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Preface

This textbook has grown out of the first-semester honors freshman physics course
that has been taught at Harvard University during recent years. The book is essen-
tially two books in one. Roughly half of it follows the form of a normal textbook,
consisting of text, along with exercises suitable for homework assignments. The
other half takes the form of a problem book, with all sorts of problems (with so-
lutions) of varying degrees of difficulty. If you’'ve been searching for a supply of
practice problems to work on, this should keep you busy for a while.

A brief outline of the book is as follows. Chapter 1 covers statics. Most of this
will probably look familiar, but you’ll find some fun problems. In Chapter 2, we
learn about forces and how to apply F' = ma. There’s a bit of math here needed
for solving some simple differential equations. Chapter 3 deals with oscillations
and coupled oscillators. Again, there’s a fair amount of math needed for solving
linear differential equations, but there’s no way to avoid it. Chapter 4 deals with
conservation of energy and momentum. You’ve probably seen much of this before,
but again, it has lots of neat problems.

In Chapter 5, we introduce the Lagrangian method, which will undoubtedly be
new to you. It looks rather formidable at first, but it’s really not all that rough.
There are difficult concepts at the heart of the subject, but the nice thing is that
the technique is easy to apply. The situation here analogous to taking a derivative
in calculus; there are substantive concepts on which the theory rests, but the act of
taking a derivative is fairly straightforward.

Chapter 6 deals with central forces, Kepler’s Laws, and such things. Chapter 7
covers the easier type of angular momentum situations, ones where the direction of
the angular momentum is fixed. Chapter 8 covers the more difficult type, ones where
the direction changes. Gyroscopes, spinning tops, and other fun and perplexing
objects fall into this category. Chapter 9 deals with accelerated frames of reference
and fictitious forces.

Chapters 10 through 13 cover relativity. Chapter 10 deals with relativistic kine-
matics — abstract particles flying through space and time. Chapter 11 covers rel-
ativistic dynamics — energy, momentum, force, etc. Chapter 12 introduces the im-
portant concept of “4-vectors.” The material in this chapter could alternatively
be put in the previous two, but for various reasons I thought it best to create a
separate chapter for it. Chapter 13 covers a few topics from general relativity. It’s
not possible for one chapter to do this subject justice, of course, so we’ll just look
at some basic (but still very interesting) examples.

1



2 CONTENTS

The appendices contain various useful things. Indeed, Appendices B and C,
which cover dimensional analysis and limiting cases, are the first parts of this book
you should read.

Throughout the book, I have included many “remarks.” These are written in
a slightly smaller font than the surrounding text. They begin with a small-capital
“REMARK” and end with a shamrock (). The purpose of these remarks is to say
something that needs to be said, without disrupting the overall flow of the argument.
In some sense these are “extra” thoughts, although they are invariably useful in
understanding what is going on. They are usually more informal than the rest of
the text, and I reserve the right to occasionally use them to babble about things
I find interesting, but which you may find a bit tangential. For the most part,
however, the remarks address issues and questions that arise naturally in the course
of the discussion.

At the end of the solutions to many problems, the obvious thing to do is to
check limiting cases.! I have written these in a smaller font, but I have not always
bothered to start them with a “REMARK” and end them with a “&”, because they
are not “extra” thoughts. Checking limiting cases of your answer is something you
should always do.

For your reading pleasure (I hope), I have included many limericks scattered
throughout the text. I suppose that they might be viewed as educational, but they
certainly don’t represent any deep insight I have on the teaching of physics. I have
written them solely for the purpose of lightening things up. Some are funny. Some
are stupid. But at least they’re all physically accurate (give or take).

A word on the problems. Some are easy, but many are very difficult. I think
you’ll find them quite interesting, but don’t get discouraged if you have trouble
solving them. Some are designed to be brooded over for hours. Or days, or weeks,
or months (as I can attest to). I have chosen to write them up for two reasons: (1)
Students invariably want extra practice problems, with solutions, to work on, and
(2) I find them rather fun.

The problems are marked with a number of asterisks. Harder problems earn
more asterisks, on a scale from zero to four. You may, of course, disagree with
my judgment of difficulty, but I think that an arbitrary weighting scheme is better
than none at all. As a rough idea of what I mean by the number of stars: one-star
problems are solid problems that require some thought, and four-star problems are
really really really difficult. Try a few and you’ll see what I mean.

Just to warn you, even if you understand the material in the text backwards and
forwards, the four-star (and many of the three-star) problems will still be extremely
challenging. But that’s how it should be. My goal was to create an unreachable
upper bound on the number (and difficulty) of problems, because it would be an
unfortunate circumstance, indeed, if you were left twiddling your thumbs, having
run out of problems to solve. I hope I have succeeded.

For the problems you choose to work on, be careful not to look at the solution
too soon. There is nothing wrong with putting a problem aside for a while and

!This topic is discussed in Appendix C.
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coming back to it later. Indeed, this is probably the best way to approach things. If
you head to the solution at the first sign of not being able to solve a problem, then
you have wasted the problem.

REMARK: This gives me an opportunity for my first remark (and first limerick, too).
One thing many people don’t realize is that you need to know more than the correct way(s) to
do a problem; you also need to be familiar with many incorrect ways of doing it. Otherwise,
when you come upon a new problem, there may be a number of decent-looking approaches
to take, and you won’t be able to immediately weed out the poor ones. Struggling a bit
with a problem invariably leads you down some wrong paths, and this is an essential part
of learning. To understand something, you not only have to know what’s right about the
right things; you also have to know what’s wrong about the wrong things. Learning takes a
serious amount of effort, many wrong turns, and a lot of sweat. Alas, there are no short-cuts
to understanding physics.

The ad said, For one little fee,

You can skip all that course-work ennui.
So send your tuition,

For boundless fruition!

Get your mail-order physics degree! &

One last note: the problems with included solutions are called “Problems.” The
problems without included solutions are called “Exercises.” There is no fundamental
difference between the two, except for the existence of written-up solutions.

I hope you enjoy the book!

— David Morin
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Chapter 1

Statics

Copyright 2004 by David Morin, morin@physics.harvard.edu

Before reading any of the text in this book, you should read Appendices B and C.
The material discussed there (dimensional analysis, checking limiting cases, etc.) is
extremely important. It’s fairly safe to say that an understanding of these topics is
absolutely necessary for an understanding of physics. And they make the subject a
lot more fun, too!

For many of you, the material in this first chapter will be mainly review. As such,
the text here will be relatively short. This is an “extra” chapter. Its main purpose
is that it provides me with an excuse to give you some nice statics problems. Try
as many as you like, but don’t go overboard; more important and relevant material
will soon be at hand.

1.1 Balancing forces

A “static” situation is one where all the objects are motionless. If an object remains
motionless, then F© = ma tells us that the total force acting on it must be zero.
(The converse is not true, of course. The total force on an object is also zero if
it moves with constant nonzero velocity. But we’ll deal only with statics problems
here). The whole goal in a statics problem is to find out what the various forces have
to be so that there is zero net force acting on each object (and zero net torque, too,
but that’s the topic of the next section). Since a force is a vector, this goal involves
breaking the force up into its components. You can pick cartesian coordinates, polar
coordinates, or another set. It is usually clear from the problem which system will
make your calculations easiest. Once you pick a system, you simply have to demand
that the total force in each direction is zero.

There are many different types of forces in the world, most of which are large-
scale effects of complicated things going on at smaller scales. For example, the
tension in a rope comes from the chemical bonds that hold the molecules in the rope
together (and these chemical forces are just electrical forces). In doing a mechanics
problem involving a rope, there is certainly no need to analyze all the details of the
forces taking place at the molecular scale. You simply call the force in the rope a

I-1



1-2 CHAPTER 1. STATICS
“tension” and get on with the problem. Four types of forces come up repeatedly:

Tension

Tension is the general name for a force that a rope, stick, etc., exerts when it is
pulled on. Every piece of the rope feels a tension force in both directions, except
the end point, which feels a tension on one side and a force on the other side from
whatever object is attached to the end.

In some cases, the tension may vary along the rope. The “Rope wrapped around
a pole” example at the end of this section is a good illustration of this. In other
cases, the tension must be the same everywhere. For example, in a hanging massless
rope, or in a massless rope hanging over a frictionless pulley, the tension must be
the same at all points, because otherwise there would be a net force on at least one
tiny piece, and then F' = ma would yield an infinite acceleration for this tiny piece.

Normal force

This is the force perpendicular to a surface that the surface applies to an object.
The total force applied by a surface is usually a combination of the normal force and
the friction force (see below). But for frictionless surfaces such as greasy ones or
ice, only the normal force exists. The normal force comes about because the surface
actually compresses a tiny bit and acts like a very rigid spring. The surface gets
squashed until the restoring force equals the force the object applies.

REMARK: For the most part, the only difference between a “tension” and a “normal
force” is the direction of the force. Both situations can be modeled by a spring. In the
case of a tension, the spring (a rope, a stick, or whatever) is stretched, and the force on
the given object is directed toward the spring. In the case of a normal force, the spring is
compressed, and the force on the given object is directed away from the spring. Things like
sticks can provide both normal forces and tensions. But a rope, for example, has a hard
time providing a normal force.

In practice, in the case of elongated objects such as sticks, a compressive force is usually

“negative tension,” instead of a normal force. So by

called a “compressive tension,” or a
these definitions, a tension can point either way. At any rate, it’s just semantics. If you use

any of these descriptions for a compressed stick, people will know what you mean. ¢

Friction

Friction is the force parallel to a surface that a surface applies to an object. Some
surfaces, such as sandpaper, have a great deal of friction. Some, such as greasy ones,
have essentially no friction. There are two types of friction, called “kinetic” friction
and “static” friction.

Kinetic friction (which we won’t cover in this chapter) deals with two objects
moving relative to each other. It is usually a good approximation to say that the
kinetic friction between two objects is proportional to the normal force between
them. The constant of proportionality is called ux (the “coefficient of kinetic fric-
tion”), where py depends on the two surfaces involved. Thus, F' = pu;N, where N
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is the normal force. The direction of the force is opposite to the motion.

Static friction deals with two objects at rest relative to each other. In the static
case, we have F' < usN (where g is the “coefficient of static friction”). Note the
inequality sign. All we can say prior to solving a problem is that the static friction
force has a mazimum value equal to Finax = psN. In a given problem, it is most
likely less than this. For example, if a block of large mass M sits on a surface
with coefficient of friction ug, and you give the block a tiny push to the right (tiny
enough so that it doesn’t move), then the friction force is of course not equal to
usN = pusMg to the left. Such a force would send the block sailing off to the left.
The true friction force is simply equal and opposite to the tiny force you apply.
What the coefficient pg tells us is that if you apply a force larger than usMg (the
maximum friction force on a horizontal table), then the block will end up moving
to the right.

Gravity

Consider two point objects, with masses M and m, separated by a distance R. New-
ton’s gravitational force law says that the force between these objects is attractive
and has magnitude F' = GMm/R?, where G = 6.67 - 107! m?/(kg - s?). As we
will show in Chapter 4, the same law applies to spheres. That is, a sphere may be
treated like a point mass located at its center. Therefore, an object on the surface
of the earth feels a gravitational force equal to

Fzm(i?j) = mg, (1.1)

where M is the mass of the earth, and R is its radius. This equation defines g.
Plugging in the numerical values, we obtain (as you can check) g ~ 9.8 m/s?. Every
object on the surface of the earth feels a force of mg downward. If the object is not
accelerating, then there must also be other forces present (normal forces, etc.) to
make the total force equal to zero.

Example (Block on a plane): A block of mass M rests on a fixed plane inclined
at angle 6. You apply a horizontal force of Mg on the block, as shown in Fig. 1.1.

(a) Assume that the friction force between the block and the plane is large enough
to keep the block at rest. What are the normal and friction forces (call them N
and Fy) that the plane exerts on the block?

(b) Let the coefficient of static friction be pu. For what range of angles 6 will the
block remain still?

Solution:

(a) We will break the forces up into components parallel and perpendicular to the
plane. (The horizontal and vertical components would also work, but the calcu-
lation would be a little longer.) The forces are N, Fy, the applied Mg, and the
weight Mg, as shown in Fig. 1.2. Balancing the forces parallel and perpendic-

Mg

R ——

0

Figure 1.1

Figure 1.2



I-4 CHAPTER 1. STATICS

ular to the plane gives, respectively (with upward along the plane taken to be
positive),

Fy = Mgsinf — Mgcos9, and
N = Mgcosf+ Mgsin6. (1.2)

REMARKS: Note that if tan 6 > 1, then F is positive (that is, it points up the plane).
And if tan@ < 1, then Fy is negative (that is, it points down the plane). There is
no need to worry about which way it points when drawing the diagram. Just pick a
direction to be positive, and if Fy comes out to be negative (as it does in the above
figure because 6 < 45°), so be it.

Fy ranges from —Mg to Mg, as 6 ranges from 0 to /2 (convince yourself that these
limiting values make sense). As an exercise, you can show that N is maximum when
tan@ = 1, in which case N = v/2Mg and F; = 0. &

(b) The coefficient p tells us that |[Fy| < uN. Using egs. (1.2), this inequality
becomes
Mg|sin® — cos 0| < uMg(cosf + sin6). (1.3)

The absolute value here signifies that we must consider two cases:
e If tanf > 1, then eq. (1.3) becomes

1+ p

sinf — cos 0 < p(cos @ + sin 9) = tand < et (1.4)
e If tanf < 1, then eq. (1.3) becomes
—siné + cosf < p(cosf + sin b)) = tan > % (1.5)
Putting these two ranges for 6 together, we have
% < tanf < % (1.6)

REMARKS: For very small u, these bounds both approach 1, which means that 6
must be very close to 45°. This makes sense. If there is very little friction, then
the components along the plane of the horizontal and vertical Mg forces must nearly
cancel; hence, 0 ~ 45°. A special value for p is 1, because from eq. (1.6), we see that
u = 1 is the cutoff value that allows 6 to reach 0 and 7/2. If & > 1, then any tilt of
the plane is allowed. &

Let’s now do an example involving a rope in which the tension varies with posi-
tion. We’ll need to consider differential pieces of the rope to solve this problem.

Example (Rope wrapped around a pole): A rope wraps an angle § around a
pole. You grab one end and pull with a tension Ty. The other end is attached to a
large object, say, a boat. If the coefficient of static friction between the rope and the
pole is u, what is the largest force the rope can exert on the boat, if the rope is not
to slip around the pole?
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Solution: Consider a small piece of the rope that subtends an angle df. Let the
tension in this piece be T' (which will vary slightly over the small length). As shown in
Fig. 1.3, the pole exerts a small outward normal force, Ngg, on the piece. This normal
force exists to balance the inward components of the tensions at the ends. These
inward components have magnitude T sin(df/2). Therefore, Ngg = 2T sin(df/2).
The small-angle approximation, sinx = x, then allows us to write this as Ngg = T d#f.

The friction force on the little piece of rope satisfies Fgg < uNgg = pT'df. This
friction force is what gives rise to the difference in tension between the two ends of
the piece. In other words, the tension, as a function of @, satisfies

TO+do) < T(0)+ uTdo
== dr < uTdf
dr
— <
T = /ud@
o InT < pb+C
= T < Teet, (1.7)

where we have used the fact that T'= T when 8 = 0.

The exponential behavior here is quite strong (as exponential behaviors tend to be).
If we let = 1, then just a quarter turn around the pole produces a factor of e™/2 ~ 5.
One full revolution yields a factor of €2™ ~ 530, and two full revolutions yield a factor
of e*™ ~ 300,000. Needless to say, the limiting factor in such a case is not your
strength, but rather the structural integrity of the pole around which the rope winds.

1.2 Balancing torques

In addition to balancing forces in a statics problem, we must also balance torques.
We’ll have much more to say about torque in Chapters 7 and 8, but we’ll need one
important fact here.

Consider the situation in Fig. 1.4, where three forces are applied perpendicularly
to a stick, which is assumed to remain motionless. F} and Fy are the forces at the
ends, and Fj is the force in the interior. We have, of course, F3 = F; + F5, because
the stick is at rest.

Claim 1.1 If the system is motionless, then Fza = Fy(a + b). In other words, the
torques (force times distance) around the left end cancel. And you can show that
they cancel around any other point, too.

We’ll prove this claim in Chapter 7 by using angular momentum, but let’s give a
short proof here.

Proof: We’ll make one reasonable assumption, namely, that the correct relationship
between the forces and distances is of the form,

Fsf(a) = Faf(a+b), (1.8)

\]‘Vde

/f;sin do/2

Figure 1.3

Figure 1.4
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where f(z) is a function to be determined.! Applying this assumption with the roles
of “left” and “right” reversed in Fig. 1.4, we have

F3f(b) = Fif(a+b) (1.9)
Adding the two preceding equations, and using F3 = F] + F5, gives

fla)+ f(b) = f(a+0). (1.10)

This equation implies that f(nz) = nf(x) for any = and for any rational number
n, as you can show. Therefore, assuming f(z) is continuous, it must be the linear
function, f(z) = Ax, as we wanted to show. The constant A is irrelevant, because
it cancels in eq. (1.8).? m

Note that dividing eq. (1.8) by eq. (1.9) gives Fif(a) = F>f(b), and hence
Fia = Fyb, which says that the torques cancel around the point where Fj is applied.
You can show that the torques cancel around any arbitrary pivot point.

When adding up all the torques in a given physical setup, it is of course required
that you use the same pivot point when calculating each torque.

In the case where the forces aren’t perpendicular to the stick, the claim applies to
the components of the forces perpendicular to the stick. This makes sense, because
the components parallel to the stick have no effect on the rotation of the stick around
the pivot point. Therefore, referring to the figures shown below, the equality of the
torques can be written as

F,asinf, = Fybsin 6. (1.11)

This equation can be viewed in two ways:

o (Fysinf,)a = (Fpsinfy)b. In other words, we effectively have smaller forces
acting on the given “lever-arms” (see Fig. 1.5).

o Fy(asinf,) = Fyp(bsinby). In other words, we effectively have the given forces
acting on smaller “lever-arms” (see Fig. 1.6).

Claim 1.1 shows that even if you apply just a tiny force, you can balance the
torque due to a very large force, provided that you make your lever-arm sufficiently
long. This fact led a well-known mathematician of long ago to claim that he could
move the earth if given a long enough lever-arm.

One morning while eating my Wheaties,
I felt the earth move ‘neath my feeties.
The cause for alarm

Was a long lever-arm,

At the end of which grinned Archimedes!

"What we’re doing here is simply assuming linearity in F. That is, two forces of F' applied at a
point should be the same as a force of 2F applied at that point. You can’t really argue with that.
2 Another proof of this claim is given in Problem 12.
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One handy fact that comes up often is that the gravitational torque on a stick
of mass M is the same as the gravitational torque due to a point-mass M located at
the center of the stick. The truth of this statement relies on the fact that torque is
a linear function of the distance to the pivot point (see Exercise 7). More generally,
the gravitational torque on an object of mass M may be treated simply as the
gravitational torque due to a force Mg located at the center of mass.

We’ll have much more to say about torque in Chapters 7 and 8, but for now
we’ll simply use the fact that in a statics problem, the torques around any given
point must balance.

Example (Leaning ladder): A ladder leans against a frictionless wall. If the
coefficient of friction with the ground is p, what is the smallest angle the ladder can
make with the ground and not slip?

Solution: Let the ladder have mass m and length ¢. As shown in Fig. 1.7, we have
three unknown forces: the friction force, F', and the normal forces, N; and N»>. And
we fortunately have three equations that will allow us to solve for these three forces:
YFvert =0, XFhoriz = 0, and X7 = 0.

Looking at the vertical forces, we see that Ny = mg. And then looking at the
horizontal forces, we see that Ny = F. So we have quickly reduced the unknowns
from three to one.

We will now use 37 = 0 to find Ny (or F). But first we must pick the “pivot” point
around which we will calculate the torques. Any stationary point will work fine,
but certain choices make the calculations easier than others. The best choice for the
pivot is generally the point at which the most forces act, because then the X7 = 0
equation will have the smallest number of terms in it (because a force provides no
torque around the point where it acts, since the lever-arm is zero).

In this problem, there are two forces acting at the bottom end of the ladder, so this is
the best choice for the pivot.> Balancing the torques due to gravity and Ny, we have
__mg

© 2tanf’

Nylsin® = mg(¢/2) cos b = Ny (1.12)

This is also the value of the friction force F'. The condition F' < uN; = pumyg therefore
becomes

mg 1
< tanf > — . 1.13
2tanf — Hmg — anv = 20 ( )

REMARKS: The factor of 1/2 in this answer comes from the fact that the ladder behaves
like a point mass located halfway up. As an exercise, you can show that the answer for the
analogous problem, but now with a massless ladder and a person standing a fraction f of
the way up, is tan @ > f/u.

Note that the total force exerted on the ladder by the floor points up at an angle given by
tan 3 = N1 /F = (mg)/(mg/2tanf) = 2tanf. We see that this force does not point along
the ladder. There is simply no reason why it should. But there is a nice reason why it
should point upward with twice the slope of the ladder. This is the direction that causes the
lines of the three forces on the ladder to be concurrent, as shown in Fig. 1.8.

3But you should verify that other choices for the pivot, for example, the middle or top of the
ladder, give the same result.

Figure 1.7

Figure 1.8



I-8 CHAPTER 1. STATICS

This concurrency is a neat little theorem for statics problems involving three forces. The
proof is simple. If the three lines weren’t concurrent, then one force would produce a nonzero
torque around the intersection point of the other two lines of force.* &

Statics problems often involve a number of decisions. If there are various parts
to the system, then you must decide which subsystems you want to balance the
forces and torques on. And furthermore, you must decide which point to use as the
origin for calculating the torques. There are invariably many choices that will give
you the information you need, but some will make your calculations much cleaner
than others (Exercise 11 is a good example of this). The only way to know how to
choose wisely is to start solving problems, so you may as well tackle some. ..

4The one exception to this reasoning is where no two of the lines intersect; that is, where all
three lines are parallel. Equilibrium is certainly possible in such a scenario, as we saw in Claim 1.1.
Of course, you can hang onto the concurrency theorem in this case if you consider the parallel lines
to meet at infinity.
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1.3 Exercises

Section 1.1 Balancing forces

1.

Pulling a block =*

A person pulls on a block with a force F', at an angle 6 with respect to the
horizontal. The coefficient of friction between the block and the ground is pu.
For what 0 is the F required to make the block slip a minimum?

. Bridges *x

(a) Consider the first bridge in Fig. 1.9, made of three equilateral triangles
of beams. Assume that the seven beams are massless and that the con-
nection between any two of them is a hinge. If a car of mass m is located
at the middle of the bridge, find the forces (and specify tension or com-
pression) in the beams. Assume that the supports provide no horizontal
forces on the bridge.

(b) Same question, but now with the second bridge in Fig. 1.9, made of seven
equilateral triangles.

(c) Same question, but now with the general case of 4n — 1 equilateral trian-
gles.

. Keeping the book up *

The task of Problem 4 is to find the minimum force required to keep a book
up. What is the maximum allowable force? Is there a special angle that arises?
Given 1, make a rough plot of the allowed values of F for —7/2 < 6 < /2.

