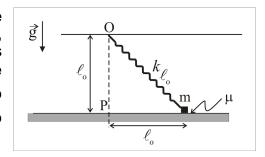
FI2001 MECÁNICA

Profesor: Andrés Escala


Facultad de Ciencias Físicas y Matemáticas

Universidad de Chile

Control N° 2 Mayo, 26 de 2010

Problema 1

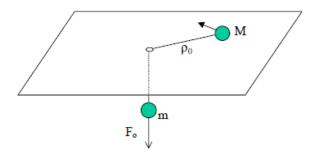
Considere un bloque de masa \mathbf{m} que se mueve por una superficie horizontal, cuyo coeficiente de roce con el bloque es μ . El bloque esta unido a un resorte de constante \mathbf{k} y largo natural ℓ_0 , cuyo otro extremo esta unido a un punto O ubicado a una altura ℓ_0 de la superficie horizontal.

En t=0 el bloque se suelta desde el reposo a una distancia horizontal ℓ_o hacia la derecha del punto P, correspondiente a la proyección vertical de O en la superficie (ver figura). Determine:

- a) La condición para que inicialmente el bloque no se levante del piso.
- b) Ecuación de movimiento del bloque (para el caso en que se satisface a).
- c) Suponga que el bloque se vuelve a detener a una distancia $\ell_o/2$ hacia la izquierda de la proyección vertical de O en la superficie. Determine μ en términos de \mathbf{m} , \mathbf{k} , ℓ_o y \mathbf{g} .

Hint:

$$\int \frac{1}{\sqrt{1+x^2}} = \operatorname{arcsinh}(x)$$


Problema 2

Una partícula P de masa ${\bf m}$ se mueve por un riel horizontal circunferencial de radio ${\bf R}$. El único tipo de roce que hay es roce viscoso lineal, $\overrightarrow{F_r} = -c\overrightarrow{v}$.

- a) Si P es lanzado, desde ϕ =0 con rapidez v_o , calcule el trabajo de la fuerza total después que P ha avanzado hasta ϕ = ϕ 1
- b) Determine el valor que debe tener v_o para que P se detenga justo cuando ha avanzado media vuelta.

Problema 3

Considere un sistema de dos partículas de masa \mathbf{M} y \mathbf{m} , unidas entre si por una cuerda inextensible que desliza sin roce por un agujero en una superficie horizontal, como se muestra en la figura. Inicialmente la partícula \mathbf{M} se encuentra a una distancia $\boldsymbol{\rho}_{o}$ del agujero.

- a) Determine la rapidez v_o que hay que dar a la partícula de masa ${\bm M}$ en dirección perpendicular a la cuerda para que quede girando en un círculo de radio ${\bm \rho}_o$
- b) A partir de un cierto instante, en las condiciones especificadas en a) se ejerce una fuerza F_0 de magnitud variable en el tiempo sobre la partícula que está colgando, de modo que ésta se mueve hacia abajo con una rapidez \mathbf{v}_1 constante. Determine el número de vueltas que habrá dado la partícula \mathbf{M} hasta que su distancia al agujero haya disminuido a la mitad.
 - c) Determine la magnitud de F_o en ese instante.