus reduced the number of trigonometric expressions in- 
volved in the computation. We follow Grant and West’s ap- 
proach, and produce a formula for Xi as well as Zi. We com- 
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FIG. 1. Geometrical conventions used in expressions for the x- 
and :-components of the gravitational acceleration at the 
origin due to a polygon of density p. 

x 

FIG;. 2. Geometrical conventions used with subroutine gz_poly. 
Note that the vertices are numbered clockwise. Two stations 
arc shown, at S, and S,. 

pact the notation by eliminating the subscript i. We label any 
two successive vertices 1 and 2, and each neighboring pair of 
vertices is treated as vertices 1 and 2 in turn. Thus we have 

Z=Ar(*,-00,)+Bhtr21 
1 r-1 1 

(3) 

and 

-(O, - OJB + In2 r1 1 
where 

A = (x1 - XIKXL-72 - x2 z,) 
(x, - x,)2 + (z, - zJ2’ 

(4) 

and 

(6) 

(7) 

The computation of (0, - 0,) requires some care if the algo- 
rithm is to be valid for any station location. We obtain Qt and 
8, using the relationship 

fj,=tan~’ 2 
(> 

for j = 1. 2. (8) 
xj 

In practice we use the Fortran function DATAN? to compute 
the angles 8, and Q2; this function returns values in the range 
-rr to +rr. This can lead to improper evaluation of ((3, - 8,) 
when the gravity station is located between 2, and z2_ The 
following qualification provides a remedy. 

Case l.- If z1 and i2 have opposite signs, then 

if x,zz < xL-7r and z2 2 0, replace 0, with 0, + 27t: 
if x,z2 B xzz, and z , 2 0, then replace 8, with OS + 27~; 
if x,z2 = x2z1, then X = Z = 0. 

(The last subcase merely reflects the fact that if the station lies 
on a polygon side, that side does not contribute to Acjz or 

&I, .) 
Other special cases that must be considered in a computer 

program are 

Case2.--lf.x,=z,=Oor.~,=z2=0, 

then 

x=2=0, 

and 

Case 3. -If x1 = x2, 

then 

(5) 

2 = xl In ?, 
rl 

and 

x = -x,(0, - 0,) 
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THE FORTRAN SUBROUTINE gz_poly 

The algorithm discussed above has been implemented as a 
subroutine coded in Fortran- (Listing I). The geometrical 
conventions used with subroutine gz_poly are illustrated in 
Figure 1. The routine computes the vertical component of the 
gravity anomaly due to a polygon (Ag,), but not the horizon- 
tal component (As,), because only the former quantity is mea- 
sured and modeled in practice. Modifying the routine to com- 
pute the horizontal component Ay, is trivial. (A listing is 
available on request.) 

The routine is written in double precision to ensure very 
accurate solutions even when the polygon has extremely large 
aspect ratios (this lengthens execution time only slightly). The 
polygon can have any shape as long as it contains just one 
bounded area, i.e.. polygon sides should not cross. Note that if 
the z-axis is positive downward and the s-axis is positive to 
the right, then the polygon vertices must be specified clock- 
wise. 

It is not necessary for the calling program to transform 
coordinates so that the station occurs at the origin; subroutine 
gz_polg performs that transformation. The subroutine com- 
putes the vertical gravity anomalies at any specified number of 
stations in a single call. The stations can be ordered in any 
sequence. 

The subroutine is considerably faster than most of its prede- 
cessors. Running on a VAX-II/750 under VMS, subroutine 
gz_poly takes about 0.7 s to compute the vertical gravity 
anomaly due to a I 00%sided polygon at a single station. 

TI1E MAGNETIC ANOMALY DUE TO A POLYGON 

Talwani and Heirtzler (1964) introduced a method for com- 
puting the magnetic anomaly due to an infinite polygonal 
cylinder. by combining the anomalies due to an ensemble of 
semiinfinite sills each of which was bounded by one of the 
polygon’s sides. The method is computationally effective and 
has been widely used. In implementing this method, program- 
mers must be cautious about handling a situation in which the 
observation point is located between the minimum and maxi- 
mum depths orthe polygon. 

Alternatively, the magnetic anomaly due to an polygonal 
cylinder can be derived using Poisson’s relation, from the pre- 
vious expressions for the associated gravity anomaly. We 
assume the magnetization of the cylinder is induced solely by 
the ambient earth’s magnetic field. Then 

kH,, i 
AH = K ;a 4s 

where 

(9) 

AH = magnetic anomaly vector, 
Ag = gravity anomaly vector, 

k = magnetic susceptibility of polygon, 
p = polygon density, 

H, = ambient scalar earth magnetic field 
strength, and 

a = direction of induced magnetization. 

Figure 3 shows the geometry and nomenclature, which are 
similar to those for the previous gravity anomaly problem. 