. Rope between inclines *x

A rope rests on two platforms that are both inclined at an angle 6 (which you
are free to pick), as shown in Fig. 1.10. The rope has uniform mass density,
and its coefficient of friction with the platforms is 1. The system has left-right
symmetry. What is the largest possible fraction of the rope that does not
touch the platforms? What angle 6 allows this maximum value?

. Hanging chain *x

A chain of mass M hangs between two walls, with its ends at the same height.
The chain makes an angle of # with each wall, as shown in Fig. 1.11. Find
the tension in the chain at the lowest point. Solve this by:

(a) Considering the forces on half of the chain. (This is the quick way.)

(b) Using the fact that the height of a hanging chain is given by y(z) =
(1/a) cosh(ax), and considering the vertical forces on an infinitesimal
piece at the bottom. (This is the long way.)

Py
oreN

Figure 1.9

Figure 1.10
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Figure 1.11
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Section 1.2: Balancing torques
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Figure 1.15

Direction of the force x*

A stick is connected to other parts of a system by hinges at its ends. Show
that if the stick is massless, then the forces it feels at the hinges are directed
along the stick; but if the stick has mass, then the forces need not point along
the stick.

Gravitational torque

A horizontal stick of mass M and length L is pivoted at one end. Integrate
the gravitational torque along the stick (relative to the pivot), and show that
the result is the same as the torque due to a mass M located at the center of
the stick.

. Tetherball x*

A ball is held up by a string, as shown in Fig. 1.12, with the string tangent
to the ball. If the angle between the string and the wall is 8, what is the
minimum coefficient of static friction between the ball and the wall, if the ball
is not to fall?

. Ladder on a corner x

A ladder of mass M and length L leans against a frictionless wall, with a
quarter of its length hanging over a corner, as shown in Fig. 1.13. Assuming
that there is sufficient friction at the corner to keep the ladder at rest, what
is the total force that the corner exerts on the ladder?

Stick on a corner x

You hold one end of a stick of mass M and length L. A quarter of the way
up the stick, it rests on a frictionless corner of a table, as shown in Fig. 1.14.
The stick makes an angle § with the horizontal. What is the magnitude of the
force your hand must apply, to keep the stick in this position? For what angle
is the vertical component of your force equal to zero?

Two sticks

Two sticks, each of mass m and length ¢, are connected by a hinge at their
top ends. They each make an angle  with the vertical. A massless string
connects the bottom of the left stick to the right stick, perpendicularly, as
shown in Fig. 1.15. The whole setup stands on a frictionless table.

(a) What is the tension in the string?

(b) What force does the left stick exert on the right stick at the hinge? Hint:
No messy calculations required!
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12. Two sticks and a wall *x

Two sticks are connected, with hinges, to each other and to a wall. The bottom
stick is horizontal and has length L, and the sticks make an angle of 8 with
each other, as shown in Fig. 1.16. If both sticks have the same mass per unit
length, p, find the horizontal and vertical components of the force that the

wall exerts on the top hinge, and show that the magnitude goes to infinity for 0
both § — 0 and 6 — /2.5 L
13. Stick on a circle #x Figure 1.16

Using the result from Problem 16 for the setup shown in Fig. 1.17, show that
if the system is to remain at rest, then the coefficient of friction:

(a) between the stick and the circle must satisfy

sin 6
> 1.14
o= (1+ cos®) (1.14)
etween the stick and the ground must satisty Figure 1.17
b) b h ick and th d isfy® g
sin 6 cos 0
> . 1.15
f= (1 4+ cosf)(2 — cos@) (1.15)

5The force must therefore achieve a minimum at some intermediate angle. If you want to go
through the algebra, you can show that this minimum occurs when cos® = v/3 — 1, which gives
0 ~ 43°.

5Tf you want to go through the algebra, you can show that the maximum of the right-hand side
occurs when cos® = /3 — 1, which gives 6 ~ 43°. (Yes, I did just cut and paste this from the
previous footnote. But it’s still correct!) This is the angle for which the stick is most likely to slip
on the ground.
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1.4 Problems

Section 1.1: Balancing forces

1.

Hanging mass

A mass m, held up by two strings, hangs from a ceiling, as shown in Fig. 1.18.
The strings form a right angle. In terms of the angle # shown, what is the
tension in each string?

. Block on a plane

A Dblock sits on a plane that is inclined at an angle . Assume that the friction
force is large enough to keep the block at rest. What are the horizontal
components of the friction and normal forces acting on the block? For what
are these horizontal components maximum?

. Motionless chain *

A frictionless planar curve is in the shape of a function which has its endpoints
at the same height but is otherwise arbitrary. A chain of uniform mass per
unit length rests on the curve from end to end, as shown in Fig. 1.19. Show,
by considering the net force of gravity along the curve, that the chain will not
move.

. Keeping the book up *

A book of mass M is positioned against a vertical wall. The coefficient of
friction between the book and the wall is y. You wish to keep the book from
falling by pushing on it with a force F' applied at an angle 6 with respect to
the horizontal (—7/2 < 6 < 7/2), as shown in Fig. 1.20. For a given 6, what
is the minimum F' required? What is the limiting value of 8, below which
there does not exist an F' that will keep the book up?

. Objects between circles x*x

Each of the following planar objects is placed, as shown in Fig. 1.21, between
two frictionless circles of radius R. The mass density of each object is o, and
the radii to the points of contact make an angle # with the horizontal. For
each case, find the horizontal force that must be applied to the circles to keep
them together. For what 0 is this force maximum or minimum?

(a) An isosceles triangle with common side length L.
(b) A rectangle with height L.
(c¢) A circle.



1.4. PROBLEMS I-13

9.

10.

11.

. Hanging rope

A rope with length L and mass density p per unit length is suspended vertically
from one end. Find the tension as a function of height along the rope.

Rope on a plane

A rope with length L and mass density p per unit length lies on a plane
inclined at angle 6 (see Fig. 1.22). The top end is nailed to the plane, and the
coefficient of friction between the rope and plane is u. What are the possible
values for the tension at the top of the rope?

. Supporting a disk *x

(a) A disk of mass M and radius R is held up by a massless string, as shown
in Fig. 1.23. The surface of the disk is frictionless. What is the tension
in the string? What is the normal force per unit length the string applies
to the disk?

(b) Let there now be friction between the disk and the string, with coefficient
1. What is the smallest possible tension in the string at its lowest point?

Hanging chain #xxx

(a) A chain with uniform mass density per unit length hangs between two
given points on two walls. Find the shape of the chain. Aside from
an arbitrary additive constant, the function describing the shape should
contain one unknown constant.

(b) The unknown constant in your answer depends on the horizontal distance
d between the walls, the vertical distance A\ between the support points,
and the length ¢ of the chain (see Fig. 1.24). Find an equation involving
these given quantities that determines the unknown constant.

Hanging gently *x

A chain with uniform mass density per unit length hangs between two supports
located at the same height, a distance 2d apart (see Fig. 1.25). What should
the length of the chain be so that the magnitude of the force at the supports is
minimized? You may use the fact that a hanging chain takes the form, y(x) =
(1/a) cosh(ax). You will eventually need to solve an equation numerically.

Mountain Climber sxxx

A mountain climber wishes to climb up a frictionless conical mountain. He
wants to do this by throwing a lasso (a rope with a loop) over the top and
climbing up along the rope. Assume that the climber is of negligible height,
so that the rope lies along the mountain, as shown in Fig. 1.26.

At the bottom of the mountain are two stores. One sells “cheap” lassos (made
of a segment of rope tied to a loop of fized length). The other sells “deluxe”
lassos (made of one piece of rope with a loop of variable length; the loop’s

L
n
0

Figure 1.22

o

Figure 1.23

_/

Figure 1.24

2d

Figure 1.25

Figure 1.26

<> —



cheap

/Q deluxe

Figure 1.27

e i)

)

12F

TZF
| o

Figure 1.28

VF
12F

Figure 1.29

M
Aa A b A
Figure 1.30

I-14

CHAPTER 1. STATICS

length may change without any friction of the rope with itself). See Fig. 1.27.

When viewed from the side, the conical mountain has an angle « at its peak.

For what angles « can the climber climb up along the mountain if he uses:
(a) a “cheap” lasso?

(b) a “deluxe” lasso?

Section 1.2: Balancing torques

12.

13.

Equality of torques x

This problem gives another way of demonstrating Claim 1.1, using an inductive
argument. We’ll get you started, and then you can do the general case.

Consider the situation where forces F' are applied upward at the ends of a
stick of length ¢, and a force 2F is applied downward at the midpoint (see
Fig. 1.28). The stick will not rotate (by symmetry), and it will not translate
(because the net force is zero). If we wish, we may consider the stick to have
a pivot at the left end. If we then erase the force F' on the right end and
replace it with a force 2F at the middle, then the two 2F forces in the middle
will cancel, so the stick will remain at rest.” Therefore, we see that a force F
applied at a distance ¢ from a pivot is equivalent to a force 2F applied at a
distance £/2 from the pivot, in the sense that they both have the same effect
in cancelling out the rotational effect of the downwards 2F force.

Now consider the situation where forces F' are applied upward at the ends,
and forces F' are applied downward at the ¢/3 and 2¢/3 marks (see Fig. 1.29).
The stick will not rotate (by symmetry), and it will not translate (because the
net force is zero). Consider the stick to have a pivot at the left end. From
the above paragraph, the force F' at 2¢/3 is equivalent to a force 2F at ¢/3.
Making this replacement, we now have a total force of 3F at the ¢/3 mark.
Therefore, we see that a force F' applied at a distance / is equivalent to a force
3F applied at a distance £/3.

Your task is to now use induction to show that a force F' applied at a distance
¢ is equivalent to a force nF' applied at a distance £/n, and to then argue why
this demonstrates Claim 1.1.

Find the force =

A stick of mass M is held up by supports at each end, with each support
providing a force of M g/2. Now put another support somewhere in the middle,
say, at a distance a from one support and b from the other; see Fig. 1.30.
What forces do the three supports now provide? Can you solve this?

"There will now be a different force applied at the pivot, namely zero, but the purpose of the
pivot is to simply apply whatever force is necessary to keep the left end motionless.
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14.

15.

16.

17.

18.

19.

Leaning sticks

One stick leans on another as shown in Fig. 1.31. A right angle is formed
where they meet, and the right stick makes an angle 6 with the horizontal.
The left stick extends infinitesimally beyond the end of the right stick. The
coefficient of friction between the two sticks is . The sticks have the same
mass density per unit length and are both hinged at the ground. What is the
minimum angle 6 for which the sticks do not fall?

Supporting a ladder

A ladder of length L and mass M has its bottom end attached to the ground
by a pivot. It makes an angle # with the horizontal, and is held up by a
massless stick of length ¢ which is also attached to the ground by a pivot (see
Fig. 1.32). The ladder and the stick are perpendicular to each other. Find the
force that the stick exerts on the ladder.

Stick on a circle xx

A stick of mass density p per unit length rests on a circle of radius R (see
Fig. 1.33). The stick makes an angle § with the horizontal and is tangent
to the circle at its upper end. Friction exists at all points of contact, and
assume that it is large enough to keep the system at rest. Find the friction
force between the ground and the circle.

Leaning sticks and circles sxx

A large number of sticks (with mass density p per unit length) and circles
(with radius R) lean on each other, as shown in Fig. 1.34. Each stick makes
an angle 6 with the horizontal and is tangent to a circle at its upper end. The
sticks are hinged to the ground, and every other surface is frictionless (unlike
in the previous problem). In the limit of a very large number of sticks and
circles, what is the normal force between a stick and the circle it rests on, very
far to the right? (Assume that the last circle leans against a wall, to keep it
from moving.)

Balancing the stick *x

Given a semi-infinite stick (that is, one that goes off to infinity in one direc-
tion), determine how its density should depend on position so that it has the
following property: If the stick is cut at an arbitrary location, the remaining
semi-infinite piece will balance on a support that is located a distance ¢ from
the end (see Fig. 1.35).

The spool xx

A spool consists of an axle of radius r» and an outside circle of radius R which
rolls on the ground. A thread is wrapped around the axle and is pulled with
tension T, at an angle 6 with the horizontal (see Fig. 1.36).
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Given R and r, what should 6 be so that the spool does not move?
Assume that the friction between the spool and the ground is large enough
so that the spool doesn’t slip.

Given R, r, and the coefficient of friction p between the spool and the
ground, what is the largest value of T for which the spool remains at
rest?

Given R and p, what should r be so that you can make the spool slip
with as small a T as possible? That is, what should r be so that the
upper bound on T' from part (b) is as small as possible? What is the
resulting value of 17
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1.5 Solutions

1. Hanging mass

Balancing the horizontal and vertical force components on the mass gives, respectively
(see Fig. 1.37),

Tyisinf = Tycosb, Figure 1.37

Tycosf +Tysinf = mg. (1.16)
Solving for T3 in the first equation, and substituting into the second equation, gives
Ty = mgcos@, and T5 = mgsin 6. (1.17)

As a double-check, these have the correct limits when § — 0 or 6 — 7/2.

2. Block on a plane

Balancing the forces shown in Fig. 1.38, wee see that F' = mgsinf and N = mgcos#.
The horizontal components of these are F'cosf = mgsinfcosf (to the right), and
Nsinf = mgcosfsin@ (to the left). These are equal, as they must be, because the
net horizontal force on the block is zero. To maximize the value of mgsin 8 cos 6, we Figure 1.38
can either take the derivative, or we can write it as (mg/2)sin 26, from which it is

clear that the maximum occurs at § = /4. The maximum value is mg/2.

3. Motionless chain
Let the curve be described by the function f(x), and let it run from x = a to = b.
Consider a little piece of the chain between = and = + dx (see Fig. 1.39). The length

of this piece is mdm, and so its mass is p\/1 + f2dx, where p is the mass
per unit length. The component of the gravitational acceleration along the curve is

—gsinf = —gf'/+/1+ f'2, with positive corresponding to moving along the curve

from a to b. The total force along the curve is therefore ! 1
X x+dx

b
/ (—gsin@) dm Figure 1.39

_ /ab <_gfl> (pv/1+ 2 a2)

F

Vit e

b
—pg/ fdx

—gp(f(a) — (b))
0. (1.18)

4. Keeping the book up

The normal force from the wall is F cos@, so the friction force holding the book up
is at most pF cos@. The other vertical forces on the book are the gravitational force,
which is —Mg, and the vertical component of F', which is F'sinf. If the book is to
stay up, we must have

puF cosf + Fsing — Mg > 0. (1.19)

Therefore, F must satisfy
Mg

Fr>——. 1.20
~ pcosf +sinf ( )



e~

Y

Figure 1.40

Figure 1.41

Figure 1.42

I-18

CHAPTER 1. STATICS

There is no possible F' that satisfies this condition if the right-hand side is infinite.
This occurs when

tanf = —p. (1.21)

If 6 is more negative than this, then it is impossible to keep the book up, no matter
how hard you push.

(a)

. Objects between circles

Let N be the normal force between the circles and the triangle. The goal in this
problem is to find the horizontal component of N, that is, N cos 6.

From Fig. 1.40, we see that the upward force on the triangle from the normal
forces is 2N sin . This must equal the weight of the triangle, which is go times
the area. Since the bottom angle of the isosceles triangle is 26, the top side has
length 2L sin 6, and the altitude to this side is L cos . So the area of the triangle
is L2 sinf cosf. The mass is therefore o L2 sin § cos §. Equating the weight with
the upward component of the normal forces gives N = (goL?/2)cosf. The
horizontal component of N is therefore

goL? cos? 6
—

N cosf = (1.22)
This equals zero when 6 = 7/2, and it increases as 6 decreases, even though the
triangle is getting smaller. It has the interesting property of approaching the
finite number goL?/2, as 6 — 0.

In Fig. 1.41, the base of the rectangle has length 2R(1 — cos ). Its mass is
therefore 02RL(1 — cos#). Equating the weight with the upward component of
the normal forces, 2N sinf, gives N = goRL(1 — cosf)/sinf. The horizontal
component of N is therefore

goRL(1 — cosf) cosf

N 0=
o8 sin 6

(1.23)

This equals zero for both § = 7/2 and § = 0 (because 1 — cos @ ~ 62/2 goes to
zero faster than sinf =~ 6, for small 9). Taking the derivative to find where it
reaches a maximum, we obtain (using sin®# = 1 — cos? ),

cos®f —2cosf +1=0. (1.24)

Fortunately, there is an easy root of this cubic equation, namely cos 6 = 1, which
we know is not the maximum. Dividing through by the factor (cosf — 1) gives

cos?0 +cosf — 1 = 0. (1.25)

The roots of this quadratic equation are

(1.26)

We must choose the plus sign, because we need |cosf| < 1. So our answer is
cos @ = 0.618, which interestingly is the golden ratio. The angle 6 is ~ 51.8°.

In Fig. 1.42, the length of the hypotenuse shown is Rsecf, so the radius of
the top circle is R(secf — 1). Its mass is therefore omR%(sec — 1)2. Equating
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the weight with the upward component of the normal forces, 2N sinf, gives
N = gonR%(sec — 1)?/(2sinf). The horizontal component of N is therefore

gomR2 cos ( 1 1) 2

Ncost = 2sinf cosf

(1.27)

This equals zero when § = 0 (using cosf ~ 1 — 62/2 and sinf ~ 6, for small
#). For § — /2, it behaves like 1/ cosf, which goes to infinity. In this limit,
N points almost vertically, but its magnitude is so large that the horizontal
component still approaches infinity.

6. Hanging rope

Let T'(y) be the tension as a function of height. Consider a small piece of the rope
between y and y + dy (0 < y < L). The forces on this piece are T(y + dy) upward,
T(y) downward, and the weight pgdy downward. Since the rope is at rest, we have
T(y+dy) = T(y) + pg dy. Expanding this to first order in dy gives T"(y) = pg. The
tension in the bottom of the rope is zero, so integrating from y = 0 up to a position
Yy gives

T(y) = pgy. (1.28)

As a double-check, at the top end we have T'(L) = pgL, which is the weight of the
entire rope, as it should be.

Alternatively, you can simply write down the answer, T'(y) = pgy, by noting that the
tension at a given point in the rope is what supports the weight of all the rope below
it.

7. Rope on a plane

The component of the gravitational force along the plane is (pL)gsin 6, and the max-
imum value of the friction force is uN = p(pL)gcosf. Therefore, you might think
that the tension at the top of the rope is pLgsinf — upLg cos 6. However, this is not
necessarily the value. The tension at the top depends on how the rope is placed on
the plane.

If, for example, the rope is placed on the plane without being stretched, the friction
force will point upwards, and the tension at the top will indeed equal pLgsinf —
upLgcos@. Or it will equal zero if ppLgcosf > pLgsinf, in which case the friction
force need not achieve its maximum value.

If, on the other hand, the rope is placed on the plane after being stretched (or equiva-
lently, it is dragged up along the plane and then nailed down), then the friction force
will point downwards, and the tension at the top will equal pLgsin 6 + pupLg cos .

Another special case occurs when the rope is placed on a frictionless plane, and then
the coefficient of friction is “turned on” to p. The friction force will still be zero.
Changing the plane from ice to sandpaper (somehow without moving the rope) won’t
suddenly cause there to be a friction force. Therefore, the tension at the top will
equal pLgsin6.

In general, depending on how the rope is placed on the plane, the tension at the top
can take any value from a maximum of pLgsinf 4 pupLgcosf, down to a minimum
of pLgsin® — upLgcos (or zero, whichever is larger). If the rope were replaced by
a stick (which could support a compressive force), then the tension could achieve
negative values down to pLgsin @ — upLgcos 6, if this happens to be negative.



~

A/(;sin do/2

Figure 1.43

1-20

CHAPTER 1. STATICS

8. Supporting a disk

(a)

The gravitational force downward on the disk is Mg, and the force upward is
2T. These forces must balance, so
Mg

T=. (1.29)

We can find the normal force per unit length that the string applies to the disk
in two ways.

First method: Let N df be the normal force on an arc of the disk that subtends
an angle df. Such an arc has length Rdf, so N/R is the desired normal force
per unit arclength. The tension in the string is constant because the string
is massless, so N is constant, independent of . The upward component of
the normal force is N df cosf, where 0 is measured from the vertical (that is,
—m/2 < 6 < 7/2 here). Since the total upward force is Mg, we must have

w/2
Ncosfdf = Mg. (1.30)
—m/2

The integral equals 2N, so we find N = Mg/2. The normal force per unit
length, N/R, is then Mg/2R.

Second method: Consider the normal force, N df, on a small arc of the disk
that subtends and angle df. The tension forces on each end of the corresponding
small piece of string almost cancel, but they don’t exactly, because they point
in slightly different directions. Their non-zero sum is what produces the normal
force on the disk. From Fig. 1.43, we see that the two forces have a sum
of 2T sin(df/2), directed inward. Since df is small, we can use sinxz =~ x to
approximate this as T'df. Therefore, N df = T df, and so N = T. The normal
force per unit arclength, N/R, then equals T/R. Using T = Mg/2 from eq.
(1.29), we arrive at N/R = Mg/2R.

Let T'(6) be the tension, as a function of 4, for —7/2 < 6 < x/2. T will depend
on # now, because there is a tangential friction force. Most of the work for this
problem was already done in the example at the end of Section 1.1. We will
simply invoke the second line of eq. (1.7), which says that®

dT < uT db. (1.31)

Separating variables and integrating from the bottom of the rope up to an angle
9 gives In ((T'(9)/T(0)) < pf. Exponentiating this gives

T(0) < T(0)eH?. (1.32)

Letting § = 7/2, and using T(7/2) = Mg/2, we have Mg/2 < T(0)e"™/2. We
therefore see that the tension at the bottom point must satisfy

7(0) > @eﬂ”/? (1.33)

8This holds for # > 0. There would be a minus sign on the right-hand side if # < 0. But since
the tension is symmetric around 6§ = 0 in the case we’re concerned with, we’ll just deal with 8 > 0.
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This minimum value of T(0) goes to Mg/2 as p — 0, as it should. And it goes
to zero as p — 00, as it should (imagine a very sticky surface, so that the friction
force from the rope near § = 7/2 accounts for essentially all the weight). But
interestingly, it doesn’t exactly equal zero, no matter now large y is.

T(x+dx)
9. Hanging chain A
(a) Let the chain be described by the function y(x), and let the tension be described
by the function T'(x). Consider a small piece of the chain, with endpoints at 0,
x and x + dx, as shown in Fig. 1.44. Let the tension at x pull downward at I
an angle #; with respect to the horizontal, and let the tension at z + dz pull P .
upward at an angle 65 with respect to the horizontal. Balancing the horizontal T(x) X X+dx

and vertical forces on the small piece of chain gives
Figure 1.44

T(z+dx)cosly = T(x)cosb,

gpdx
cosfy’

T(x+dx)sinfy = T(x)sinb + (1.34)

where p is the mass per unit length. The second term on the right-hand side is
the weight of the small piece, because dx/ cosf; (or dx/ cos by, which is essen-
tially the same) is its length. We must now somehow solve these two differential
equations for the two unknown functions, y(z) and T'(x). There are various
ways to do this. Here is one method, broken down into three steps.

FIRST STEP: Squaring and adding eqs. (1.34) gives
(T(z+ da:))2 = (T(x))2 + 2T (z)gptan 0 dz + O(dz?). (1.35)

Writing T'(z + dx) = T'(z) + T'(z) dz, and using tan6; = dy/dx = y', we can
simplify eq. (1.35) to (neglecting second-order terms in dx)

T = gpy'. (1.36)

Therefore,
T = gpy + c1, (1.37)

where c; is a constant of integration.

SECOND STEP: Let’s see what we can extract from the first equation in egs.
(1.34). Using

1 1
cost) = ——, and cosfy = ,  (1.38)

1+ (v (z))? V14 (Y (@ + de))?

and expanding things to first order in dx, the first of eqs. (1.34) becomes

T+Tde T
\/1+(y’+y”dx)2 \/1+y/2'

All of the functions here are evaluated at x, which we won’t bother writing.
Expanding the first square root gives (to first order in dx)

(1.39)

T+ T'dx < y’y”dx) B T (1.40)
V1+y? T+y? ) J1+y? '
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To first order in dx this yields

T/ /01

=YY (1.41)

T 14972
Integrating both sides gives

1
InT 4 ¢y = 51n(1+y’2), (1.42)

where ¢s is a constant of integration. Exponentiating then gives

AT? =1+y2, (1.43)

where c3 = e“2.

THIRD STEP: We will now combine eq. (1.43) with eq. (1.37) to solve for y(x).
Eliminating T' gives c¢Z(gpy+c1)? = 1442, We can rewrite this is the somewhat
nicer form,

L+y? =a*(y + h)?, (1.44)

where a = ¢3gp, and h = ¢1/gp. At this point we can cleverly guess (motivated
by the fact that 1 + sinh? z = cosh? z) that the solution for y is given by

1
y(x) + h = — cosha(z + a). (1.45)
@
Or, we can separate variables to obtain
d
do = Y : (1.46)
a?(y+h)2-1

and then use the fact that the integral of 1/v/2%2 — 1 is cosh™ z, to obtain the
same result.

The shape of the chain is therefore a hyperbolic cosine function. The constant
h isn’t too important, because it simply depends on where we pick the y = 0
height. Furthermore, we can eliminate the need for the constant a if we pick
x = 0 to be where the lowest point of the chain is (or where it would be, in the
case where the slope is always nonzero). In this case, using eq. (1.45), we see
that ¢'(0) = 0 implies a = 0, as desired. We then have (ignoring the constant
h) the nice simple result,

y(x) = écosh(ax). (1.47)

The constant o can be determined from the locations of the endpoints and the
length of the chain. As stated in the problem, the position of the chain may be
described by giving (1) the horizontal distance d between the two endpoints, (2)
the vertical distance A between the two endpoints, and (3) the length ¢ of the
chain, as shown in Fig. 1.45. Note that it is not obvious what the horizontal
distances between the ends and the minimum point (which we have chosen as the
x = 0 point) are. If A = 0, then these distances are simply d/2. But otherwise,
they are not so clear.

If we let the left endpoint be located at x = —xg, then the right endpoint is
located at x = d—xg. We now have two unknowns, zg and . Our two conditions
are?

y(d —xo) — y(—z0) = A, (1.48)

9We will take the right end to be higher than the left end, without loss of generality.
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along with the condition that the length equals ¢, which takes the form (using
eq. (1.47))

d*ZL’()
{ = Wdz
—z0
d*CEo

1
o sinh(am)‘ , (1.49)

—x0

where we have used (d/dz)cosh z = sinh z, and 1 + sinh? z = cosh? z. Writing
out eqgs. (1.48) and (1.49) explicitly, we have

cosh (a(d — xg)) — cosh(—azg) = a),
sinh (a(d — x9)) — sinh(—azg) = ol (1.50)

If we take the difference of the squares of these two equations, and use the
hyperbolic identities cosh? z — sinh?2 = 1 and coshz coshy — sinhzsinhy =
cosh(z — ), we obtain

2 — 2cosh(ad) = a?(\? — £?). (1.51)

This is the desired equation that determines a. Given d, A, and ¢, we can
numerically solve for a. Using a “half-angle” formula, you can show that eq.
(1.51) may also be written as

2sinh(ad/2) = ay/ €2 — A2 (1.52)

REMARK: Let’s check a couple limits. If A = 0 and ¢ = d (that is, the chain forms
a horizontal straight line), then eq. (1.52) becomes 2sinh(ad/2) = ad. The solution
to this is a = 0, which does indeed correspond to a horizontal straight line, because
for small o, eq. (1.47) behaves like az®/2 (up to an additive constant), which varies
slowly with z for small a. Another limit is where £ is much larger than both d and A.
In this case, eq. (1.52) becomes 2 sinh(ad/2) =~ af. The solution to this is a very large
a, which corresponds to a “droopy” chain, because eq. (1.47) varies rapidly with z for
large a. o

10. Hanging gently
We must first find the mass of the chain by calculating its length. Then we must
determine the slope of the chain at the supports, so we can find the components of
the force there.

Using the given information, y(z) = (1/a)cosh(ax), the slope of the chain as a
function of z is 41
y = o <a cosh(aa:)) = sinh(ax). (1.53)

The total length is therefore (using 1 + sinh? z = cosh? 2)

d

{ = / V14 y?2dx
—d
d

= [d cosh(ax)

= % sinh(ad). (1.54)
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The weight of the rope is W = plg, where p is the mass per unit length. Each
support applies a vertical force of W/2. This must equal F'sin6, where F is the
total force at each support, and 6 is the angle it makes with the horizontal. Since
tan @ = ¢/ (d) = sinh(ad), we see from Fig. 1.46 that sin § = tanh(ad). Therefore,

1 (W
Fo= sin9<2>

iy ()

S cosh(ad).
o

(1.55)

Taking the derivative of this (as a function of ), and setting the result equal to zero
to find the minimum, gives

1
tanh(ad) = —. 1.56
anhad) = — (1.56)
This must be solved numerically. The result is
ad &~ 1.1997 = 1. (1.57)

We therefore have o = 1/d, and so the shape of the chain that requires the minimum
Fis

d nx
y(z) =~ ;cosh (7) . (1.58)
From eqgs. (1.54) and (1.57), the length of the chain is
2d
(1.59)

¢ = —sinh(n) ~ (2.52)d.
n

To get an idea of what the chain looks like, we can calculate the ratio of the height,
h, to the width, 2d.

b y(d) —y(0)
2d 2d
~ cosh(n) —1
=
~ 0.338. (1.60)

We can also calculate the angle of the rope at the supports, using tan 6 = sinh(ad).
This gives tan # = sinh 7, and so 6 ~ 56.5°.

REMARK: We can also ask what shape the chain should take in order to minimize the
horizontal or vertical component of F.

The vertical component, Fy, is simply half the weight, so we want the shortest possible chain,
namely a horizontal one (which requires an infinite F'.) This corresponds to o = 0.

The horizontal component, Fy, equals F cos §. From Fig. 1.46, we see that cos @ = 1/ cosh(ad).
Therefore, eq. (1.55) gives F, = pg/a. This goes to zero as o — 0o, which corresponds to a
chain of infinite length, that is, a very “droopy” chain. &



1.5. SOLUTIONS I-25

11. Mountain Climber

(a)

We will take advantage of the fact that a cone is “flat”, in the sense that we can
make one out of a piece of paper, without crumpling the paper.
Cut the cone along a straight line emanating from the peak and passing through
the knot of the lasso, and roll the cone flat onto a plane. Call the resulting figure,
which is a sector of a circle, S (see Fig. 1.47). If the cone is very sharp, then S
will look like a thin “pie piece”. If the cone is very wide, with a shallow slope,
then S will look like a pie with a piece taken out of it.
Points on the straight-line boundaries of the sector S are identified with each
other. Let P be the location of the lasso’s knot. Then P appears on each
straight-line boundary, at equal distances from the tip of S. Let 8 be the angle
of the sector S.
The key to this problem is to realize that the path of the lasso’s loop must be
a straight line on S, as shown by the dotted line in Fig. 1.47. (The rope will
take the shortest distance between two points because there is no friction. And
rolling the cone onto a plane does not change distances.) A straight line between
the two identified points P is possible if and only if the sector S is smaller than
a semicircle. The condition for a climbable mountain is therefore 5 < 180°.
What is this condition, in terms of the angle of the peak, a? Let C' denote a
cross-sectional circle of the mountain, a distance d (measured along the cone)
from the top.'® A semicircular S implies that the circumference of C equals 7d.
This then implies that the radius of C equals d/2. Therefore,

sin(a/2) < %2 = % = a < 60°. (1.61)
This is the condition under which the mountain is climbable. In short, having
a < 60° guarantees that there is a loop around the cone with shorter length
than the distance straight to the peak and back.

REMARK: When viewed from the side, the rope will appear perpendicular to the side
of the mountain at the point opposite the lasso’s knot. A common mistake is to assume
that this implies that the climbable condition is o < 90°. This is not the case, because
the loop does not lie in a plane. Lying in a plane, after all, would imply an elliptical
loop. But the loop must certainly have a kink in it where the knot is, because there
must exist a vertical component to the tension there, to hold the climber up. If we
had posed the problem with a planar, triangular mountain, then the condition would
have been a < 90°.

Use the same strategy as in part (a). Roll the cone onto a plane. If the mountain
is very steep, then the climber’s position can fall by means of the loop growing
larger. If the mountain has a shallow slope, the climber’s position can fall by
means of the loop growing smaller. The only situation in which the climber will
not fall is the one where the change in position of the knot along the mountain
is exactly compensated by the change in length of the loop.

In terms of the sector S in a plane, this condition requires that if we move P a
distance £ up (or down) along the mountain, the distance between the identified
points P must decrease (or increase) by £. In Fig. 1.47, we must therefore have
an equilateral triangle, so § = 60°.

10WWe are considering such a circle for geometrical convenience. It is not the path of the lasso; see
the remark below.

~

Figure 1.47
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What peak-angle « does this correspond to? As in part (a), let C' be a cross-
sectional circle of the mountain, a distance d (measured along the cone) from
the top. Then 8 = 60° implies that the circumference of C' equals (7/3)d. This
then implies that the radius of C equals d/6. Therefore,

sin(a/2) = dT/ZG = é = a = 19°. (1.62)
This is the condition under which the mountain is climbable. We see that there
is exactly one angle for which the climber can climb up along the mountain. The
cheap lasso is therefore much more useful than the fancy deluxe lasso (assuming,
of course, that you want to use it for climbing mountains, and not, say, for
rounding up cattle).

REMARK: Another way to see the 8 = 60° result is to note that the three directions
of rope emanating from the knot must all have the same tension, because the deluxe
lasso is one continuous piece of rope. They must therefore have 120° angles between
themselves (to provide zero net force on the massless knot). This implies that 8 = 60°
in Fig. 1.47.

FURTHER REMARKS: For each type of lasso, we can also ask the question: For what
angles can the mountain be climbed if the lasso is looped N times around the top of
the mountain? The solution here is similar to that above.

For the “cheap” lasso of part (a), roll the cone N times onto a plane, as shown in
Fig. 1.48 for N = 4. The resulting figure, Sn, is a sector of a circle divided into N
equal sectors, each representing a copy of the cone. As above, Sy must be smaller
than a semicircle. The circumference of the circle C' (defined above) must therefore be
less than wd/N. Hence, the radius of C must be less than d/2N. Thus,

d/2N 1

SIH(OC/Q) < d = ﬁ

1
— 2"%—&. 1.63
a<2sin” (5o (1.63)
For the “deluxe” lasso of part (b), again roll the cone N times onto a plane. From the
reasoning in part (b), we must have N3 = 60°. The circumference of C' must therefore
be 7wd/3N, and so its radius must be d/6N. Therefore,
d/6N 1

sin(a/2) = 7 N = a=2sin"" (6%7\7) (1.64)

12. Equality of torques

The proof by induction is as follows. Assume that we have shown that a force F
applied at a distance d is equivalent to a force kF applied at a distance d/k, for all
integers k£ up to n — 1. We now want to show that the statement holds for k = n.

Consider the situation in Fig. 1.49. Forces F' are applied at the ends of a stick, and
forces 2F/(n — 1) are applied at the j¢/n marks (for 1 < j < n —1). The stick will
not rotate (by symmetry), and it will not translate (because the net force is zero).
Consider the stick to have a pivot at the left end. Replacing the interior forces by
their equivalent ones at the £/n mark (see Fig. 1.49) gives a total force there equal to

iﬁ;0+2+3+”4%n_n>:;”;(Mi;U>:nF (1.65)

We therefore see that a force F' applied at a distance £ is equivalent to a force nF
applied at a distance ¢/n, as was to be shown.

We can now show that Claim 1.1 holds, for arbitrary distances a and b (see Fig. 1.50).
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Consider the stick to be pivoted at its left end, and let € be a tiny distance (small
compared to a). Then a force F3 at a distance a is equivalent to a force F3(a/e) at a
distance e.!! But a force F(a/e) at a distance € is equivalent to a force F3(a/¢)(e/(a+
b)) = Fsa/(a + b) at a distance (a + b). This equivalent force at the distance (a + b)

K F F
must cancel the force F5 there, because the stick is motionless. Therefore, we have T 1a T b 2T
Fsa/(a+b) = Fo, which proves the claim. )

13. Find the force lMg
In Fig. 1.51, let the supports at the ends exert forces Fy and Fb, and let the support Figure 1.51

in the interior exert a force F. Then

Balancing torques around the left and right ends gives, respectively,

b
Fa+ F(a+b) = Mga; ;

b
Fo+ Fi(a+b) = Mga; : (1.67)

where we have used the fact that the stick can be treated as a point mass at its
center. Note that the equation for balancing the torques around the center of mass is
redundant; it is obtained by taking the difference of the two previous equations and
then dividing by 2. And balancing torques around the middle pivot also takes the
form of a linear combination of these equations, as you can show.

It appears as though we have three equations and three unknowns, but we really have
only two equations, because the sum of egs. (1.67) gives eq. (1.66). Therefore, since
we have two equations and three unknowns, the system is underdetermined. Solving
egs. (1.67) for Fy and Fy in terms of F, we see that any forces of the form

(1.68)

M Fb M Fa
(FlaFaFZ)(g 9 >

2 a4+b’ " 2  a+b

are possible. In retrospect, it makes sense that the forces are not determined. By
changing the height of the new support an infinitesimal distance, we can make F' be
anything from 0 up to Mg(a+0b)/2b, which is when the stick comes off the left support N A4FE
(assuming b > a). A /

14. Leaning sticks /O\
Let M; be the mass of the left stick, and let M, be the mass of the right stick. Then 0

M;/M, = tan@ (see Fig. 1.52). Let N and F; be the normal and friction forces
between the sticks. Fy has a maximum value of ;/N. Balancing the torques on the Figure 1.52
left stick (around the contact point with the ground) gives

Mg

N = 5 sin 6. (1.69)
Balancing the torques on the right stick (around the contact point with the ground)
gives
M,
Fr = 290089. (1.70)

" Technically, we can use the reasoning in the previous paragraph to say this only if a/e is an
integer, but since a/e is very large, we can simply pick the closest integer to it, and there will be
negligible error.
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The condition Fy < uN becomes
M, cos < puM;sin 6. (1.71)
Using M; /M, = tan 6, this becomes

1
tan?0 > — . (1.72)
7

This is the condition for the sticks not to fall. This answer checks in the two extremes:
In the limit g — 0, we see that § must be very close to 7/2, which makes sense. And
in the limit g — oo (that is, very sticky sticks), we see that 6 can be very small, which
also makes sense.

Supporting a ladder

Let F be the desired force. Note that F' must be directed along the stick, because
otherwise there would be a net torque on the (massless) stick relative to the pivot at
its right end. This would contradict the fact that it is at rest.

Look at torques on the ladder around the pivot at its bottom. The gravitational force
provides a torque of Mg(L/2)cosf, tending to turn it clockwise; and the force F
from the stick provides a torque of F'(¢/tan#), tending to turn it counterclockwise.
Equating these two torques gives

_ MgL

57 sin 6. (1.73)

REMARKS: F goes to zero as  — 0, as it should.'?> And F increases to MgL/2¢, as 6 — 7/2,
which isn’t so obvious (the required torque from the stick is very small, but its lever arm is
also very small). However, in the special case where the ladder is exactly vertical, no force
is required. You can see that our calculations above are not valid in this case, because we
divided by cos 6, which is zero when § = 7/2.

The normal force at the pivot of the stick (which equals the vertical component of F', because
the stick is massless) is equal to M gL sin 6 cos@/2¢. This has a maximum value of MgL/4¢
at@=m/4. &

Stick on a circle

Let N be the normal force between the stick and the circle, and let Fy be the friction
force between the ground and the circle (see Fig. 1.53). Then we immediately see
that the friction force between the stick and the circle is also F', because the torques
from the two friction forces on the circle must cancel.

Looking at torques on the stick around the point of contact with the ground, we
have Mgcos6(L/2) = NL, where M is the mass of the stick and L is its length.
Therefore, N = (Mg/2) cos§. Balancing the horizontal forces on the circle then gives
Nsinf = Fy + Fycosf. So we have

Nsing  Mgsin6 cos 6

F = =
T~ 1% cost 2(1 4 cosf)

(1.74)

But M = pL, and from Fig. 1.53 we have L = R/tan(6/2). Using the identity
tan(6/2) = sinf/(1 + cos 8), we finally obtain

1
Fr = §pgRCOSQ. (1.75)

12For  — 0, we would need to lengthen the ladder with a massless extension, because the stick
would have to be very far to the right to remain perpendicular to the ladder.
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17.

18.

In the limit § — 7/2, Fy approaches zero, which makes sense. In the limit § — 0
(which corresponds to a very long stick), the friction force approaches pgR/2, which
isn’t so obvious.

Leaning sticks and circles

Let S; be the ith stick, and let C; be the ith circle. The normal forces C; feels from S;
and S; 11 are equal in magnitude, because these two forces provide the only horizontal
forces on the frictionless circle, so they must cancel. Let IV; be this normal force.
Look at the torques on S;;1, relative to the hinge on the ground. The torques come
from N;, N;;11, and the weight of S;1;. From Fig. 1.54, we see that N; acts at
a point which is a distance Rtan(f/2) away from the hinge. Since the stick has a
length R/tan(6/2), this point is a fraction tan?(6/2) up along the stick. Therefore,
balancing the torques on S;41 gives

1 0
§Mgcost9+Ni tan? 5 = Nit1. (1.76)

Ny is by definition 0, so we have Ny = (Mg/2)cosf (as in the previous problem). If
we successively use eq. (1.76), we see that Ny equals (Mg/2)cosf(1 + tan?(6/2)),
and N3 equals (Mg/2) cos6(1 + tan?(6/2) + tan*(6/2)), and so on. In general,

M 0 0 0 0
N, = ZICBT (1 4 tan® = +tant 2 + -+ tan2(D 2 ) | (1.77)
2 2 2 2
In the limit ¢ — oo, we may write this infinite geometric sum in closed form as
Mgcost 1
lim N; = Ny, = . 1.78
oo 2 (1 - tan2(0/2)> (1.78)

Note that this is the solution to eq. (1.76), with N; = N;4;. So if a limit exists, it
must equal this. Using M = pL = pR/tan(0/2), we can rewrite Ny, as

_ pRgcost 1
= S tan(0/2) (1 tan2(9/2)> ‘ (1.79)

The identity cos @ = cos?(8/2) — sin?(/2) may then be used to write this as

_ pRgcos®(60/2)
N = W (1.80)

REMARKS: N goes to infinity for § — 0, which makes sense, because the sticks are very
long. All of the N; are essentially equal to half the weight of a stick (in order to cancel the
torque from the weight relative to the pivot). For 8 — 7/2, we see from eq. (1.80) that N
approaches pRg/4, which is not at all obvious; the N; start off at Ny = (Mg/2)cos@ =~ 0,
but gradually increase to pRg/4, which is a quarter of the weight of a stick.

Note that the horizontal force that must be applied to the last circle far to the right is
Noosin@ = pRgcos®(0/2). This ranges from pRg for § — 0, to pRg/4 for 6 — 7/2. &

Balancing the stick

Let the stick go off to infinity in the positive = direction, and let it be cut at x = xg.
Then the pivot point is located at x = x¢+ ¢ (see Fig. 1.55). Let the density be p(z).
The condition that the total gravitational torque relative to xo + ¢ equal zero is

T = /OO p(x) (:E — (zo + E))g dx = 0. (1.81)

0

R

—

1
X0

\
Rtan6/2
Figure 1.54

A

1
X0+1

Figure 1.55
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We want this to equal zero for all xg, so the derivative of 7 with respect to xy must
be zero. 7 depends on zy through both the limits of integration and the integrand.
In taking the derivative, the former dependence requires finding the value of the
integrand at the limits, while the latter dependence requires taking the derivative of
the integrand with respect to =, and then integrating. We obtain, using the fact that
p(o0) =0,

0= j—;—o = lp(xo) — /I:C p(x) d. (1.82)

Taking the derivative of this equation with respect to x( gives
tp' (o) = —p(o). (1.83)
The solution to this is (rewriting the arbitrary zg as x)
p(x) = Ae™/t, (1.84)

We therefore see that the density decreases exponentially with . The smaller ¢ is,
the quicker it falls off. Note that the density at the pivot is 1/e times the density at
the left end. And you can show that 1 —1/e ~ 63 % of the mass is contained between
the left end and the pivot.

19. The spool

(a) Let Fy be the friction force the ground provides. Balancing the horizontal forces
on the spool gives (see Fig. 1.56)

T cosf = Fy. (1.85)

Balancing torques around the center of the spool gives

Tr=F¢R. (1.86)
These two equations imply
r
0=—. 1.87
cos 7 (1.87)

The niceness of this result suggests that there is a quicker way to obtain it. And
indeed, we see from Fig. 1.57 that cosf = r/R is the angle that causes the line
of the tension to pass through the contact point on the ground. Since gravity
and friction provide no torque around this point, the total torque around it is
therefore zero, and the spool remains at rest.

(b) The normal force from the ground is
N = Mg—Tsin8. (1.88)

Using eq. (1.85), the statement Fy < uN becomes T'cosf < pu(Mg — T'sinf).

Hence,
M
< L , (1.89)
cos + psin @
where 6 is given in eq. (1.87).

(¢) The maximum value of T is given in (1.89). This depends on 6, which in turn
depends on r. We want to find the r which minimizes this maximum 7.
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Taking the derivative with respect to 6, we find that the 8 that maximizes the
denominator in eq. (1.89) is given by tanfy = u. You can then show that the
value of T for this 6 is

pMg

V14 p?

To find the corresponding r, we can use eq. (1.87) to write tan = v/ R2 — 2 /r.
The relation tan 6y = p then yields

Ty = = Mgsin 6. (1.90)

R
V1tu?

This is the r that yields the smallest upper bound on 7. In the limit p = 0, we
have 6y = 0, Ty = 0, and 7o = R. And in the limit u = oo, we have 0y = 7/2,
To = Mg, and r9 = 0.

ro = (1.91)
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Chapter 2

Using F' = ma

Copyright 2004 by David Morin, morin@physics.harvard.edu

The general goal of classical mechanics is to determine what happens to a given set
of objects in a given physical situation. In order to figure this out, we need to know
what makes the objects move the way they do. There are two main ways of going
about this task. The first way, which you are undoubtedly familiar with, involves
Newton’s laws. This will be the subject of the present chapter. The second way,
which is the more advanced one, is the Lagrangian method. This will be the subject
of Chapter 5.