Unlike the gravity anomaly, the magnetic anomaly depends 
additionally on the strike of the cylinder. Referring to Figure 
3, where 

1 = geomagnetic inclination, 

and 

0 = the strike of the cylinder measured 
counterclockwise from magnetic north 
to the negative y-axis, 

we can show that 

i: a r? 
--sin]--+sinpcosI,. 
L7a cx 

From equation (9), we may derive the vertical and horizontal 
components of the magnetic anomaly as 

kH (3 
AH,=‘-Ag,, 

Gp 8a 

and 

AH,d-Agx, 
Gp C?a 

(11) 

(12) 

where expressions for AqZ and Ay, are given by equations (I) 
and (2). Substituting equations (l), (2), and (10) into equations 
(1 I) and (12), we obtain 

AH? = 2kH, sin 1 z + sin p cos I (13) 

and 

AH, = 2kH, sin I g + sin p cos I g 
> 

(14) 

Once AH? and AH, are known, the total field scalar anomaly 
AH may be computed by 

AH = AH, sin ! + AH, sin 0 cos I. (15) 

The derivatives in equations (13) and (14) are 

('z _ -(x* - x,)(=1 - 2,) _ 
?.Y 

and 

(:z (.x2 - X,)(Z2 - 2,) 
-= 
irx R2 

x3@, _ &)- InI2 x2 - X1 r1. 

8X (.x2 - x,)2 z2 - z1 
-=_ 

(1Z R2 
- (0, - 0,) - In : 1 + Q, 
x2 -x1 

(17) 

(18) 

1 + P, 
(19) 
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ZTION 

FIG. 3. The geometrical conventions used with subroutine m_poly. A right-handed coordinate system is employed, with 
the z-axis positive downward. The angles I and p represent the inclination of the Earth’s magnetic field and the 
geomagnetic azimuth (strike) of the polygon, respectively. These quantities are represented by m_poly arguments 
“anginc” and “angstr.” Two stations are shown, at S, and S,, In this example the polygon has six vertices. 
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where 

R* = (x2 - x,)* + (z2 - z,)*, 

P= x122 - .x2z1 

[ 

x1(x2 - x,) - z1(z2 - zl) 

R2 6 

x2(x2 - x1) - z2(zz - ZJ 
_ 

6 1, 

and 

Q = x122 ;*“‘Zl 

[ 

Xl(Z2 - z,) ; z,(x* - x1) 

x*(z2 - iI) + z2(x* - x,) 
_ 

4 l- 

Won and Bevis 

(20) 

(21) 

(22) 

Special cases 1 and 2 shown previously for the gravity prob- 
lem also apply in the same way for the magnetic anomaly. iti 
addition, a fourth case is as follows. 

Case 4.-If X, = x2, then 

i’z _ -(z* - z,y _ 
8.X R2 

In : + Q. 

C’X 
-= 
32 

Q? 

and 

?X (z* - z,)2 
- = ____ (0, - 0,) + P. 
as R2 

THE FORTRAN SUBROUTINE m_poly 

The algorithm outlined above has been implemented as a 
subroutine coded in Fortran- (Listing 2). The geometrical 
conventions used with subroutine m_poly are illustrated in 
Figure 3. The routine computes the s-component, the Z- 
component, and the total anomalous magnetic field strength 
due to an infinite polygonal cylinder magnetized by an exter- 
nal magnetic field. It is assumed that the cylinder strikes 
parallel to the v-axis in a right-handed coordinate system (x, 
J’. 2). The vertical, horizontal, and total field strength anoma- 
lies depend upon the relative locations of the poiygon and 
station in the (x, Z) plane. the magnetic susceptibility of the 
cylinder, the inclination of the Earth’s (i.e., the external) mag- 

netic field, the total field strength of the Earth’s magnetic held, 
and the geomagnetic azimuth (strike) of the polygon. This last 
quantity (0) should be determined with some care. It is the 
angle from magnetic north to the negative y-axis measured in 
the horizontal plane (Figure 3). The angle is positive when 
measured counterclockwise (looking down) from magnetic 
north. Similarly, some care must be taken in specifying the (x, 
;) coordinates of the polygon’s vertices. They must be specified 
clockwise when the (x, Z) plane is viewed toward the negative 
J-Cs. The routine will compute the anomalies at any speci- 
tied number of stations, and these stations may be specified in 
any sequence. The subroutine will perform the transforma- 
tions necessary to bring each station in turn to the origin of 
the coordinate system. 

In the event that the Earth’s magnetic field is vertical 
(inclination = k90 degrees], the strike (fi) is undefined and 
irrelevant and can be set to any value. 

The algorithm does not include the effects of demagnetiza- 
tion (Grant and West, 1965), and thus it is not suited for 
modeling the anomalies due to bodies whose magnetic suscep- 
tibility exceeds about 0.01 emu. Although rocks rarely have 
magnetic susceptibilities this large, nevertheless this limitation 
must be kept in mind. 

Note that the user may choose any units for H,, the local 
value of Earth’s total magnetic field strength, and the values of 
the vertical, horizontal, and total anomalous field strengths 
will be returned in those same units. Some care should be 
taken in specifying the magnetic susceptibility, however, be- 
cause even though magnetic susceptibility is a dimensionless 
quantity, it differs by a factor of 4n between the SI and emu 
systems of units (k,,, = 4ak,,). If the user wishes to use the 

emu system, then the subroutine argument “suscept” is just 
the magnetic susceptibility k,,“. In this case the chosen units 

of H will usually be gammas. However, if the SI system is 
used, then the argument “suscept” must be set to 47rk,, In this 
case the appropriate units for H would be nanoteslas. Spatial 
coordinates may be given in any unit of length, provided the 
unit chosen is employed consistently. 
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APPENDIX 

LISTING 2 
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