It should be noted that each of these methods is perfectly sufficient for solving
any problem. They both produce the same information in the end, but they are
based on vastly different principles. We’ll talk more about this is Chapter 5.

2.1 Newton’s Laws

Newton published his three laws in 1687 in his Principia Mathematica. The laws are
fairly intuitive, although it seems a bit strange to attach the adjective “intuitive”
to a set of statements that took millennia for humans to write down. The laws may
be stated as follows.

e First Law: A body moves with constant velocity (which may be zero) unless
acted on by a force.

e Second Law: The time rate of change of the momentum of a body equals
the force acting on the body.

e Third Law: The forces two bodies apply to each other are equal in magnitude
and opposite in direction.

We could discuss for days on end the degree to which these statements are
physical laws, and the degree to which they are definitions. Sir Arthur Eddington
once made the unflattering comment that the first law essentially says that “every
particle continues in its state of rest or uniform motion in a straight line except
insofar that it doesn’t.” Although Newton’s laws might seem somewhat vacuous at
first glance, there is actually a bit more content to them than Eddington’s comment

II-1
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implies. Let’s look at each in turn. The discussion will be brief, because we have to
save time for other things in this book that we really do want to discuss for days on
end.

First Law

One thing this law does is give a definition of zero force.

Another thing it does is give a definition of an inertial frame, which is defined
simply as a reference frame in which the first law holds. Since the term “velocity”
is used, we have to state what frame of reference we are measuring the velocity with
respect to. The first law does not hold in an arbitrary frame. For example, it fails in
the frame of a spinning turntable.! Intuitively, an inertial frame is one that moves
at constant speed. But this is ambiguous, because we have to say what the frame is
moving at constant speed with respect to. At any rate, an inertial frame is simply
defined as the special type of frame where the first law holds.

So, what we now have are two intertwined definitions of “force” and “inertial
frame.” Not much physical content here. But, however sparse in content the law is,
it still holds for all particles. So if we have a frame in which one free particle moves
with constant velocity, than all free particles move with constant velocity. This is a
statement with content.

Second Law

One thing this law does is give a definition of nonzero force. Momentum is defined?
to be mv. If m is constant,? then the second law says that

F = ma, (2.1)

where a = dv/dt. This law holds only in an inertial frame, which was defined by
the first law.

For things moving free or at rest,
Observe what the first law does best.

It defines a key frame,

“Inertial” by name,

Where the second law then is expressed.

So far, the second law merely gives a definition of F. But the meaningful state-
ment arises when we invoke the fact that the law holds for all particles. If the same
force (for example, the same spring stretched by the same amount) acts on two

Tt is, however, possible to modify things so that Newton’s laws hold in such a frame, but we’ll
save this discussion for Chapter 9.

2We're doing everything nonrelativistically here, of course. Chapter 11 gives the relativistic
modification of the mv expression.

3We'll assume in this chapter that m is constant. But don’t worry, we’ll get plenty of practice
with changing mass (in rockets and such) in Chapter 4.
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particles, with masses mj and mg, then eq. (2.1) says that their accelerations must
be related by
o_m2 (2.2)
az My
This relation holds regardless of what the common force is. Therefore, once you’ve
used one force to find the relative masses of two objects, then you know what the
ratio of their a’s will be when they are subjected to any other force.

Of course, we haven’t really defined mass yet. But eq. (2.2) gives an experimen-
tal method for determining an object’s mass in terms of a standard (say, 1kg) mass.
All you have to do is compare its acceleration with that of the standard mass, when
acted on by the same force.

There is also another piece of substance in this law, in that it says F = ma,
instead of, say, F = mv, or F = md>x/dt3. This issue is related to the first law.
F = myv is not viable, because the first law says that it is possible to have a velocity
without a force. And F = md®x/dt> would make the first law incorrect, because
it would then be true that a particle moves with constant acceleration (instead of
constant velocity) unless acted on by a force.

Note that F = ma is a vector equation, so it is really three equations in one. In
Cartesian coordinates, it says that I, = ma,, I, = ma,, and F, = ma..

Third Law

This law essentially postulates that momentum is conserved (that is, not dependent
on time). To see this, note that

d7p B d(m1V1 + mQVQ)
dt dt
= mia; + moay
= Fi+ Fy, (23)

where F1 and F» are the forces acting on m; and mo, respectively. This demonstrates
that momentum conservation (that is, dp/dt = 0) is equivalent to Newton’s third
law (that iS, F1 = —Fg.)

There isn’t much left to be defined via this law, so the third law is one of pure
content. It says that if you have two isolated particles interacting through some
force, then their accelerations are opposite in direction and inversely proportional
to their masses.

This third law cannot be a definition, because it’s actually not always valid. It
only holds for forces of the “pushing” and “pulling” type. It fails for the magnetic
force, for example. In that case, momentum is carried off in the electromagnetic
field (so the total momentum of the particles and the field is conserved). But we
won’t deal with fields here. Just particles. So the third law will always hold in any
situation we’re concerned with.



Mg

Figure 2.2

Mg

1I-4 CHAPTER 2. USINGF=MA

2.2 Free-body diagrams

The law that allows us to be quantitative is the second law. Given a force, we
can apply F = ma to find the acceleration. And knowing the acceleration, we can
determine the behavior of a given object (that is, where it is and what its velocity is),
provided that we are given the initial position and velocity. This process sometimes
takes a bit of work, but there are two basic types of situations that commonly arise.

e In many problems, all you are given is a physical situation (for example, a
block resting on a plane, strings connecting masses, etc.), and it is up to you
to find all the forces acting on all the objects. These forces generally point in
various directions, so it is easy to lose track of them. It therefore proves useful
to isolate the objects and draw all the forces acting on each of them. This is
the subject of the present section.

e In other problems, you are given the force explicitly as a function of time,
position, or velocity, and the task immediately becomes the mathematical one
of solving the F' = ma = mi equation (we’ll just deal with one dimension
here). These differential equations can be difficult (or impossible) to solve
exactly. They are the subject of Section 2.3.

Let’s now consider the first of these two types of scenarios, where we are pre-
sented with a physical situation, and where we must determine all the forces in-
volved. The term free-body diagram is used to denote a diagram with all the forces
drawn on a given object. After drawing such a diagram for each object in the setup,
we simply write down all the F' = ma equations they imply. The result will be a
system of linear equations in various unknown forces and accelerations, for which
we must then solve. This procedure is best understood through an example.

Example (A plane and masses): Mass M; is held on a plane with inclination
angle #, and mass M> hangs over the side. The two masses are connected by a
massless string which runs over a massless pulley (see Fig. 2.1). The coefficient of
kinetic friction between M; and the plane is pu. M; is released. Assuming that Ms is
sufficiently large so that M; gets pulled up the plane, what is the acceleration of the
masses? What is the tension in the string?

Solution: The first thing to do is draw all the forces on the two masses. These are
shown in Fig. 2.2. The forces on M, are gravity and the tension. The forces on M,
are gravity, friction, the tension, and the normal force. Note that the friction force
points down the plane, because we are assuming that M; moves up the plane.

Having drawn all the forces, we now simply have to write down all the F' = ma equa-
tions. When dealing with M;, we could break things up into horizontal and vertical
components, but it is much cleaner to use the components along and perpendicular
to the plane.* These two components of F = ma, along with the vertical F = ma

“When dealing with inclined planes, one of these two coordinate systems will generally work
much better than the other. Sometimes it’s not clear which one, but if things get messy with one
system, you can always try the other one.
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equation for Mo, give

T—f—Mygsinf = Ma,
N — Mjgcosf = 0,
Mgg -T = Mga, (24)

where we have used the fact that the two masses accelerate at the same rate (and
we have defined the positive direction for My to be downward). We have also used
the fact that tension is the same at both ends of the string, because otherwise there
would be a net force on some part of the string which would then have to undergo
infinite acceleration, because it is massless.

There are four unknowns in eqs. (2.4) (namely T, a, N, and f), but only three
equations. Fortunately, we have a fourth equation: f = puN. Using this in the
second equation above gives f = uMigcosf. The first equation then becomes T —
uMigcos@ — Mygsin® = Mya. Adding this to the third equation leave us with only
a, so we find

0 g(My — uMy cos @ — M sin ) . T— My Msg(1 4+ pcos + sin 0)
- My + My ’ B My + M, '

(2.5)
Note that in order for M; to move upward (that is, @ > 0), we must have My >
M (pcos@ +sin6) . This is clear from looking at the forces along the plane.

REMARK: If we had instead assumed that M; was sufficiently large so that it slides down
the plane, then the friction force would point up the plane, and we would have found, as you
can check,
o g(Mz + pM;i cos @ — My sin@)’ and T— My Msg
My + Mo M + Mo

In order for M; to move downward (that is, a < 0), we must have My < M;(siné — p1cos ).

(1 —pcosf +sinf). (2.6)

Therefore, the range of M for which the system doesn’t move is M1 (sin @ — pcos ) < Mz <
M;i(sin@ + pcosf). &

In problems like the one above, it is clear what things you should pick as the
objects on which you’re going to draw forces. But in other problems, where there are
various different subsystems you can choose, you must be careful to include all the
relevant forces on a given subsystem. Which subsystems you want to pick depends
on what quantities you're trying to find. Consider the following example.

Example (Platform and pulley): A person stands on a platform-and-pulley
system, as shown in Fig. 2.3. The masses of the platform, person, and pulley® are
M, m, and p, respectively.® The rope is massless. Let the person pull up on the rope
so that she has acceleration ¢ upwards.”

5 Assume that the pulley’s mass is concentrated at its center, so that we don’t have to worry
about any rotational dynamics (the subject of Chapter 7).

5My apologies for using i as a mass here, since it usually denotes a coefficient of friction. Alas,
there are only so many symbols for “m”.

" Assume that the platform is somehow constrained to stay level, perhaps by having it run along
some rails.

Figure 2.3
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(a) What is the tension in the rope?

(b) What is the normal force between the person and the platform? What is the
tension in the rod connecting the pulley to the platform?

Solution:

(a) To find the tension in the rope, we simply want to let our subsystem be the
whole system (except the ceiling). If we imagine putting the system in a black
box (to emphasize the fact that we don’t care about any internal forces within
the system), then the forces we see “protruding” from the box are the three
weights (Mg, mg, and ug) downward, and the tension T upward. Applying
F = ma to the whole system gives

T—(M+m+p)g=(M+m+p)a = T=M+m+p)(g+a). (2.7)

(b) To find the normal force, N, between the person and the platform, and also the
tension, f, in the rod connecting the pulley to the platform, it is not sufficient
to consider the system as a whole. We must consider subsystems.

e Let’s apply F = ma to the person. The forces acting on the person are
gravity, the normal force from the platform, and the tension from the rope
(pulling downward on her hand). Therefore, we have

N —T — mg = ma. (2.8)

e Now apply F' = ma to the platform. The forces acting on the platform are
gravity, the normal force from the person, and the force upward from the
rod. Therefore, we have

f—N—-Mg= Ma. (2.9)

e Now apply FF = ma to the pulley. The forces acting on the pulley are
gravity, the force downward from the rod, and twice the tension in the rope
(because it pulls up on both sides). Therefore, we have

2T — f — ug = pa. (2.10)

Note that if we add up the three previous equations, we obtain the F' = ma
equation in eq. (2.7), as should be the case, because the whole system is the
sum of the three above subsystems. Egs. (2.8) — (2.10) are three equations in
the three unknowns (7', N, and f). Their sum yields the T in (2.7), and then
egs. (2.8) and (2.10) give, respectively (as you can show),

N =(M+2m+ p)(g+a), and  f=02M+2m+u)(g+a). (2.11)

REMARK: You can also obtain these results by considering subsystems different from
the ones we chose above. For example, you can choose the pulley-plus-platform sub-
system, etc. But no matter how you choose to break up the system, you will need
to produce three independent F' = ma statements in order to solve for the three
unknowns, 7', N, and f.

In problems like this one, it is easy to forget to include one of the forces, such as the
second T in eq. (2.10). The safest thing to do is to isolate each subsystem, draw a box
around it, and then draw all the forces that “protrude” from the box. Fig. 2.4 shows
the free-body diagram for the subsystem of the pulley. &

Figure 2.4
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Another class of problems, similar to the previous example, goes by the name of
Atwood’s machines. An Atwood’s machine is simply the name for any system that
consists of a combination of masses, strings, and pulleys. In general, the pulleys and
strings can have mass, but we’ll just deal with massless ones in this chapter.

We'll do one example here, but additional (and stranger) setups are given in the
exercises and problems for this chapter. As we’ll see below, there are two basic steps
in solving an Atwood’s problem: (1) Write down all the F' = ma equations, and
(2) Relate the accelerations of the various masses by noting that the length of the
string doesn’t change (a fact that we’ll call “conservation of string”).

Example (An Atwood’s machine): Consider the pulley system in Fig. 2.5, with
masses mp and mso. The strings and pulleys are massless. What are the accelerations
of the masses? What is the tension in the string?

Solution: The first thing to note is that the tension, T', is the same everywhere
throughout the massless string, because otherwise there would be infinite acceleration.
It then follows that the tension in the short string connected to ms is 27". This is true
because there must be zero net force on the massless right pulley, because otherwise
it would have infinite acceleration. The F' = ma equations on the two masses are
therefore

T —mig =may,
2T — mog = Mmaas. (2.12)

We now have two equations in the three unknowns, a1, as, and T. So we need one
more equation. This is the “conservation of string” fact, which relates a; and ao. If
we imagine moving mso and the right pulley up a distance d, then a length 2d of string
has disappeared from the two parts of the string touching the right pulley. This string
has to go somewhere, so it ends up in the part of the string touching m;. Therefore,
my goes down by a distance 2d. In other words, y; = —2y» (where y; and ys are
measured relative to the initial locations of the masses). Taking two time derivatives
of this statement gives our desired relation between a; and as,

a1 = —2as. (2.13)
Combining this with egs. (2.12), we can now solve for aj, as, and T. The result is

2mo — 4ma 2mq1 — moy 3mimeog
— —g— < T=——"". 2.14
=9 dmy +ms a2 g4m1 +my’ 4my 4+ mo ( )

REMARK: There are all sorts of limits and special cases that we can check here. A few
are: (1) If ma = 2my, then eq. (2.14) gives a1 = a2 = 0, and T" = m1g. Everything is
at rest. (2) If mo > ma, then eq. (2.14) gives a1 = 2g, a2 = —g, and T = 3mig. In
this case, ma is essentially in free fall, while m: gets yanked up with acceleration 2¢g. The
value of T is exactly what is needed to make the net force on m equal to m1(2g), because
T —mig = 3mig — mi1g = mi1(2g). We'll let you check the case where mi > ma. &

my
my

Figure 2.5
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In the problems for this chapter, you’ll encounter some strange Atwood’s setups.
But no matter how complicated they get, there are only two things you need to
do to solve them, as mentioned above: (1) Write down the F' = ma equations for
all the masses (which may involve relating the tensions in various strings), and (2)
relate the accelerations of the masses, using “conservation of string”.

It may seem, with the angst it can bring,
That an Atwood’s machine’s a harsh thing.
But you just need to say

That F' is ma,

And use conservation of string!

2.3 Solving differential equations

Let’s now consider the type of problem where we are given the force as a function
of time, position, or velocity, and where our task is to solve the F' = ma = mi
differential equation to find the position, x(t), as a function of time. In what follows,
we will develop a few techniques for solving differential equations. The ability to
apply these techniques dramatically increases the number of problems we can solve.

In general, the force F' can also be a function of higher derivatives of z, in
addition to the quantities ¢, x, and v = #. But these cases don’t arise much, so
we won’t worry about them. The F' = ma differential equation we want to solve is
therefore (we’ll just work in one dimension here)

mi = F(x,v,t). (2.15)

In general, this equation cannot be solved exactly for x(¢).8 But for most of the
problems we will deal with, it can be solved. The problems we will encounter will
often fall into one of three special cases, namely, where F' is a function of ¢ only, or
x only, or v only. In all of these cases, we must invoke the given initial conditions,
xo = x(to) and vg = v(tp), to obtain our final solutions. These initial conditions will
appear in the limits of the integrals in the following discussion.”

Note: You may want to just skim the following page and a half, and then refer
back to it as needed. Don’t try to memorize all the different steps. We present
them only for completeness. The whole point here can basically be summarized by
saying that sometimes you want to write & as dv/dt, and sometimes you want to
write it as vdv/dx (see eq. (2.19)). Then you “simply” have to separate variables
and integrate. We’ll go through the three special cases, and then we’ll do some
examples.

8Tt can always be solved for x(t) numerically, to any desired accuracy. This is discussed in
Appendix D.

9Tt is no coincidence that we need two initial conditions to completely specify the solution to
our second-order F' = m& differential equation. It is a general result (which we’ll just accept here)
that the solution to an nth-order differential equation has n free parameters, which must then be
determined from the initial conditions.
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e F is a function of t only: F = F(t).

Since a = d%z/dt?, we just need to integrate F' = ma twice to obtain z(t).
Let’s do this in a very systematic way, to get used to the general procedure.
First, write F' = ma as

m— = F(t). (2.16)

Then separate variables and integrate both sides to obtain!?
v(t) t
m/ dv'= [ F(")dt. (2.17)
V0 to

We have put primes on the integration variables so that we don’t confuse them
with the limits of integration. Eq. (2.17) yields v as a function of ¢, v(t). We
then separate variables in dx/dt = v(t) and integrate to obtain

z(t) t
/ dz’ = / v(t') dt'. (2.18)
x0 to

This yields z as a function of ¢, x(¢). This procedure might seem like a
cumbersome way to simply integrate something twice. That’s because it is.
But the technique proves more useful in the following case.

e F is a function of x only: F = F(x).

We will use
B dv  dz dv dv

e ctodhuhd N h o 2.19
“Tat T dtde Vda (2:19)
to write F' = ma as p
v
— = F(x). 2.2
mo - (z) (2.20)
Now separate variables and integrate both sides to obtain
v(x) z
m/ v dv’ :/ F(x')dx'. (2.21)
() Zo

The left side will contain the square of v(z). Taking a square root, this gives
v as a function of x, v(z). Separate variables in dz/dt = v(z) to obtain

z(t) / t
/ R (2.22)

0 U(:C’) to

This gives t as a function of x, and hence (in principle) x as a function of ¢,
x(t). The unfortunate thing about this case is that the integral in eq. (2.22)
might not be doable. And even if it is, it might not be possible to invert ¢(x)
to produce z(t).

107f you haven’t seen such a thing before, the act of multiplying both sides by the infinitesimal
quantity dt’ might make you feel a bit uneasy. But it is in fact quite legal. If you wish, you
can imagine working with the small (but not infinitesimal) quantities Av and At, for which it is
certainly legal to multiply both sides by At. Then you can take a discrete sum over many At
intervals, and then finally take the limit At — 0, which results in eq. (2.17)
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e F is a function of v only: F = F(v).

Write F' = ma as
dv

mo = F(v). (2.23)
Separate variables and integrate both sides to obtain
v(t) / t
m [ (2.24)

0 F(U/) to

This yields ¢ as a function of v, and hence (in principle) v as a function of ¢,
v(t). Integrate dz/dt = v(t) to obtain z(t) from

x(t) t
/ da' = / (') dt'. (2.25)

0 to

Note: In this F = F(v) case, if you want to find v as a function of z, v(x),
then you should write a as v(dv/dx) and integrate

v(@) o do’ z
m = dz’. 2.26
L 7w, (2.26)

You can then obtain z(t) from eq. (2.22), if desired.

When dealing with the initial conditions, we have chosen to put them in the
limits of integration above. If you wish, you can perform the integrals without any
limits, and just tack on a constant of integration to your result. The constant is
then determined from the initial conditions.

Again, as mentioned above, you do not have to memorize the above three proce-
dures, because there are variations, depending on what you're given and what you
want to solve for. All you have to remember is that & can be written as either dv/dt
or vdv/dz. One of these will get the job done (namely, the one that makes only two
out of the three variables, ¢, z, and v, appear in your differential equation). And
then be prepared to separate variables and integrate as many times as needed.

a is dv by dt.

Is this useful? There’s no guarantee.

If it leads to “Oh, heck!”’s,

Take dv by dz,

And then write down its product with v.

Example 1 (Gravitational force): A particle of mass m is subject to a constant

force F = —mg. The particle starts at rest at height . Because this constant force
falls into all of the above three categories, we should be able to solve for y(t) in two
ways:

(a) Find y(¢) by writing a as dv/dt.
(b) Find y(¢t) by writing a as v dv/dy.
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Solution:

(a) F = ma gives dv/dt = —g. Integrating this yields v = —gt + C, where C is a
constant of integration.!! The initial condition v(0) = 0 gives C = 0. Therefore,
dy/dt = —gt. Integrating this and using y(0) = h gives

1
y=nh-— 5gﬁ. (2.27)
(b) F = ma gives vdv/dy = —g. Separating variables and integrating yields v?/2 =
—gy + C. The initial condition v(0) = 0 gives v?/2 = —gy + gh. Therefore,
v =dy/dt = —y/2g(h —y). We have chosen the negative square root, because
the particle is falling. Separating variables gives

\/hf = /29 / dt. (2.28)

This yields 2y/h —y = v/2¢ t, where we have used the initial condition y(0) = h.
Hence, y = h — gt?/2, in agreement with part (a). The solution in part (a) was
clearly the simpler one.

Example 2 (Dropped ball): A beach-ball is dropped from rest at height h.
Assume'? that the drag force from the air takes the form, F; = —fBv. Find the
velocity and height as a function of time.

Solution: For simplicity in future formulas, let’s write the drag force as Fy = —fv =
—mav (so we won’t have a bunch of 1/m’s floating around). Taking upward to be
the positive y direction, the force on the ball is

F = —mg — maw. (2.29)

Note that v is negative here, because the ball is falling, so the drag force points
upward, as it should. Writing F' = m dv/dt, and separating variables, gives

v(t) dv' t
/ v ,:—/ dt'. (2.30)
o gtav 0

Integration yields In(1 + av/g) = —at. Exponentiation then gives

o(t) = =2 (1-e). (2.31)

Writing dy/dt = v(t), and then separating variables and integrating to obtain y(t),

yields
y(t) ¢
/ dy = —%/ (1 — ot ) dt'. (2.32)
h 0

1yWe'll do this example by adding on constants of integration which are then determined from
the initial conditions. We’ll do the following example by putting the initial conditions in the limits
of integration.

12The drag force is roughly proportional to v as long as the speed is fairly slow. For large speeds,
the drag force is roughly proportional to v?.
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Therefore

3

y(t) = h — g (t - i(l - e_at)> . (2.33)

REMARKS:

(a) Let’s look at some limiting cases. If ¢ is very small (more precisely, if at < 1), then
we can use e =~ 1 — 1+ I2/2 to make approximations to leading order in t. You
can show that eq. (2.31) gives v(t) & —gt. This makes sense, because the drag force
is negligible at the start, so the ball is essentially in free fall. And eq. (2.33) gives
y(t) = h — gt?/2, as expected.

We can also look at large . In this case, e ' is essentially equal to zero, so eq. (2.31)
gives v(t) & —g/a. (This is the “terminal velocity.” Its value makes sense, because it
is the velocity for which the total force, —mg — maw, vanishes.) And eq. (2.33) gives
y(t) = h — (g/a)t + g/a’. Interestingly, we see that for large t, g/a? is the distance
our ball lags behind another ball which started out already at the terminal velocity,

%

g/a.
(b) The velocity of the ball obtained in eq. (2.31) depends on «, which was defined via
Fy = —mav. We explicitly wrote the m here just to make all of our formulas look a

little nicer, but it should not be inferred that the velocity of the ball is independent of
m. The coefficient 3 = ma depends (in some complicated way) on the cross-sectional
area, A, of the ball. Therefore, & o< A/m. Two balls of the same size, one made of
lead and one made of styrofoam, will have the same A but different m’s. Hence, their
a’s will be different, and they will fall at different rates.

For heavy objects in a thin medium such as air, « is small, so the drag effects are not
very noticeable over short distances. Heavy objects fall at roughly the same rate. If
the air were a bit thicker, different objects would fall at noticeably different rates, and
maybe it would have taken Galileo a bit longer to come to his conclusions.

What would you have thought, Galileo,

If instead you dropped cows and did say, “Oh!

To lessen the sound

Of the moos from the ground,

They should fall not through air, but through mayo!” &

2.4 Projectile motion

Consider a ball thrown through the air, not necessarily vertically. We will neglect
air resistance in the following discussion.

Let x and y be the horizontal and vertical positions, respectively. The force in
the z-direction is F,, = 0, and the force in the y-direction is F,, = —mg. So F = ma
gives

=0, and ij=—g. (2.34)

Note that these two equations are “decoupled.” That is, there is no mention of y
in the equation for #, and vice-versa. The motions in the z- and y-directions are
therefore completely independent.

REMARK: The classic demonstration of the independence of the z- and y-motions is the
following. Fire a bullet horizontally (or, preferably, just imagine firing a bullet horizontally),
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and at the same time drop a bullet from the height of the gun. Which bullet will hit the
ground first? (Neglect air resistance, the curvature of the earth, etc.) The answer is that
they will hit the ground at the same time, because the effect of gravity on the two y-motions
is exactly the same, independent of what is going on in the z-direction. &

If the initial position and velocity are (X,Y’) and (V,,V}), then we can easily
integrate egs. (2.34) to obtain

z(t) = Vi,
y(t) = V,—gt. (2.35)
Integrating again gives
z(t) = X+ Vyt,

1
y(t) = Y +V,t— igtz. (2.36)

These equations for the speeds and positions are all you need to solve a projectile
problem.

Example (Throwing a ball):

(a) For a given initial speed, at what inclination angle should a ball be thrown so
that it travels the maximum horizontal distance by the time it returns to the
ground? Assume that the ground is horizontal, and that the ball is released
from ground level.

(b) What is the optimal angle if the ground is sloped upward at an angle 5 (or
downward, if § is negative)?

Solution:

(a) Let the inclination angle be 6, and let the initial speed be V. Then the horizontal
speed is always V, = V cosf, and the initial vertical speed is V,, = V sin6.
The first thing we need to do is find the time ¢ in the air. We know that the
vertical speed is zero at time t/2, because the ball is moving horizontally at
its highest point. So the second of egs. (2.35) gives V,, = g(¢/2). Therefore,
t=2V,/g. "
The first of eqs. (2.36) tells us that the horizontal distance traveled is d = V,t.
Using t = 2V},/g in this gives

de 2VaVy _ V?2(2sinf cos 6) _ V2 sin 20 . (2.37)
g g g
The sin 260 factor has a maximum at
T
0=—. 2.38
d (239)

13 Alternatively, the time of flight can be found from the second of egs. (2.36), which says that
the ball returns to the ground when V,t = gt2/2. We will have to use this type of strategy in part
(b), where the trajectory is not symmetric around the maximum.
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The maximum horizontal distance traveled is then dpax = V2 /g.

REMARKS: For § = 7/4, you can show that the maximum height achieved is V?/4g.
This may be compared to the maximum height of V?/2g (as you can show) if the ball
is thrown straight up. Note that any possible distance you might want to find in this
problem must be proportional to V2 /g, by dimensional analysis. The only question is
what the numerical factor is. &

As in part (a), the first thing we need to do is find the time ¢ in the air. If the
ground is sloped at an angle 3, then the equation for the line of the ground is

y = (tan f)z. (2.39)

The path of the ball is given in terms of ¢ by
1
x = (Vcosf)t, and y::a/gnaﬁ-ggﬁ. (2.40)

We must solve for the ¢ that makes y = (tan 3)xz, because this gives the place
where the path of the ball intersects the line of the ground. Using egs. (2.40),
we find that y = (tan 8)a when

t= g(sin¢9 — tan B cos 9). (2.41)
g

(There is, of course, also the solution ¢ = 0.) Plugging this into the expression
for x in eq. (2.40) gives

2v2 9
x = ——(sinf cos — tan Fcos” ). (2.42)
g

We must now maximize this value for x, which is equivalent to maximizing
the distance along the slope. Setting the derivative with respect to 6 equal to
zero, and using the double-angle formulas, sin26 = 2sinfcosf and cos20 =
cos? @ — sin? 0, we find tan 8 = —cot20. This can be rewritten as tan3 =
—tan(m/2 — 260). Therefore, § = —(7/2 — 26), so we have

9:%(ﬁ+g). (2.43)

In other words, the throwing angle should bisect the angle between the ground
and the vertical.

REMARKS: For 8 = /2, we have 6 = /2, as should be the case. For 8 = 0, we have
0 = w/4, as we found in part (a). And for 8 = —7/2, we have 6 = 0, which makes
sense.
Substituting the value of 6 from eq. (2.43) into eq. (2.42), you can show (after a bit
of algebra) that the maximum distance traveled along the tilted ground is

@ V?/g

d= =—r7 2.44
cos@ 1+sing ( )

This checks in the various limits for 3. &
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Along with the bullet example mentioned above, another classic example of the
independence of the x- and y-motions is the “hunter and monkey” problem. In it,
a hunter aims an arrow (made of styrofoam, of course) at a monkey hanging from
a branch in a tree. The monkey, thinking he’s being clever, tries to avoid the arrow
by letting go of the branch right when he sees the arrow released. The unfortunate
consequence of this action is that he will get hit, because gravity acts on both him
and the arrow in the same way; they both fall the same distance relative to where
they would have been if there were no gravity. And the monkey would get hit in
such a case, because the arrow is initially aimed at him. You can work this out in
Exercise 16, in a more peaceful setting involving fruit.

If a monkey lets go of a tree,

The arrow will hit him, you see,
Because both heights are pared

By a half gt?

From what they would be with no g.

2.5 Motion in a plane, polar coordinates

When dealing with problems where the motion lies in a plane, it is often conve-
nient to work with polar coordinates, » and #. These are related to the Cartesian
coordinates by (see Fig. 2.6)

x =rcosb, and y = rsinb. (2.45)

Depending on the problem, either Cartesian or polar coordinates will be easier to
use. It is usually clear from the setup which is better. For example, if the problem
involves circular motion, then polar coordinates are a good bet. But to use polar
coordinates, we need to know what form Newton’s second law takes in terms of
them. Therefore, the goal of the present section is to determine what F = ma = my
looks like when written in terms of polar coordinates.

At a given position r in the plane, the basis vectors in polar coordinates are t,
which is a unit vector pointing in the radial direction; and 9, which is a unit vector
pointing in the counterclockwise tangential direction. In polar coords, a general
vector may therefore be written as

r=rt. (2.46)

Note that the directions of the & and @ basis vectors depend, of course, on r.

Since the goal of this section is to find ¥, we must, in view of eq. (2.46), get a
handle on the time derivative of . And we’ll eventually need the derivative of 0,
too. In contrast with the fixed Cartesian basis vectors (x and y), the polar basis
vectors (& and é) change as a point moves around in the plane.

We can find t and 6 in the following way. In terms of the Cartesian basis,
Fig. 2.7 shows that

r I
'y
0 :
X
Figure 2.6
Y é SAl'rl 9)
1 r
"\ cos6
0 X

Figure 2.7
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cosfx +sinfy,
—sinfx +cosfy. (2.47)

>
|

[}
Il

Taking the time derivative of these equations gives

= —sinf0x + cos6 0y,
0 = —cosffx—sinfdy. (2.48)

>

Using eqs. (2.47), we arrive at the nice clean expressions,
r=00, and 6= —0r. (2.49)

These relations are fairly evident if we look at what happens to the basis vectors as
r moves a tiny distance in the tangential direction. Note that the basis vectors do
not change as r moves in the radial direction.

We can now start differentiating eq. (2.46). One derivative gives (yes, the
product rule works fine here)

r = 7r47rr

= 7+ 700, (2.50)

This makes sense, because r is the speed in the radial direction, and 76 is the speed

in the tangential direction, which is often written as wr (where w = 0 is the angular

speed, or “angular frequency” ).

Differentiating eq. (2.50) then gives
Po= i+ i+ 700 + 160 + 08
= 7+ 7(00) + 700 + 100 + ro(—0F)
= (7 =6t + (10 + 270)6. (2.51)
Finally, equating m¥ with F = F,.r + Fy0 gives the radial and tangential forces as

E. = m(i—r6?),
Fy = m(rf + 2i0). (2.52)

(See Exercise 32 for a slightly different derivation of these equations.) Let’s look at
each of the four terms on the right-hand sides of egs. (2.52).

e The m# term is quite intuitive. For radial motion, it simply states that F' = ma
along the radial direction.

e The mrf term is also quite intuitive. For circular motion, it states that F' =
ma along the tangential direction, because r0 is the second derivative of the
distance rf along the circumference.

“For rf to be the tangential speed, we must measure ¢ in radians and not degrees. Then 70 is
by definition the distance along the circumference, so 76 is the speed along the circumference.
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e The —mr6? term is also fairly clear. For circular motion, it says that the radial
force is —m(rf)?/r = —mwv?/r, which is the familiar force that causes the
centripetal acceleration, v?/r. See Problem 19 for an alternate (and quicker)
derivation of this v?/r result.

e The 2mif term isn’t so obvious. It is called the Coriolis force. There are
various ways to look at this term. One is that it exists in order to keep angular
momentum conserved. We’ll have a great deal to say about the Coriolis force
in Chapter 9.

Example (Circular pendulum): A mass hangs from a massless string of length
£. Conditions have been set up so that the mass swings around in a horizontal circle,
with the string making an angle 8 with the vertical (see Fig. 2.8). What is the
angular frequency, w, of this motion?

Solution: The mass travels in a circle, so the horizontal radial force must be
F. = mr6? = mrw? (with 7 = €sin ), directed radially inward. The forces on
the mass are the tension in the string, 7', and gravity, mg (see Fig. 2.9). There is no
acceleration in the vertical direction, so F' = ma in the vertical and radial directions
gives, respectively,

TcosB = mg,
Tsinf = m({sinf)w? (2.53)
Solving for w gives
g .
= . 2.54 .
w Tcos (2.54) Figure 2.9

Note that if 8 ~ 0, then w = /g/¢, which equals the frequency of a plane pendulum
of length ¢. And if 3 ~ 90°, then w — oo, which makes sense.
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Exercises

Section 2.2: Free-body diagrams

1.

A peculiar Atwood’s machine

The Atwood’s machine in Fig. 2.10 consists of N masses, m, m/2, m/4, ...,
m/2V =1 All the pulleys and strings are massless, as usual.

(a) Put a mass m/2V "1 at the free end of the bottom string. What are the
accelerations of all the masses?

(b) Remove the mass m/2¥~! (which was arbitrarily small, for very large
N) that was attached in part (a). What are the accelerations of all the
masses, now that you’ve removed this infinitesimal piece?

. Double-loop Atwood’s *

Consider the Atwood’s machine shown in Fig. 2.11. It consists of three
pulleys, a short piece of string connecting one mass to the bottom pulley, and
a continuous long piece of string that wraps twice around the bottom side of
the bottom pulley, and once around the top side of the top two pulleys. The
two masses are m and 2m. Assume that the parts of the string connecting the
pulleys are essentially vertical. Find the accelerations of the masses.

. Atwood’s and a plane =

Consider the Atwoods machine shown in Fig. 2.12, with two masses m. The
plane is frictionless, and it is inclined at a 30° angle. Find the accelerations
of the masses.

. Atwood’s on a table x

Consider the Atwood’s machine shown in Fig. 2.13, Masses of 1kg and 2 kg lie
on a frictionless table, connected by a string which passes around a pulley. The
pulley is connected to another mass of 2kg, which hangs down over another
pulley, as shown. Find the accelerations of all three masses.

. Keeping the mass still *

In the Atwood’s machine in Fig. 2.14, what should M be (in terms of m; and
mz) so that it doesn’t move?
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. Three-mass Atwood’s *x

Consider the Atwood’s machine in Fig. 2.15, with masses m, 2m, and 3m.
Find the accelerations of all three masses.

. Accelerating plane *x

A block of mass m rests on a plane inclined at angle 6. The coefficient of static
friction between the block and the plane is p. The plane is accelerated to the
right with acceleration a (which may be negative); see Fig. 2.16. For what
range of a does the block remain at rest with respect to the plane?

. Accelerating cylinders *x

Three identical cylinders are arranged in a triangle as shown in Fig. 2.17,
with the bottom two lying on the ground. The ground and the cylinders are
frictionless. You apply a constant horizontal force (directed to the right) on
the left cylinder. Let a be the acceleration you give to the system. For what
range of a will all three cylinders remain in contact with each other?

Section 2.3: Solving differential equations

9.

10.

11.

12.

—bv? force *

A particle of mass m is subject to a force F(v) = —bv?. The initial position
is zero, and the initial speed is vg. Find z(t).

—kx force *x*

A particle of mass m is subject to a force F(x) = —kz. The initial position is
zero, and the initial speed is vy. Find x(t).

kx force *x

A particle of mass m is subject to a force F'(x) = kxz. The initial position is
zero, and the initial speed is vg. Find x(¢).

Motorcycle circle xxx

A motorcyclist wishes to travel in a circle of radius R on level ground. The
coefficient of friction between the tires and the ground is p. The motorcycle
starts at rest. What is the minimum distance the motorcycle must travel in
order to achieve its maximum allowable speed (that is, the speed above which
it will skid out of the circular path)?

Section 2.4: Projectile motion

13.

Dropped balls

A ball is dropped from height 4h. After it has fallen a distance d, a second
ball is dropped from height h. What should d be (in terms of h) so that the
balls hit the ground at the same time?

m 3m

2m

Figure 2.15

Figure 2.16

Figure 2.17
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Equal distances

At what angle should a ball be thrown so that its maximum height equals the
horizontal distance traveled?

Redirected horizontal motion x*

A ball is dropped from rest at height A, and it bounces off a surface at height y,
with no loss in speed. The surface is inclined at 45°, so that the ball bounces
off horizontally. What should y be so that the ball travels the maximum
horizontal distance?

Newton’s apple *

Newton is tired of apples falling on his head, so he decides to throw a rock
at one of the larger and more formidable looking apples positioned directly
above his favorite sitting spot. Forgetting all about his work on gravitation,
he aims the rock directly at the apple (see Fig. 2.18). To his surprise, the
apple falls from the tree just as he releases the rock. Show, by calculating
the rock’s height when it reaches the horizontal position of the apple, that the
rock will hit the apple.'®

Throwing at a wall *

You throw a ball with speed Vg at a vertical wall, a distance £ away. At what
angle should you throw the ball, so that it hits the wall at a maximum height?
Assume ¢ < V¢ /g (why?).

Firing a cannon *x

A cannon, when aimed vertically, is observed to fire a ball to a maximum
height of L. Another ball is then fired with this same speed, but with the
cannon now aimed up along a plane of length L, inclined at an angle 0, as
shown in Fig. 2.19. What should 6 be, so that the ball travels the largest
horizontal distance, d, by the time it returns to the height of the top of the
plane?

Colliding projectiles *

Two balls are fired from ground level, a distance d apart. The right one is
fired vertically with speed V; see Fig. 2.20. You wish to simultaneously fire
the left one at the appropriate velocity « so that it collides with the right ball
when they reach their highest point. What should @ be (give the horizontal
and vertical components)? Given d, what should V' be so that the speed w is
minimum?

'5This problem suggests a way in which William Tell and his son might survive their ordeal if
they were plopped down on a planet with an unknown gravitational constant (provided that the
son weren't too short or g weren’t too big).
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Throwing in the wind

A ball is thrown horizontally to the right, from the top of a vertical cliff of
height h. A wind blows horizontally to the left, and assume (simplistically)
that the effect of the wind is to provide a constant force to the left, equal in
magnitude to the weight of the ball. How fast should the ball be thrown, so
that it lands at the foot of the cliff?

Throwing in the wind again *

A ball is thrown eastward across level ground. A wind blows horizontally to
the east, and assume (simplistically) that the effect of the wind is to provide
a constant force to the east, equal in magnitude to the weight of the ball.
At what angle 6 should the ball be thrown, so that it travels the maximum
horizontal distance?

Increasing gravity

At t = 0 on the planet Gravitus Increasicus, a projectile is fired with speed Vj
at an angle 6 above the horizontal. This planet is a strange one, in that the
acceleration due to gravity increases linearly with time, starting with a value
of zero when the projectile is fired. In other words, g(t) = ft, where (3 is a
given constant. What horizontal distance does the projectile travel? What
should 6 be so that this horizonal distance is maximum?

Cart, ball, and plane x*x

A cart rolls down an inclined plane. A ball is fired from the cart, perpendic-
ularly to the plane. Will the ball eventually land in the cart? Hint: Choose
your coordinate system wisely.

Section 2.5: Motion in a plane, polar coordinates

24.

25.

26.

27.

Low-orbit satellite

What is the speed of a satellite whose orbit is just above the earth’s surface?
Give the numerical value.

Weight at the equator =*

A person stands on a scale at the equator. If the earth somehow stopped
spinning but kept its same shape, would the reading on the scale increase or
decrease? By what fraction?

Banking an airplane x*

An airplane flies at speed v in a horizontal circle of radius R. At what angle
should the plane be banked so that you don’t feel like you are getting flung to
the side in your seat?

Car on a banked track

A car travels around a circular banked track with radius R. The coefficient of
friction between the tires and the track is g. What is the maximum allowable
speed, above which the car slips?
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Driving on tilted ground xx

A driver encounters a large tilted parking lot, where the angle of the ground
with respect to the horizontal is #. The driver wishes to drive in a circle of
radius R, at constant speed. The coefficient of friction between the tires and
the ground is pu.

(a) What is the largest speed the driver can have if he wants to avoid slipping?

(b) What is the largest speed the driver can have, assuming he is concerned
only with whether or not he slips at one of the “side” points on the circle
(that is, halfway between the top and bottom points; see Fig. 2.21)7

Rolling wheel *

If you paint a dot on the rim of a rolling wheel, the coordinates of the dot may

be written as'®

(z,y) = (RO + Rsinf, R+ Rcos®). (2.55)

The path of the dot is called a cycloid. Assume that the wheel is rolling at
constant speed, which implies 6 = wt.

(a) Find #(¢) and d(t) of the dot.
(b) At the instant the dot is at the top of the wheel, it may be considered to

be moving along the arc of a circle. What is the radius of this circle in
terms of R? Hint: You know v and a.

Bead on a hoop *x

A bead rests on top of a frictionless hoop of radius R which lies in a vertical
plane. The bead is given a tiny push so that it slides down and around the
hoop. At what points on the hoop (specify them by giving the angular position
relative to the top) is the bead’s acceleration vertical?!” What is this vertical
acceleration? Note: We haven’t studied conservation of energy yet, but use the
fact that the bead’s speed after it has fallen a height h is given by v = 1/2gh.

Another bead on a hoop *x

A bead rests on top of a frictionless hoop of radius R which lies in a vertical
plane. The bead is given a tiny push so that it slides down and around
the hoop. At what points on the hoop (specify them by giving the angular
position relative to the horizontal) is the bead’s acceleration horizontal? As
in the previous exercise, use v = 1/2gh.

5This can be shown by writing (2,y) as (R6, R) + (Rsinf, Rcos#). The first term here is the
position of the center of the wheel, and the second term is the position of the dot relative to the
center, where 6 is measured clockwise from the top.

170One such point is the bottom of the hoop. Another point is technically the top, where a = 0.
Find the other two more interesting points (one on each side).
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32.

33.

34.

Derivation of F,. and Fjp *x

In Cartesian coordinates, a general vector takes the form,

r = aX+yy
= rcosfx+rsinfy. (2.56)

Derive egs. (2.52) by taking two derivatives of this expression for r, and then
using egs. (2.47) to show that the result can be written in the form of eq.
(2.51). Note that unlike r and 6, the vectors x and y do not change with
time.

A force Fy = 270 *x

Consider a particle that feels an angular force only, of the form Fy = 2mi6.
(As in Problem 21, there’s nothing all that physical about this force; it simply
makes the F' = ma equations solvable.) Show that the trajectory takes the
form of an exponential spiral, that is, r = Ae’.

A force Fy = 370 ok

Consider a particle that feels an angular force only, of the form Fy = 3mr.
(As in the previous exercise, we’re solving this problem simply because we
can.) Show that 7 = VAr* 4+ B. Also, show that the particle reaches r = co

in a finite time.
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2.7 Problems

Section 2.2: Free-body diagrams

1. Sliding down a plane *x

(a) A block starts at rest and slides down a frictionless plane inclined at angle
0. What should 6 be so that the block travels a given horizontal distance
in the minimum amount of time?

(b) Same question, but now let there be a coefficient of kinetic friction, u,
between the block and the plane.

2. Moving plane sxxx

A block of mass m is held motionless on a frictionless plane of mass M and

angle of inclination 6 (see Fig. 2.22). The plane rests on a frictionless hori-
Figure 2.22 zontal surface. The block is released. What is the horizontal acceleration of
the plane?

3. Sliding sideways on plane xx*x

A block is placed on a plane inclined at angle 6. The coefficient of friction
between the block and the plane is © = tanf. The block is given a kick so
that it initially moves with speed V horizontally along the plane (that is, in
the direction perpendicular to the direction pointing straight down the plane).
What is the speed of the block after a very long time?

4. Atwood’s machine

A massless pulley hangs from a fixed support. A massless string connecting
two masses, my and mg, hangs over the pulley (see Fig. 2.23). Find the
acceleration of the masses and the tension in the string.

my ny

Figure 2.23
5. Double Atwood’s machine xx

A double Atwood’s machine is shown in Fig. 2.24, with masses m1, mso, and
ms. What are the accelerations of the masses?

6. Infinite Atwood’s machine *xx

Consider the infinite Atwood’s machine shown in Fig. 2.25. A string passes

over each pulley, with one end attached to a mass and the other end attached to

another pulley. All the masses are equal to m, and all the pulleys and strings

Figure 2.24 are massless. The masses are held fixed and then simultaneously released.
What is the acceleration of the top mass?'®

my my

18You may define this infinite system as follows. Consider it to be made of N pulleys, with a
non-zero mass replacing what would have been the (N +1)st pulley. Then take the limit as N — oo.

Figure 2.25
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7.

Line of pulleys x*

N + 2 equal masses hang from a system of pulleys, as shown in Fig. 2.26.
What are the accelerations of all the masses?

. Ring of pulleys xx

Consider the system of pulleys shown in Fig. 2.27. The string (which is a
loop with no ends) hangs over N fixed pulleys. N masses, mi, ma, ..., my,
are attached to N pulleys that hang on the string. What are the accelerations
of all the masses?

Section 2.3: Solving differential equations

9.

10.

11.

12.

13.

Exponential force

A particle of mass m is subject to a force F(t) = me". The initial position
and speed are zero. Find z(t).

Falling chain x*x

A chain of length ¢ is held stretched out on a frictionless horizontal table, with
a length yo hanging down through a hole in the table. The chain is released.
As a function of time, find the length that hangs down through the hole (don’t
bother with ¢ after the chain loses contact with the table). Also, find the speed
of the chain right when it loses contact with the table.

Circling around a pole *x

A mass, which is free to move on a horizontal frictionless plane, is attached to
one end of a massless string which wraps partially around a frictionless vertical
pole of radius r (see the top view in Fig. 2.28). You hold onto the other end
of the string. At ¢t = 0, the mass has speed vg in the tangential direction along
the dotted circle of radius R shown.

Your task is to pull on the string so that the mass keeps moving along the
dotted circle. You are required to do this in such a way that the string remains
in contact with the pole at all times. (You will have to move your hand around
the pole, of course.) What is the the speed of the mass as a function of time?

Throwing a beach ball xx*x

A beach ball is thrown upward with initial speed vg. Assume that the drag
force from the air is F' = —mawv. What is the speed of the ball, vy, when
it hits the ground? (An implicit equation is sufficient.) Does the ball spend
more time or less time in the air than it would if it were thrown in vacuum?

Balancing a pencil *xx

Consider a pencil that stands upright on its tip and then falls over. Let’s
idealize the pencil as a mass m sitting at the end of a massless rod of length
[19

191t actually involves only a trivial modification to do the problem correctly using the moment of
inertia and the torque. But the point-mass version will be quite sufficient for the present purposes.

N=3
Figure 2.26

my mp My

Figure 2.27

*/hand

Figure 2.28
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(a) Assume that the pencil makes an initial (small) angle 6y with the vertical,
and that its initial angular speed is wy. The angle will eventually become
large, but while it is small (so that siné & 6), what is 6 as a function of
time?

(b) You might think that it would be possible (theoretically, at least) to make

the pencil balance for an arbitrarily long time, by making the initial 6
and wyp sufficiently small.
However, it turns out that due to Heisenberg’s uncertainty principle
(which puts a constraint on how well we can know the position and mo-
mentum of a particle), it is impossible to balance the pencil for more than
a certain amount of time. The point is that you can’t be sure that the
pencil is initially both at the top and at rest. The goal of this problem
is to be quantitative about this. The time limit is sure to surprise you.

Without getting into quantum mechanics, let’s just say that the uncer-
tainty principle says (up to factors of order 1) that AxzAp > h (where
h = 1.06 - 10734 Js is Planck’s constant). The implications of this are
somewhat vague, but we’ll just take it to mean that the initial conditions
satisfy (£0p)(mlwy) > h.

With this condition, find the maximum time it can take your solution
in part (a) to become of order 1. In other words, determine (roughly)
the maximum time the pencil can balance. Assume m = 0.01kg, and
{=0.1m.

Section 2.4: Projectile motion

14.

15.

16.

Throwing a ball from a cliff *x

A ball is thrown with speed v from the edge of a cliff of height h. At what
inclination angle should it be thrown so that it travels the maximum horizontal
distance? What is this maximum distance? Assume that the ground below
the cliff is horizontal.

Redirected motion *x

A ball is dropped from rest at height h, and it bounces off a surface at height
y (with no loss in speed). The surface is inclined so that the ball bounces off
at an angle of 6 with respect to the horizontal. What should y and 8 be so
that the ball travels the maximum horizontal distance?

Maximum trajectory length xxx

A ball is thrown at speed v from zero height on level ground. Let 6y be the
angle at which the ball should be thrown so that the distance traveled through
the air is maximum. Show that 6y satisfies

1+sin90> _1

2.
cos (2.57)

sin fg In (

You can show numerically that 6y ~ 56.5°.
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Maximum trajectory area x*

A ball is thrown at speed v from zero height on level ground. At what angle
should it be thrown so that the area under the trajectory is maximum?

Bouncing ball *

A ball is thrown straight upward so that it reaches a height h. It falls down
and bounces repeatedly. After each bounce, it returns to a certain fraction
f of its previous height. Find the total distance traveled, and also the total
time, before it comes to rest. What is its average speed?

Section 2.5: Motion in a plane, polar coordinates

19.

20.

21.

Centripetal acceleration x*

Show that the acceleration of a particle moving in a circle is v?/r. To do this,
draw the position and velocity vectors at two nearby times, and then make
use of some similar triangles.

Free particle xx

Consider a free particle in a plane. Using Cartesian coordinates, it is trivial to
show that the particle moves in a straight line. The task of this problem is to
demonstrate this result in a much more cumbersome way, using eqs. (2.52).
More precisely, show that cos @ = ro/r for a free particle, where rq is the radius
at closest approach to the origin, and @ is measured with respect to this radius.

A force Fy = 7O Kk

Consider a particle that feels an angular force only, of the form Fy = mrf.
(There’s nothing all that physical about this force. It simply makes the F' =
ma equations solvable.) Show that 7 = v/Alnr + B, where A and B are
constants of integration, determined by the initial conditions.
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2.8 Solutions

1. Sliding down a plane

(a) The component of gravity along the plane in gsinf. The acceleration in the
horizontal direction is therefore a, = (gsin#)cosf. Our goal is to maximize a,.
By taking the derivative, or by noting that sinfcosf = (sin26)/2, we obtain
0 =m/4.

(b) The normal force from the plane is mgcosf, so the kinetic friction force is
pumgcos . The acceleration along the plane is therefore g(sinf — pcos#), and
so the acceleration in the horizontal direction is a, = g(sind — p cos 0) cos§. We
want to maximize this. Setting the derivative equal to zero gives

(cos® @ —sin® 0) + 2usinfcosd =0 =  cos20 + pusin260 = 0

1
= tan2f = o (2.58)

For p1 — 0, this gives the /4 result from part (a). For 4 — oo, we obtain
0 ~ /2, which makes sense.

REMARK: The time to travel a horizontal distance d is obtained from a,t*/2 = d.
In part (a), this gives a minimum time of 24/d/g. In part (b), you can show that
the maximum a, is (g/2)(1/1+ p? — p), and that this leads to a minimum time of

24/d/g\/+/1+ p? + p. This has the correct © — 0 limit, and it behaves like 24/2ud/g

for 4 — 0o. &

2. Moving plane

Let N be the normal force between the block and the plane. Note that we cannot
assume that N = mg cos @, because the plane recoils. We can see that N = mg cos 6
is in fact incorrect, because in the limiting case where M = 0, we have no normal
force at all.

The various F' = ma equations (vertical and horizontal for the block, and horizontal
for the plane) are

mg — Ncos = may,
Nsinf = mayg,
Nsind = MA,, (2.59)

where we have chosen the positive directions for a,, a,, and A, to be downward,
rightward, and leftward, respectively. There are four unknowns here: az, ay, A,, and
N. So we need one more equation. This fourth equation is the constraint that the
block remains in contact with the plane. The horizontal distance between the block
and its starting point on the plane is (a; +A;)t?/2, and the vertical distance is a,t?/2.
The ratio of these distances must equal tan 8 if the block is to remain on the plane.
Therefore, we must have “
Yy
oA tan 6. (2.60)
Using eqgs. (2.59), this becomes

qg— %cos@
N ~ -, = tan@
oy sinf + 7 sin 6

o Neg(smotane (L L)) (2.61)
=g (sinftand | — + - ) )
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(In the limit M — oo, this reduces to N = mgcosf, as it should.) Having found N,
the third of egs. (2.59) gives A,, which may be written as

~ Nsinf)  mgsinfcosf

A, = .
M M + msin® 0

(2.62)

REMARKS: For given M and m, you can show that the angle 6y that maximizes A, is

M

tan @y = M rm

(2.63)

If M < m, then 6y = 0. If M > m, then 0y =~ /4.

In the limit M <« m, eq. (2.62) gives A, ~ g/tanf. This makes sense, because m falls
essentially straight down, and the plane gets squeezed out to the left.

In the limit M > m, we have A, ~ g(m/M)sin 6 cos 6. This is more transparent if we instead
look at a, = (M/m)A; =~ gsin@cos@. Since the plane is essentially at rest in this limit, this
value of a, implies that the acceleration of m along the plane is equal to az/cos ~ gsin 0,
as expected. &

3. Sliding sideways on plane

The normal force from the plane is N = mgcosf. Therefore, the friction force on
the block is uN = (tanf)N = mgsinf. This force acts in the direction opposite to
the motion. The block also feels the gravitational force of mgsin 8 pointing down the
plane.

Because the magnitudes of the friction force and the gravitational force along the
plane are equal, the acceleration along the direction of motion equals the negative
of the acceleration in the direction down the plane. Therefore, in a small increment
of time, the speed that the block loses along its direction of motion exactly equals
the speed that it gains in the direction down the plane. Letting v be the speed of
the block, and letting v, be the component of the velocity in the direction down the
plane, we therefore have

v+vy, =C, (2.64)

where C' is a constant. C is given by its initial value, which is V' + 0 = V. The final
value of C'is Vi + V; = 2V (where V} is the final speed of the block), because the
block is essentially moving straight down the plane after a very long time. Therefore,

2Vy =V = Vi = 5 (2.65)

4. Atwood’s machine

Let T be the tension in the string, and let a be the acceleration of my (with upward
taken to be positive). Then —a is the acceleration of msy. So we have

T—mig = ma,

T—mog = mo(—a). (2.66)

Solving these two equations for a and T gives

— 2
a= 7(7712 m)g , and T = Zmimag . (2.67)
meo + my mo +my

Remarks: As a double-check, a has the correct limits when ms > m1, m1 > me, and
me = m1 (namely a = g, a = —g, and a = 0, respectively).
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As far as T goes, if m1 = me = m, then T = mg, as it should. And if m; < mg, then
T =~ 2mayg. This is correct, because it makes the net upward force on m; equal to mag,
which means that its acceleration is g upward, which is consistent with the fact that ms is
essentially in free fall. &

5. Double Atwood’s machine

Let the tension in the lower string be T. Then the tension in the upper string is 27
(by balancing the forces on the bottom pulley). The three F' = ma equations are
therefore (with all the a’s taken to be positive upward)

2T — mig = myarg,
T —mag = maas,
T — m3g = msas. (2.68)

And conservation of string says that the acceleration of my is

4 = — (‘”;”“) : (2.69)

This follows from the fact that the average position of mo and ms moves the same
distance as the bottom pulley, which in turn moves the same distance (but in the
opposite direction) as my.

We now have four equations in the four unknowns, a1, as, az, and T. With a little
work, we can solve for the accelerations,

dmoms — ml(mg + mg)

a = )
1 4m2m3 + ml(mg + md)

4m2m3 + ml(mg - 3m3)

ag = - ,
2 dmoms + my (m2 + m3)

dmoms + ml(mg — 3m2)

= - . 2.70
3 g 4m2m3 —+ ma (m2 —+ mg) ( )

REMARKS: There are many limits we can check here. A couple are: (1) If my = ms = m1/2,
then all the a’s are zero, which is correct. (2) If mg is much less than both m1 and ms, then
a1 = —g, a2 = —¢g, and a3 = 3g. To understand this 3g, convince yourself that if m; and
ma go down by d, then ms goes up by 3d.

Note that a1 can be written as

4moms —my
ay = gl (2.71)
(ma+ms3) +m

In view of the result of Problem 4 in eq. (2.67), we see that as far as m1 is concerned, the
ma, m3 pulley system acts just like a mass of 4mams/(m2 + ms). This has the expected
properties of equaling zero when either mso or ms is zero, and equaling 2m if mas = ms = m.

&

6. Infinite Atwood’s machine

First Solution: If the strength of gravity on the earth were multiplied by a factor
7, then the tension in all of the strings in the Atwood’s machine would likewise be
multiplied by n. This is true because the only way to produce a quantity with the
units of tension (that is, force) is to multiply a mass by g. Conversely, if we put
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the Atwood’s machine on another planet and discover that all of the tensions are
multiplied by 7, then we know that the gravity there must be ng.

Let the tension in the string above the first pulley be T'. Then the tension in the string
above the second pulley is T/2 (because the pulley is massless). Let the downward
acceleration of the second pulley be as. Then the second pulley effectively lives in a
world where gravity has strength g — as.

Consider the subsystem of all the pulleys except the top one. This infinite subsystem is
identical to the original infinite system of all the pulleys. Therefore, by the arguments
in the first paragraph above, we must have

T T/2

=2 2.72
i (2.72)

which gives as = g/2. But as is also the acceleration of the top mass, so our answer

is g/2.

REMARKS: You can show that the relative acceleration of the second and third pulleys is
g/4, and that of the third and fourth is g/8, etc. The acceleration of a mass far down in the
system therefore equals g(1/2+1/4+1/8 + ---) = g, which makes intuitive sense.

Note that 7' = 0 also makes eq. (2.72) true. But this corresponds to putting a mass of zero
at the end of a finite pulley system (see the following solution). &

Second Solution: Consider the following auxiliary problem.

Problem: Two setups are shown below in Fig. 2.29. The first contains a hanging
mass m. The second contains a pulley, over which two masses, m; and ms, hang. Let
both supports have acceleration as downward. What should m be, in terms of my
and mg, so that the tension in the top string is the same in both cases?

Answer: In the first case, we have
mg — T = mas. (2.73)

In the second case, let a be the acceleration of my relative to the support (with
downward taken to be positive). Then we have

T
mlg_5 = m(as —a),
T
mgg—§ = ma(as + a). (2.74)

Note that if we define ¢’ = g — a,, then we may write the above three equations as

/

mg = T,
, T
mig = 9 mia,
T
mog = 5 +maa. (2.75)

Eliminating a from the last two of these equations gives T' = 4mymag’/(m1 + ms).
Using this value of T in the first equation then gives
4m1m2

m=—22 (2.76)
mi + mo

l Vas

m

Figure 2.29

nmy
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Note that the value of ay is irrelevant. We effectively have a fixed support in a world
where the acceleration due to gravity is ¢’ (see eqs. (2.75)), and the answer can’t
depend on ¢’, by dimensional analysis. This auxiliary problem shows that the two-
mass system in the second case may be equivalently treated as a mass m, given by
eq. (2.76), as far as the upper string is concerned. B

Now let’s look at our infinite Atwood’s machine. Assume that the system has N
pulleys, where N — oo. Let the bottom mass be z. Then the auxiliary problem
shows that the bottom two masses, m and z, may be treated as an effective mass
f(z), where

dmx

flz) =

m—+x
4z
= —. 2.77
1+ (z/m) (2.77)
We may then treat the combination of the mass f(z) and the next m as an effective
mass f(f(x)). These iterations may be repeated, until we finally have a mass m and
a mass fN=1(z) hanging over the top pulley. So we must determine the behavior of
fN(x), as N — oo. This behavior is clear if we look at the following plot of f(x).

y
=X
4m 1 4
3m +
y=/x)
2m +
m
X
m 2m 3m 4m Sm

Note that £ = 3m is a fixed point of f(z). That is, f(3m) = 3m. This plot shows
that no matter what = we start with, the iterations approach 3m (unless we start at
x = 0, in which case we remain there). These iterations are shown graphically by the
directed lines in the plot. After reaching the value f(z) on the curve, the line moves
horizontally to the x value of f(z), and then vertically to the value f(f(x)) on the
curve, and so on.

Therefore, since fV¥(x) — 3m as N — oo, our infinite Atwood’s machine is equivalent
to (as far as the top mass is concerned) just two masses, m and 3m. You can then
quickly show that that the acceleration of the top mass is g/2.
Note that as far as the support is concerned, the whole apparatus is equivalent to a
mass 3m. So 3mg is the upward force exerted by the support.
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. Line of pulleys

Let m be the common mass, and let 7" be the tension in the string. Let a be the
acceleration of the end masses, and let a’ be the acceleration of the other N masses,
with upward taken to be positive. Note that these N accelerations are indeed all
equal, because the same net force acts on all of the internal N masses, namely 27T
upwards and mg downwards. The F' = ma equations for the end and internal masses
are, respectively,

T — mg = ma,
2T — mg = ma’. (2.78)

But the string has fixed length. Therefore,
N(2d')+a+a=0. (2.79)

Eliminating T from eqs. (2.78) gives ¢’ = 2a + g. Combining this with eq. (2.79)
then gives

Ng / g
a=— and a = . 2.80
2N +1° 2N +1 (2:80)
REMARKS: For N = 1, we have a = —¢g/3 and @' = g/3. For larger N, a increases in

magnitude and approaches —g/2 for N — oo, and a’ decreases in magnitude and approaches
zero for N — oo.

The signs of @ and a’ in eq. (2.80) may be surprising. You might think that if, say, N = 100,
then these 100 masses will ““win” out over the two end masses, so that the N masses will
fall. But this is not correct, because there are many (2N, in fact) tensions acting up on the
N masses. They do not act like a mass Nm hanging below one pulley. In fact, two masses
of m/2 on the ends will balance any number N of masses in the interior (with the help of
the upward forces from the top row of pulleys). &

. Ring of pulleys

Let T be the tension in the string. Then F' = ma for m; gives
2T — m;g = m;a;, (2.81)

with upward taken to be positive. The a;’s are related by the fact that the string
has fixed length, which implies that the sum of the displacements of all the masses is
zero. In other words,

a1 +as+---+any =0. (2.82)

If we divide eq. (2.81) by m;, and then add the N such equations together, we obtain,
using eq. (2.82),

1 1 1
2T<++---+>—Ng=0~ (2.83)

mp M2 mn
Substituting this value for T" into (2.81) gives

N
a; =g -1]. (2.84)

1 1 1
mi(m71+m7,2+’”+m7N>

A few special cases are: If all the masses are equal, then all a; = 0. If mi = 0 (and all the
others are not zero), then ar = (N — 1)g, and all the other a; = —g.
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9. Exponential force
We are given & = e~%. Integrating this with respect to time gives v(t) = —e~%/b+ A.
Integrating again gives z(t) = e~% /b? 4+ At + B. The initial condition, v(0) = 0, gives
—1/b+ A =0= A= 1/b. And the initial condition, x(0) = 0, gives 1/b*> + B =
0 = B = —1/b%. Therefore,

—bt
e t 1
()= —+-— 5. 2.85
(=5 +3 1 (285)
Limits: For t — 0o, v approaches 1/b, and x approaches t/b— 1/b?. We see that the particle
eventually lags a distance 1/b% behind another particle that started at the same position but
with speed v = 1/b.

10. Falling chain

Let the density of the chain be p, and let y(¢) be the length hanging down through
the hole at time ¢. Then the total mass is p¢, and the mass hanging below the hole is
py. The net downward force on the chain is (py)g, so F = ma gives

pgy=(p0)j = G=7y. (2.86)
At this point, there are two ways we can proceed:

First method: Since we have a function whose second derivative is proportional
to itself, a good bet for the solution is an exponential function. And indeed, a quick
check shows that the solution is

y(t) = Ae® + Be where o = % . (2.87)
Taking the derivative of this to obtain ¢(¢), and using the given information that
9(0) = 0, we find A = B. Using y(0) = yo, we then find A = B = yy/2. So the length
that hangs below the hole is

Yo

y(t) = 0l (e* + e~ ") = yg cosh(at). (2.88)
And the speed is
y(t) = % (e*" — ") = ayp sinh(at). (2.89)

The time T that satisfies y(T') = ¢ is given by £ = ygcosh(aT). Using sinhz =
Vcosh? z — 1, we find that the speed of the chain right when it loses contact with the

table is
y(T) = ayosinh(aT) = ay /02 — y¢ = /gly/1 — 3, (2.90)

where 79 = yo/¢ is the initial fraction hanging below the hole.

If o ~ 0, then the speed at time T is v/g¢ (this quickly follows from conservation of
energy, which is the subject of Chapter 4). Also, you can show that eq. (2.88) implies
that T goes to infinity logarithmically as g — 0.

Second method: Write §j as vdv/dy in eq. (2.86), and then separate variables and
integrate to obtain

v y
/ vdv = a2/ ydy = v? = o (y? —yd), (2.91)
0 Yo
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where a = 1/g/¢. Now write v as dy/dt and separate variables again to obtain

[ o] >
— =« dt. (2.92
vo VY2 — y% 0

The integral on the left-hand side is cosh™ (y/y0), so we arrive at
y(t) = yo cosh(at), (2.93)

in agreement with eq. (2.88). The solution proceeds as above. However, an easier
way to obtain the final speed with this method is to simply use the result for v in
eq. (2.91). This tells us that the speed of the chain when it leaves the table (that is,

when y = /) is v = ay/f? — yZ, in agreement with eq. (2.90).
Circling around a pole

Let F' be the tension in the string. At the mass, the angle between the string and the
radius of the dotted circle is @ = sin~!(r/R). In terms of 6, the radial and tangential
F = ma equations are
Fcos@
Fsinf = mao. (2.94)

Dividing these two equations gives tanf = (Rv)/v?

grating gives

. Separating variables and inte-

/”di) B tan@/tdt
vo U2 B R 0

11 (tan0)t
vo v R
1 (tan@)t\ "
= t) = _—_— . 2.95
o = (-5 (2.95)
REMARK: Note that v becomes infinite when

- R

t=T= e (2.96)

In other words, you can keep the mass moving in the desired circle only up to time 7. After
that, it is impossible. (Of course, it will become impossible, for all practical purposes, long
before v becomes infinite.) The total distance, d = fvdt, is infinite, because this integral
diverges (barely, like a log) as ¢ approaches T. &

Throwing a beach ball
On both the way up and the way down, the total force on the ball is

F = —mg — maw. (2.97)

On the way up, v is positive, so the drag force points downward, as it should. And
on the way down, v is negative, so the drag force points upward.

Our strategy for finding vy will be to produce two different expressions for the maxi-
mum height, h, and then equate them. We’ll find these two expressions by considering
the upward and then the downward motion of the ball. In doing so, we will need to
write the acceleration of the ball as a = v dv/dy.
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For the upward motion, F' = ma gives

dv
—mg — maov = MnMv—
dy
h 0
d
— /dy:_/””. (2.98)
0 vy § TV

where we have taken advantage of the fact that we know that the speed of the ball
at the top is zero. Writing v/(g + av) as [1 — g/(g + av)]/a, we may evaluate the

integral to obtain
h:w)—gln(l—&—m). (2.99)
g

Now let us consider the downward motion. Let v; be the final speed, which is a positive
quantity. The final velocity is then the negative quantity, —v;. Using F' = ma, we

similarly obtain
0 —vy d
/ dy = f/ vew (2.100)
h o gtav

Performing the integration (or just replacing the vg in eq. (2.99) with —v¢) gives

h=-2_ 9y (1—O‘Uf>. (2.101)
9

Equating the expressions for h in egs. (2.99) and (2.101) gives an implicit equation
for v¢ in terms of vy,

W)) . (2.102)

vo—|—vf:gln(
Q@ g — auy

REMARKS: In the limit of small a (more precisely, in the limit avg/g < 1), we can use
In(142z) =z —2%/24 - - to obtain approximate values for k in egs. (2.99) and (2.101). The
results are, as expected,

v vf
h~ — d h~ —. 2.1
5 an 5% (2.103)

We can also make approximations for large « (or large awvo/g). In this limit, the log term
in eq. (2.99) is negligible, so we obtain h = vg/a. And eq. (2.101) gives vs &~ g/, because
the argument of the log must be very small in order to give a very large negative number,
which is needed to produce a positive h on the left-hand side. There is no way to relate vy
and h is this limit, because the ball quickly reaches the terminal velocity of —g/a (which is
the velocity that makes the net force equal to zero), independent of h. &

Let’s now find the times it takes for the ball to go up and to go down. We’ll present
two methods for doing this.

First method: Let T} be the time for the upward path. If we write the acceleration
of the ball as a = dv/dt, then F' = ma gives

N
dt

/UO dv_ (2.104)

o 9t av

—-mg —mav =

T
— / dt
0
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1
T, = - In (1 + O‘UO) . (2.105)
«Q g
In a similar manner, we find that the time T, for the downward path is
1 avy
Ty=-——In(1-"L). (2.106)
« g
Therefore,
1
T\ +T=-In (*‘”0‘“0> . (2.107)
e g — auy
Using eq. (2.102), we have
T, +T, = 0t (2.108)
g

This is shorter than the time in vacuum (namely 2vy/g) because vy < .

Second method: The very simple form of eq. (2.108) suggests that there is a
cleaner way to calculate the total time of flight. And indeed, if we integrate m dv/dt =
—mg—mau with respect to time on the way up, we obtain —vg = —gT; —ah (because
Jwvdt = h). Likewise, if we integrate mdv/dt = —mg — mav with respect to time
on the way down, we obtain —v; = —gTs + ah (because [vdt = —h). Adding these
two results gives eq. (2.108). This procedure only works, of course, because the drag
force is proportional to v.

REMARKS: The fact that the time here is shorter than the time in vacuum isn’t obvious.
On one hand, the ball doesn’t travel as high in air as it would in vacuum (so you might think
that 71 + T < 2vo/g). But on the other hand, the ball moves slower in air (so you might
think that Th + T> > 2vg/g). It isn’t obvious which effect wins, without doing a calculation.

For any «, you can use eq. (2.105) to show that 71 < vo/g. But T> is harder to get a handle
on, because it is given in terms of vy. But in the limit of large «, the ball quickly reaches
terminal velocity, so we have T> =~ h/vf =~ (vo/a)/(g/c) = vo/g. Interestingly, this is the
same as the downward (and upward) time for a ball thrown in vacuum. &

13. Balancing a pencil

(a) The component of gravity in the tangential direction is mgsin 6 ~ mg6. There-
fore, the tangential F' = ma equation is mgf = mf0, which may be written as
6 = (g/0)f. The general solution to this equation is?°

0(t) = Ae'/™ + Be 77, where 7 = +/{/g. (2.109)
The constants A and B are found from the initial conditions,

9(0):90 - A+ B =0,

6(0) = wo — (A—B)/T = wy. (2.110)

Solving for A and B, and then plugging them into eq. (2.109) gives

1 1
0(t) = 5 (90 +wor) et/™ + 5 (0o —woT) e T (2.111)

29Tf you want, you can derive this by separating variables and integrating. The solution is
essentially the same as in the second method presented in the solution to Problem 10.
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(b) The constants A and B will turn out to be small (they will each be of order

\/ﬁ) Therefore, by the time the positive exponential has increased enough to
make 6 of order 1, the negative exponential will have become negligible. We will
therefore ignore the latter term from here on. In other words,

1
0(t) ~ 5 (6o + wor) et/ (2.112)

The goal is to keep 6 small for as long as possible. Hence, we want to minimize
the coefficient of the exponential, subject to the uncertainty-principle constraint,
(€00)(mlwy) > h. This constraint gives wy > h/(ml%6y). Therefore,

1 h
0(t) > 5 (90 + m€290> et/ (2.113)

Taking the derivative with respect to 6y to minimize the coefficient, we find that

the minimum value occurs at
ht
Op =1\ —. 2.114
0=/ (2114)

Substituting this back into eq. (2.113) gives

n
0(t) > \/m—; et/ (2.115)

Setting 6 ~ 1, and then solving for ¢ gives (using 7 = /£/g)

1 [¢ 243
t< 4\[9111 (mhzg) . (2.116)

With the given values, m = 0.01kg and ¢ = 0.1 m, along with ¢ = 10m/s? and
h =1.06- 10734 Js, we obtain

t < =(0.1s)In(9-10°") ~ 3.55. (2.117)

] =

No matter how clever you are, and no matter how much money you spend on
the newest, cutting-edge pencil-balancing equipment, you can never get a pencil
to balance for more than about four seconds.

REMARKS: This smallness of this answer is quite amazing. It is remarkable that a
quantum effect on a macroscopic object can produce an everyday value for a time scale.
Basically, the point here is that the fast exponential growth of 6 (which gives rise to
the log in the final result for ¢) wins out over the smallness of 7, and produces a result
for t of order 1. When push comes to shove, exponential effects always win.

The above value for ¢t depends strongly on £ and g, through the \/6/79 term. But the
dependence on m, ¢, and g in the log term is very weak. If m were increased by a
factor of 1000, for example, the result for ¢ would increase by only about 10%. Note
that this implies that any factors of order 1 that we neglected throughout this problem
are completely irrelevant. They will appear in the argument of the log term, and will
thus have negligible effect.

Note that dimensional analysis, which is generally a very powerful tool, won’t get you
too far in this problem. The quantity 4/¢/g has dimensions of time, and the quantity
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n = m*3g/h? is dimensionless (it is the only such quantity), so the balancing time

must take the form,
L
t~ \/;f(n), (2.118)

where f is some function. If the leading term in f were a power (even, for example, a
square root), then t would essentially be infinite (t ~ 10%° s for the square root). But f
in fact turns out to be a log (which you can’t determine without solving the problem),
which completely cancels out the smallness of &, reducing an essentially infinite time
down to a few seconds. &

14. Throwing a ball from a cliff

Let the inclination angle be 6. Then the horizontal speed is v, = vcosf, and the
initial vertical speed is v, = vsin@. The time it takes for the ball to hit the ground
is given by h + (vsin )t — gt?/2 = 0. Therefore,

v 2gh
t=—(sinf + y/sin® @ h == 2.119
P <s1n + 4/sin +,6’> , where [ 2 ( )

(The “—” solution for ¢ from the quadratic formula corresponds to the ball being
thrown backwards down through the cliff.) The horizontal distance traveled is d =

(v cos @)t, which gives
2
d_vc030<sin9+\/sin20+ﬂ>. (2.120)

g

We want to maximize this function of §. Taking the derivative, multiplying through
by v/sin? 6 + 3, and setting the result equal to zero, gives

(cos? 6 — sin® 0)y/sin® 0 + B = sin 6(3 — (cos® § — sin” 9)). (2.121)

Using cos?# = 1 —sin? 6, and then squaring and simplifying this equation, gives an

optimal angle of . .

Sin Oppax = = . 2.122
VZ+B 2+ 2gh/0? (2.122)
Plugging this into eq. (2.120), and simplifying, gives a maximum distance of
2 2 2ah
D = =T+ 5= 414+ 2L (2.123)
g g v

REMARKS: If h = 0, then we obtain Omax = 7/4 and dmax = 1}2/97 in agreement with the
example in Section 2.4. If h — oo or v — 0, then 6 ~ 0, which makes sense.

If we make use of conservation of energy (discussed in Chapter 4), it turns out that the final

speed of the ball when it hits the ground is vy = /v? + 2gh. The maximum distance in eq.
(2.123) may therefore be written as (with v; = v being the initial speed)

Vivf
s
Note that this is symmetric in v; and vy, as it must be, because we could imagine the

dmax —

(2.124)

trajectory running backwards. Also, it equals zero if v; is zero, as it should. We can also
write the angle 0 in eq. (2.122) in terms of vy (instead of h). You can show that the result
is tanf = v; /vy. You can further show that this implies that the initial and final velocities
are perpendicular to each other. The simplicity of all these results suggests that there is an
easier way to derive them, but I have no clue what it is. &
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15. Redirected motion

First Solution: We will use the results of Problem 14, namely egs. (2.123) and
(2.122), which say that an object projected from height y at speed v travels a maxi-
mum horizontal distance of

v2 2qy
Amax = —\/ 1+ —, 2.125
Rl (2.125)
and the optimal angle yielding this distance is
. 1
sinf = —— (2.126)

V2 + 2gy 02

In the problem at hand, the object is dropped from a height h, so conservation of
energy (or integration of mv dv/dy = —mg) says that the speed at height y is

v=1/2g9(h —y). (2.127)

Plugging this into eq. (2.125) shows that the maximum horizontal distance, as a
function of y, is
dmax(y) =2 h(h - y) (2128)

This is maximum when y = 0, in which case the distance is dyax = 2h. Eq. (2.126)
then gives the associated optimal angle as 8 = 45°.

Second Solution: Assume that the greatest distance, dy, is obtained when y = yq
and # = 0y. And let the speed at yg be vg. We will show that yo must be 0. We will
do this by assuming that yg # 0 and explicitly constructing a situation that yields a
greater distance.

Consider the situation where the ball falls all the way down to y = 0 and then bounces
up at an angle such that when it reaches the height yg, it is traveling at an angle 6
with respect to the horizontal. When it reaches the height yq, the ball will have speed
vo (by conservation of energy), so it will travel a horizontal distance d from this point.
But the ball already traveled a nonzero horizontal distance on its way up to the height
yo. We have therefore constructed a situation that yields a distance greater than dy.
Hence, the optimal setup must have yy = 0. Therefore, the maximum distance is
obtained when y = 0, in which case the example in Section 2.4 says that the optimal
angle is 6 = 45°.

If we want the ball to go even further, we can simply dig a (wide enough) hole in the
ground and have the ball bounce from the bottom of the hole.

16. Maximum trajectory length

Let 6 be the angle at which the ball is thrown. Then the coordinates are given by
r = (vcosf)t and y = (vsinf)t — gt?/2. The ball reaches its maximum height at
t = wvsinf/g, so the length of the trajectory is

vsin6/g dx 2 dz 2
L = 2 — — | dt
[ ()

vsinf/g
2/ V/(vcos0)2 + (vsind — gt)2 dt
0

vsinf/g gt 2
= 20 0089/ 1+ (tan@ — ) dt. (2.129)
0 v cos 6
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17.

Letting z = tanf — gt/v cos 6, we obtain
202 cos?6 [°
L= fﬂ/ V1+ 22dz. (2.130)
g tan 6

We can either look up this integral, or we can derive it by making a z = sinha
substitution. The result is

202 cos? 0 1 tan 6
L = 7'§<Z\/1+Z2+IH(Z+ 1+22)>
9 0
2 inf +1
= U(sin0+008291n(sm+>>. (2.131)
g cos 6

As a double-check, you can verify that L = 0 when § = 0, and L = v?/g when 6 = 90°.
Taking the derivative of eq. (2.131) to find the maximum, we obtain

1 . 2 1 . .
Ozcos@—Qcostin@ln(+Slne>—|—c0529< cos )COS 0+ —l—sm@)sme.

0s 0 1-+sinf cos2 0
(2.132)
This reduces to ) g
-+ sin
=sinf1 . 2.133
sin 0 In ( p—"z ) ( )

Finally, you can show numerically that the solution for 6 is 6y ~ 56.5°.

REMARK: A few possible trajectories are shown Fig. 2.30. Since it is well known that
0 = 45° provides the maximum horizontal distance, it follows from the figure that the 6
yielding the arc of maximum length must satisfy 8y > 45°. The exact angle, however, requires
the above detailed calculation. &

Maximum trajectory area

Let 6 be the angle at which the ball is thrown. Then the coordinates are given by
x = (veosf)t and y = (vsin)t — gt?/2. The total time in the air is 2(vsin6)/g, so
the area under the trajectory is

Tmax
A = / ydz
0

2vsinf/g gt2
= / <(vsin9)t - 2) vcos O dt
0

2 4
= 2% sin®coso. (2.134)

392
Taking the derivative, we find that the maximum occurs when tanf = /3, that is,

when
6 = 60°. (2.135)

The maximum area is then A = v/3v? /8g2. Note that by dimensional analysis, we
know that the area, which has dimensions of distance squared, must be proportional
to v*/g2.

0=45°

path )

Figure 2.30
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Bouncing ball

The ball travels 2h during the first up-and-down journey. It travels 2hf during the
second, then 2hf? during the third, and so on. Therefore, the total distance traveled

1S
D 2h(L+ f+ P+ P +)
2h
= 15 (2.136)

The time it takes to fall down during the first up-and-down is obtained from h = gt /2.
Therefore, the time for the first up-and-down equals 2¢t = 2,/2h/g. Likewise, the time

for the second up-and-down equals 2+/2(hf)/g. Each successive up-and-down time
decreases by a factor of /f, so the total time is

T = 2\/?(1+f1/2+f1+f3/2+~-~)

2h 1

= 92./=. ) 2.137
g 1-Vf (2.137)
The average speed equals
D gh/2
— = . 2.138
T 1++f ( )

REMARK: The average speed for f = 1 is roughly half of the average speed for f =~ 0. This
may seem somewhat counterintuitive, because in the f ~ 0 case the ball slows down far more
quickly than in the f ~ 1 case. But the f ~ 0 case consists of essentially only one bounce,
and the average speed for that one bounce is the largest of any bounce. Both D and T are
smaller for f ~ 0 than for f ~ 1, but T is smaller by a larger factor. &

Centripetal acceleration

The position and velocity vectors at two nearby times are shown in Fig. 2.31. Their
differences, Ar = ro — r; and Av = vy, — vy, are shown in Fig. 2.32. The angle
between the v’s is the same as the angle between the r’s, because each v makes a
right angle with the corresponding r. The triangles in Fig. 2.32 are therefore similar,
so we have

A A
[avl _ 1ar (2.139)
v r
where r = |r| and v = |v|. Dividing eq. (2.139) through by At gives
1]Av 1| Ar la]  |v] v?
Z = _|== —_ = = = —. 2.14
v | At r| At v r = (2.140)

We have assumed that At is infinitesimal here, which allows us to get rid of the A’s
in favor of instantaneous quantities.

Free particle
For zero force, eqs. (2.52) give

) = —276. (2.141)
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21.

Separating variables in the second equation and integrating yields

/ / = nf=—-2mlr+C = é:%, (2.142)
r

where D = e is a constant of integration, determined by the initial conditions.?!

Substituting this value of 6 into the first of egs. (2.141), and then multiplying both
sides by 7 and integrating, gives

) D\? e [ 7 i _ D2

We want 7 = 0 when 7 = 79, which implies that E = D?/2r3. Therefore,

f = o 44
where V = D/rg. Separating variables and integrating gives
rr _ 2 _ .2 _ _ 2 2
—_ =V = r2—rg =Vt = r=4/r5+ (Vt)2,
V2 —rk
(2.145)

where the constant of integration is zero, because we have chosen ¢ = 0 to correspond
with 7 = rg. Plugging this value for r into the § = D/r? = Vry/r? result in eq.
(2.142) gives

Virg dt Vit
/d@— 10 — f=tan"! () —  cosf=——0
3+ (Vi) o 2+ (Vit)?
(2.146)
Finally, combining this with the result for r in eq. (2.145) gives cosf = ro/r, as
desired.
A force Fy = 70
With the given force, egs. (2.52) become

0 = m(i—r?),
mid = m(rf + 2i0). (2.147)

The second of these equations gives —7#0 = rd. Therefore,

/%:—/f e mb=-mr4C = =2 (2.1
.

r
where D = e“ is a constant of integration, determined by the initial conditions.
Substituting this value of 8 into the first of eqs. (2.147), and then multiplying both

sides by 7 and integrating, gives

DA 2 . .9
f:r() — /W:D2/f — %:D2lnr+E. (2.149)
T T

Therefore,
=vVAlnr+ B, (2.150)

where A = 2D? and B = 2F.

21The statement that _7‘29 is constant is simply the statement of conservation of angular momen-
tum, because 720 = r(r) = rvg. More on this in Chapters 6 and 7.
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Chapter 3

Oscillations

Copyright 2004 by David Morin, morin@physics.harvard.edu

In this chapter we will discuss oscillatory motion. The simplest examples of such
motion are a swinging pendulum and a mass on a spring, but it is possible to make a
system more complicated by introducing a damping force and/or an external driving
force. We will study all of these cases.

We are interested in oscillatory motion for two reasons. First, we study it because
we can study it. This is one of the few systems in physics where we can solve the
motion exactly. There’s nothing wrong with looking under the lamppost every now
and then. Second, oscillatory motion is ubiquitous in nature, for reasons that will
become clear in Section 4.2. If there was ever a type of physical system worthy of
study, this is it.

We’ll jump right into some math in Section 3.1. And then in Section 3.2 we’ll
show how the math is applied to the physics.

3.1 Linear differential equations

A linear differential equation is one in which z and its time derivatives enter only
through their first powers. An example is 3&+72+2z = 0. An example of a nonlinear
differential equation is 3% + 742 + 2 = 0.

If the right-hand side of the equation is zero, then we use the term homogeneous
differential equation. If the right-hand side is some function of ¢, as in the case of
3i& — 44 = 9t? — 5, then we use the term inhomogeneous differential equation. The
goal of this chapter is to learn how to solve these two types of equations. Linear
differential equations come up again and again in physics, so we had better find a
systematic method of solving them.

The techniques that we will use are best learned through examples, so let’s
solve a few differential equations, starting with some simple ones. Throughout this
chapter,  will be understood to be a function of {. Hence, a dot will denote time
differentiation.

Example 1 (¢ = ax): This is a very simple differential equation. There are two
ways (at least) to solve it.

I11-1
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First method: Separate variables to obtain dz/x = adt, and then integrate to
obtain Inx = at + c¢. Exponentiate to obtain

= Ae™, (3.1)
where A = e€ is a constant factor. A is determined by the value of x at, say, t = 0.

Second method: Guess an exponential solution, that is, one of the form x = Ae®?.
Substitution into & = ax immediately gives a = a. Therefore, the solution is = =
Ae®. Note that we can’t solve for A, due to the fact that our differential equation is
homogeneous and linear in z (translation: A cancels out). A is determined from the
initial condition.

This method may seem a bit silly, and somewhat cheap. But as we will see below,
guessing these exponential functions (or sums of them) is actually the most general
thing we can try, so the method is indeed quite general.

REMARK: Using this method, you may be concerned that although we have found one
solution, we might have missed another one. But the general theory of differential equations
says that a first-order linear equation has only one independent solution (we’ll just accept
this fact here). So if we find one solution, then we know that we’ve found the whole thing.

&

Example 2 (Z = ax): If a is negative, then this equation describes the oscillatory
motion of, say, a spring. If a is positive, then it describes exponentially growing or
decaying motion. There are two ways (at least) to solve this equation.

First method: We can use the separation-of-variables method of Section 2.3 here,
because our system is one in which the force depends on only the position . But this
method is rather cumbersome, as you found if you did Exercise 2.10 or 2.11. It will
certainly work, but in the case where our equation is a linear function of x, there is
a much simpler method:

Second method: As in the first example above, we can guess a solution of the form
z(t) = Ae“® and then find out what o must be. Again, we can’t solve for A, because
it cancels out. Plugging Ae®! into & = ax gives a = £+/a. We have therefore found
two solutions. The most general solution is an arbitrary linear combination of these,

z(t) = AeVel 4 Be Vol (3.2)
as you can quickly check. A and B are determined from the initial conditions.

VERY IMPORTANT REMARK: The fact that the sum of two different solutions is again a so-
lution to our equation is a monumentally important property of linear differential equations.
This property does not hold for nonlinear differential equations, for example #? = x, because
the act of squaring after adding the two solutions produces a cross term which destroys the
equality, as you should check.

This property is called the principle of superposition. That is, superimposing two solutions
yields another solution. This quality makes theories in physics that are governed by linear
equations much easier to deal with than those that are governed by nonlinear ones. General
Relativity, for example, is permeated with nonlinear equations, and solutions to most General
Relativity systems are extremely difficult to come by.
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For equations with one main condition
(Those linear), you have permission
To take your solutions,

With firm resolutions,

And add them in superposition. &

Let’s say a little more about the solution in eq. (3.2). If a is negative, then let’s define

= —w?, where w is a real number. The solution now becomes z(t) = Ae'“! 4 Be ™!,
Using e = cos@ + isinf, this can be written in terms of trig functions, if desired.
Various ways of writing the solution are:

Aeiwt + Be—iwt
C coswt + Dsinwt,
= FEcos(wt+ ¢1),
Fsin(wt + ¢2). (3.3)

The various constants here are related to each other. For example, C' = FE cos ¢,
and D = —FE'sin ¢y, which follow from the cosine sum formula. Note that there
are two free parameters in each of the above expressions for x(t). These parameters
are determined from the initial conditions (say, the position and speed at t = 0).
Depending on the specifics of a given problem, one of the above forms will work
better than the others.

If @ is positive, then let’s define a = w?, where w is a real number. The solution in
eq. (3.2) now becomes x(t) = Ae“t + Be™*. Using e’ = cosh + sinh 6, this can be
written in terms of hyperbolic trig functions, if desired. Various ways of writing the
solution are:

x(t) Ae®t + Be !

x(t) = Ccoshwt+ Dsinhwt,

x(t) = FE-cosh(wt+ ¢1),

x(t) Fsinh(wt + ¢2). (3.4)

Again, the various constants are related to each other. If you are unfamiliar with the
hyperbolic trig functions, a few facts are listed in Appendix A.

REMARKS: Although the solution in eq. (3.2) is completely correct for both signs of a, it is
generally more illuminating to write the negative-a solutions in either the trig forms or the
et exponential form where the #’s are explicit.

As in the first example above, you may be concerned that although we have found two
solutions to the equation, we might have missed others. But the general theory of differential
equations says that our second-order linear equation has only two independent solutions.
Therefore, having found two independent solutions, we know that we’ve found them all. &

The usefulness of this method of guessing exponential solutions cannot be overempha-
sized. It may seem somewhat restrictive, but it works. The examples in the remainder
of this chapter should convince you of this.

This is our method, essential,
For equations we solve, differential.
It gets the job done,
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And it’s even quite fun.
We just try a routine exponential.

Example 3 (& + 2y + axz = 0): This will be our last mathematical example, and
then we’ll start doing some physics. As we will see later, this example pertains to a
damped harmonic oscillator. We have put a factor of 2 in the coefficient of & here to
make some later formulas look nicer.

Note that the force in this example (if we allow ourselves to think physically for a
moment) is —2v& — ax (times m), which depends on both v and z. Our methods of
Section 2.3 therefore don’t apply. This leaves us with only our method of guessing an
exponential solution, Ae®’. Plugging this into the given equation, and cancelling the
nonzero factor of Ae®t, gives

o +2ya +a=0. (3.5)

-yt VY2 —a. (3.6)

Call these a; and as. Then the general solution to our equation is

The solutions for « are

z(t) = Ae™'+ Be™?!
= e (Aetm + Beft\/ﬂ) . (3.7)

Well, well, our method of trying Ae®* doesn’t look so trivial anymore. ..

If v2 — a < 0, then we can write our answer in terms of sines and cosines, so we have
oscillatory motion that decreases in time due to the e~ factor (or it increases, if
7 < 0, but this is rarely physical). If 42 —a > 0, then we have exponential motion.
We’ll talk more about these different possibilities in Section 3.3.

In general, if we have an n-th order homogeneous linear differential equation,

d"z a1z dx
W'Fcn—lm'i‘"‘ﬁ-ﬂa

then our strategy is to guess an exponential solution, z(t) = Ae®, and to then (in
theory) solve the resulting nth order equation (namely o™ + ¢, 10" ' +-- -+ cja+
co = 0) for o, to obtain the solutions aq,...,a,. The general solution for z(t) is
then

+ cox =0, (3.8)

o(t) = A1e™? + Age® + ... 4 Ape®t, (3.9)

where the A; are determined from the initial conditions. In practice, however, we
will rarely encounter differential equations of degree higher than 2. Note: if some of
the a; happen to be equal, then eq. (3.9) is not valid, so a modification is needed.
We will encounter such a situation in Section 3.3.

3.2 Simple harmonic motion

Let’s now do some real live physical problems. We’ll start with simple harmonic
motion. This is the motion undergone by a particle subject to a force F(z) = —kax.
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The classic system that undergoes simple harmonic motion is a mass attached
to a spring (see Fig. 3.1). A typical spring has a force of the form F(z) = —kz,
where z is the displacement from equilibrium. This is “Hooke’s law,” and it holds
as long as the spring isn’t stretched too far; eventually this expression breaks down
for any real spring. Assuming a —kx force, F' = ma gives —kx = m&, or

. 2 _ k
T+ w'x=0, where w=/—. (3.10)
m
This is simply the equation we studied in Example 2 in the previous section. From
eq. (3.3), the solution to may be written as

x(t) = Acos(wt + ¢), (3.11)

where A and ¢ are determined from the initial conditions. This trig solution shows
that the system will oscillate back and forth forever in time.

REMARK: The constants A and ¢ are determined from the initial conditions. If, for
example, £(0) = 0 and £(0) = v, then we must have Acos¢ = 0 and —Awsin ¢ = v. Hence,
¢ = 7/2, and A = —v/w. Therefore, the solution is xz(t) = —(v/w) cos(wt + 7/2). This
looks a little nicer if we write it as z(t) = (v/w)sin(wt). So, given these initial conditions,
we could have arrived at this result a little quicker if we had chosen the “sin” solution in
eq. (3.3). &

Example (Simple pendulum): Another classic system that undergoes (approxi-
mately) simple harmonic motion is the simple pendulum, that is, a mass that hangs
on a massless string and swings in a vertical plane.

Let £ be the length of the string, and let  be the angle the string makes with the
vertical (see Fig. 3.2). Then the gravitational force on the mass in the tangential
direction is —mgsinf. So F' = ma in the tangential direction gives

—mgsin @ = m((6) (3.12)

The tension in the string exactly cancels the radial component of gravity, so the radial
F' = ma serves only to tell us the tension, which we won’t need here.

We will now enter the realm of approximations and assume that the amplitude of the
oscillations is small. Without this approximation, the problem cannot be solved in
closed form. Assuming 6 is small, we can use sinf ~ 0 in eq. (3.12) to obtain
0+ w0 =0, where w = % . (3.13)
Therefore,
0(t) = Acos(wt + ¢), (3.14)

where A and ¢ are determined from the initial conditions.

The true motion is arbitrarily close to this, for sufficiently small amplitudes. Exercise
8 deals with the higher-order corrections to the motion in the case where the amplitude
is not small.

k
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Figure 3.1

Figure 3.2
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3.3 Damped harmonic motion

Consider a mass m attached to the end of a spring with spring constant k. Let the

mass be subject to a drag force proportional to its velocity, 'y = —bv; see Fig. 3.3.1
What is the position as a function of time??
The force on the mass is F' = —bi — kz. So F' = m& gives
i+ 2vi + w?z =0, (3.15)

where 2y = b/m, and w = \/k/m. But this is exactly the equation we solved in
Example 3 in Section 3.1 (with a — w?). Now, however, we have the physical
restrictions that v > 0 and w? > 0. Letting Q% = v — w? for simplicity, we may
write the solution in eq. (3.7) as

z(t)=e " (Ath + Be_m) , where Q2 =42 — w2 (3.16)
There are three cases to consider.

Case 1: Underdamping (92?2 < 0)

In this case, w > 7. Since ) is imaginary, let us define the real number & =
Vw? — 42, so that Q = iw. Eq. (3.16) then gives

z(t) = e (Aei‘:’t + Be_m’t)
= e Ccos(@t + ¢). (3.17)

These two forms are equivalent. Depending on the given problem, one of these
expressions will inevitably work better than the other. Or perhaps one of the other
forms in eq. (3.3) (times e~7*) will be the most useful one.

Using e = cosf + isinf, the constants in eq. (3.17) are related by A 4+ B =
Ccos¢p and A — B = iC'sin¢. In a physical problem, x(t) is real, so we must have
A* = B, where the star denotes complex conjugation. The two constants A and B,
or C and ¢, are determined from the initial conditions.

The cosine form makes it apparent that the motion is harmonic motion whose
amplitude decreases in time, due to the e™* factor. A plot of such motion is shown
in Fig. 3.4. Note that the frequency of the motion, @ = /w? — 2, is less than the
natural frequency, w, of the undamped oscillator.

REMARKS: If v is very small, then @ ~ w, which makes sense because we almost have
an undamped oscillator. If « is very close to w, then @ = 0. So the oscillations are very

!The subscript f stands for “friction” here. We’ll have to save the letter d for “driving” in the
next section.

2We choose to study this Fy = —bv damping force because (1) it is linear in z, which will allow
us to solve for the motion, and (2) it is a perfectly realistic force; an object moving at a slow speed
through a fluid will generally experience a drag force proportional to its velocity. Note that this
Fy = —bv force is not the force that a mass would feel if it were placed on a table with friction. In
that case the drag force would be (roughly) constant.
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slow. Of course, for very small @ it is hard to even tell that the oscillations exist, because
they will damp out on a time scale of order 1/+, which will be short compared to the long
time scale of the oscillations, 1/@. &

Case 2: Overdamping (2% > 0)
In this case, w < 7. Q is real (and taken to be positive), so eq. (3.16) gives
z(t) = Ae= (=Dt L Be=(+)E, (3.18)

There is no oscillatory motion in this case; see Fig. 3.5. Note that v > Q =
V7?2 — w2, so both of the exponents are negative. The motion therefore goes to
zero for large t. This had better be the case, because a real spring is certainly not
going to have the motion head off to infinity. If we had obtained a positive exponent
somehow, we’d know we had made a mistake.

REMARKS: If 7 is just slightly larger than w, then Q = 0, so the two terms in (3.18) are
roughly equal, and we essentially have exponential decay, according to e~ 7. If v > w (that
is, strong damping), then Q = ~, so the first term in (3.18) dominates, and we essentially
have exponential decay according to e~(V=)*. We can be somewhat quantitative about
this by approximating  as Q = /72 —w? = /1 —w?/92 ~ v(1 — w?/27?). Hence,
the exponential behavior goes like e~w"t/27 This is slow decay (that it, slow compared to
t ~ 1/w), which makes sense if the damping is very strong. The mass slowly creeps back to
the origin, as in the case of a weak spring immersed in molasses. &

Case 3: Critical damping (0% = 0)

In this case, ¥ = w. Eq. (3.15) therefore becomes i + 2vi +v2x = 0. In this special
case, we have to be careful in solving our differential equation. The solution in eq.
(3.16) is not valid, because in the procedure leading to eq. (3.7), the roots o and
ag are equal (to —v), so we have really found only one solution, e=7*. We'll just
invoke here the result from the theory of differential equations that says that in this
special case, the other solution is of the form te ="t

REMARK: You should check explicitly that te~7! solves the equation & +2vi&+~22 = 0.
Or if you want to, you can derive it in the spirit of Problem 1. In the more general case
where there are n identical roots in the procedure leading to eq. (3.9) (call them all ),
the n independent solutions to the differential equation are t*e¢® for 0 < k < (n — 1). But
more often than not, there are no repeated roots, so you don’t have to worry about this. &

Our solution is therefore of the form
z(t) = e (A + Bt). (3.19)

The exponential factor eventually wins out over the Bt term, so the motion goes to
zero for large t (see Fig. 3.6).

If we are given a spring with a fixed w, and if we look at the system for different
values of v, then critical damping (when v = w) is the case where the motion

X(I)\

Figure 3.5

x(f) = eV (4+B1)

Figure 3.6
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converges to zero in the quickest way (which is like e7**). This is true because in

the underdamped case (7 < w), the envelope of the oscillatory motion goes like e,
which goes to zero slower than e !, because v < w. And in the overdamped case
(y > w), the dominant piece is the e~(~* term. And as you can verify, if v > w
then v — Q = v — /72 — w? < w, so this motion also goes to zero slower than e *.

Critical damping is very important in many real systems, such as screen doors
and shock absorbers, where the goal is to have the system head to zero (without
overshooting and bouncing around) as fast as possible.

3.4 Driven (and damped) harmonic motion

Before we examine driven harmonic motion, we must learn how to solve a new type
of differential equation. How can we solve something of the form

&+ 2vi + ax = Coe™0!, (3.20)

where v, a, wg, and Cy are given quantities? This is an inhomogeneous differential
equation, due to the term on the right-hand side. It’s not very physical, because the
right-hand side is complex, but let’s not worry about this for now. Equations of this
sort will come up again and again, and fortunately there is a nice and easy (although
sometimes messy) method for solving them. As usual, the method involves making
a reasonable guess, plugging it in, and seeing what condition comes out.
Since we have the e“? sitting on the right-hand side of eq. (3.20), let’s guess
a solution of the form z(t) = Ae™of. A will depend on wg, among other things, as
we will see. Plugging this guess into eq. (3.20) and cancelling the non-zero factor
of €0t we obtain
(—wd) A+ 27y(iwp) A + aA = Cy. (3.21)

Solving for A, we find that our solution for z is

x(t) = ( Co ) et (3.22)

—w? + 2iywy + a

Note the differences between this technique and the one in Example 3 in Section
3.1. In that example, the goal was to determine the « in z(t) = Ae*. And there
was no way to solve for A; the initial conditions determined A. But in the present
technique, the wg in x(t) = Ae™0! is a given quantity, and the goal is to solve for
A in terms of the given constants. Therefore, in the solution in eq. (3.22), there
are no free constants to be determined from the initial conditions. We’ve found one
particular solution, and we're stuck with it. The term particular solution is what
people use for eq. (3.22).

With no freedom to adjust the solution in eq. (3.22), how can we satisfy an
arbitrary set of initial conditions? Fortunately, eq. (3.22) does not represent the
most general solution to eq. (3.20). The most general solution is the sum of our
particular solution in eq. (3.22), plus the “homogeneous” solution we found in
eq. (3.7). This sum is certainly a solution, because the solution in eq. (3.7) was
explicitly constructed to yield zero when plugged into the left-hand side of eq. (3.20).
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Therefore, tacking it onto our particular solution doesn’t change the equality in eq.
(3.20), because the left side is linear. The principle of superposition has saved the
day. The complete solution to eq. (3.20) is therefore

z(t) =e <AetV 774 4 Bemtv 72&) + ( 3 O,O > et (3.23)
—wj + 2tywo + a

where A and B are determined from the initial conditions.
With superposition in mind, it is clear what the strategy should be if we have a
slightly more general equation to solve, for example,

i+ 22 4 ax = Cre™t 4 Cye™2t, (3.24)

Simply solve the equation with only the first term on the right. Then solve the
equation with only the second term on the right. Then add the two solutions. And
then add on the homogeneous solution from eq. (3.7). We are able to apply the
principle of superposition because the left-hand side of eq. (3.24) is linear.

Finally, let’s look at the case where we have many such terms on the right-hand

side, for example,
N

i+2v+ax =) Che™. (3.25)
n=1
We simply have to solve N different equations, each with only one of the N terms
on the right-hand side. Then we add up all the solutions, and then we add on the
homogeneous solution from eq. (3.7). If NV is infinite, that’s fine; we’ll just have to
add up an infinite number of solutions. This is the principle of superposition at its
best.

REMARK: The previous paragraph, combined with a basic result from Fourier analysis,
allows us to solve (in principle) any equation of the form

&4 2y + ax = f(t). (3.26)

Fourier analysis says that any (nice enough) function f(t) may be decomposed into its
Fourier components,

fit)= /_00 g(w)e™tdw. (3.27)

In this continuous sum, the functions g(w) take the place of the coefficients C,, in eq. (3.25).
So, if S, (t) is the solution for z(t) when there is only the term e’! on the right-hand side
of eq. (3.26) (that is, S, (t) is the solution given in eq. (3.22), without the Cj factor), then
the principle of superposition tells us that the complete particular solution to (3.26) is

x(t) = /jo g(w)S,(t) dw. (3.28)

Finding the coefficients g(w) is the hard part (or, rather, the messy part), but we won’t
get into that here. We won’t do anything with Fourier analysis in this book, but we just
wanted to let you know that it is possible to solve (3.26) for any function f(t). Most
of the functions we’ll consider will be nice functions like coswgt, for which the Fourier
decomposition is simply the finite sum, coswot = %(e"“‘)t +eTwol) &
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Let’s now do a physical example.

Example (Damped and driven spring): Consider a spring with spring constant
k. A mass m at the end of the spring is subject to a drag force proportional to its
velocity, Fy = —bv. The mass is also subject to a driving force, Fy(t) = Fqcoswgt
(see Fig. 3.7). What is its position as a function of time?

Figure 3.7

Solution: The force on the mass is F'(z,&,t) = —bi& — kx + Fycoswgt. So F' = ma
gives
&4 2vi+w?zx = Fcoswgt
F . .
= 3 (et 4 e7rat) (3.29)

where 2y = b/m, w = \/k/m, and F = F;/m. Note that there are two different
frequencies here, w and wg, which need not have anything to do with each other. Eq.
(3.22), along with the principle of superposition, tells us that our particular solution

z,(t) = ( F/2 > ghwat 4 ( F/2 ) e wat, (3.30)

is
—w? + 2iywg + w? —w? — 2iywg + w?

The complete solution is the sum of this particular solution and the homogeneous
solution from eq. (3.16).

Let’s now eliminate the i’s in eq. (3.30) (which we had better be able to do, because
x must be real), and write x in terms of sines and cosines. Getting the i’s out of the
denominators, and using € = cos 6 + isin, we find (after a little work)

F(w? — w?) 2Fywy .
<(w2 — )+ 47207 coswgt + @ — 2 + 22 sinwgt.  (3.31)

zy(t) =

REMARKS: If you want, you can solve eq. (3.29) simply by taking the real part of the
solution to eq. (3.20), that is, the z(¢) in eq. (3.22). This is true because if we take the real
part of eq. (3.20), we obtain
“ (® 2L (r R, = Re (Coe™""
@( e(z)) + ’YE( e(m)) +a( e(:r)) = e( e )

= Cpcos(wot). (3.32)

In other words, if = satisfies eq. (3.20) with a Coe™°f on the right-hand side, then Re(z)
satisfies it with a Co cos(wot) on the right.

At any rate, it is clear that (with Co = F) the real part of the solution in eq. (3.22) does
indeed give the result in eq. (3.31), because in eq. (3.30) we simply took half of a quantity
plus its complex conjugate, which is the real part.

If you don’t like using complex numbers, another way of solving eq. (3.29) is to keep it in
the form with the coswgt on the right, and simply guess a solution of the form A coswqt +
B sinwgt, and then solve for A and B (this is the task of Problem 5). The result will be eq.
(3.31). &

We can now write eq. (3.31) in a very simple form. If we define

R= \/(w2 —w?)? + (2ywa)?, (3.33)
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then we can rewrite eq. (3.31) as

F((w?—w? 2
zp(t) = = <(wad) cos wqt + Z;}d sinwdt)
F
= 7 cos(wgt — @), (3.34)

where ¢ is defined by

2 2
w — w3

cos ¢ = n

sing =

2ywq 2ywq

7 = tan ¢ = ot (3.35)
The triangle describing the angle ¢ is shown in Fig. 3.8. Note that 0 < ¢ < m,
because sin ¢ is positive.

Recalling the homogeneous solution in eq. (3.16), we can write the complete solution
to eq. (3.29) as

x(t) = %cos(wdt — ¢) + e (Ae? + Be™ ). (3.36)

The constants A and B are determined from the initial conditions. Note that if there
is any damping at all in the system (that is, if v > 0), then the homogeneous part of
the solution goes to zero for large t, and we are left with only the particular solution.
In other words, the system approaches a definite z(¢), namely z,(¢), independent of
the initial conditions.

Resonance
The amplitude of the motion given in eq. (3.34) is proportional to

1 1
R \/wz — w§)2 + (2ywq)?

(3.37)

Given wg and +, this is maximum when w = wy. Given w and -+, it is maximum
when wy = \/w? — 292, as you can show in Exercise 15. But for weak damping (that
is, 7 < w, which is usually the case we are concerned with), this reduces to wg ~ w
also.

The term resonance is used to describe the situation where the amplitude of the
oscillations is as large as possible. It is quite reasonable that this is achieved when
the driving frequency equals the frequency of the spring. But what is the value of
the phase ¢ at resonance? Using eq. (3.35), we see that ¢ satisfies tan ¢ ~ co when
wgq ~ w. Therefore, ¢ = 7/2 (it is indeed /2, and not —7 /2, because the sin ¢ in eq.
(3.35) is positive), and the motion of the particle lags the driving force by a quarter
of a cycle at resonance. For example, when the particle moves rightward past the
origin (which means it has a quarter of a phase to go before it hits the maximum
value of z), the force is already at its maximum. And when the particle makes it
out to the maximum value of z, the force is already back to zero.

Figure 3.8
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The fact the force is maximum when the particle is moving fastest makes sense
from an energy point of view. If you want the amplitude to become large, then you
will need to give the system as much energy as you can. That is, you must do as
much work as possible on the system. And in order to do as much work as possible,
you should have your force act over as large a distance as possible, which means
that you should apply your force when the particle is moving fastest, that is, as it
speeds past the origin. And similarly, you don’t want to waste your force when the
particle is barely moving near the endpoints of its motion.

In short, v is the derivative of x and therefore a quarter cycle ahead of « (which
is a general property of a sinusoidal function, as you can show). Since we want the
force to be in phase with v at resonance (by the above energy argument), we see
that the force is also a quarter cycle ahead of x.

The phase ¢
Eq. (3.35) gives the phase of the motion as
2ywd
t = —7 3.38
mo= 3, (3.38)

where 0 < ¢ < 7. Let’s look at a few cases for wy (not necessarily at resonance) and
see what the resulting phase ¢ is. Using eq. (3.38), we have:

e Wy~ 0 —=— ¢ ~ 0. This means that the motion is in phase with the force.
Intuitively, the mass moves very slowly if wy &~ 0, so the motion basically
just follows the force. A little more mathematically: Since there is essentially
no acceleration, the net force is always essentially zero. This means that the
driving force always essentially balances the spring force (that is, the two
forces are 180° out of phase), because the damping force is negligible (since
v ~ 0). But the spring force is 180° out of phase with the motion (because of
the minus sign in F' = —kx). Therefore, the driving force is in phase with the
motion.

® wy ~wy = ¢~ m/2. This is the case of resonance, discussed above.

® Wy~ 0o = ¢ ~ 7. This means that the motion is out of phase with the force.
The reason for this is the following. If wg = oo, then the mass moves back and
forth very quickly. From eq. (3.37), we see that the amplitude is proportional
to1l/ wg. It then follows that the velocity goes like 1/w,4. Therefore, both x and
v are always small; the mass hardly moves. But if x and v are always small,
then the spring and damping forces can be ignored. So we basically have a
mass that feels only one force, the driving force. But we already understand
very well a situation where a mass is subject to only one oscillating force: a
mass on a spring. Now, the mass can’t tell if it’s being driven by an oscillating
driving force, or being pushed and pulled by an oscillating spring force. They
both feel the same. Therefore, both phases must be the same. But in the
spring case, the minus sign in F' = —kx tells us that the force is 180° out of
phase with the motion. Hence, the same result holds in the wy =~ oo case.
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3.5 Coupled oscillators

In the previous sections, we have dealt with only one function of time, z(t). What
if we have two functions of time, say z(t) and y(t), which are related by a pair of
“coupled” differential equations? For example, we might have

2% + w?(5z — 3y) = O,
21 + w?(5y — 3z) = 0. (3.39)

We'll assume w? > 0 here, but this isn’t necessary. We call these equations “coupled”
because there are z’s and 3’s in both of them, and it is not immediately obvious how
to separate them to solve for z and y. There are two methods (at least) of solving
these equations.

First method: Sometimes it is easy, as in this case, to find certain linear combi-
nations of the given equations for which nice things happen. If we take the sum, we
find

(& +§) +w(z +y) = 0. (3.40)

This equation involves x and y only in the combination of their sum, x 4+ y. With
z=x+vy, eq. (3.40) is just our old friend, # + w?z = 0. The solution is

r+y= A cos(wt+ ¢1), (3.41)

where A; and ¢ are determined from initial conditions. We may also take the
difference of egs. (3.39). The result is

(i —§) + dw?(z —y) = 0. (3.42)

This equation involves x and y only in the combination of their difference, x — y.
The solution is
x —y = Agcos(2wt + ¢2), (3.43)

Taking the sum and difference of egs. (3.41) and (3.43), we find that x(¢) and y(¢)
are given by

x(t) = DBjcos(wt+ ¢1) + By cos(2wt + ¢2),
y(t) By cos(wt + ¢1) — Ba cos(2wt + ¢2), (3.44)

where the B;’s are half of the A;’s.

The strategy of this solution was simply to fiddle around and try to form dif-
ferential equations that involved only one combination of the variables, namely egs.
(3.40) and (3.42). This allowed us to write down the familiar solution for these
combinations, as in eqgs. (3.41) and (3.43).

We’ve managed to solve our equations for x and y. However, the more interesting
thing that we’ve done is produce the equations (3.41) and (3.43). The combinations
(r +vy) and (x — y) are called the normal coordinates of the system. These are the
combinations that oscillate with one pure frequency. The motion of x and y will, in
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general, look rather complicated, and it may be difficult to tell that the motion is
really made up of just the two frequencies in eq. (3.44). But if you plot the values
of (x 4+ y) and (z — y) as time goes by, for any motion of the system, then you will
find nice sinusoidal graphs, even if x and y are each behaving in a rather unpleasant
manner.

Second method: In the above method, it was fairly easy to guess which combina-
tions of egs. (3.39) produced equations involving just one combination of z and y,
egs. (3.40) and (3.42). But surely there are problems in physics where the guessing
isn’t so easy. What do we do then? Fortunately, there is a fail-proof method for
solving for x and y. It proceeds as follows.

In the spirit of Section 3.1, let us try a solution of the form z = Ae’®' and
y = Be®* which we will write, for convenience, as

(2)-(3) e oo

It is not obvious that there should exist solutions for z and y that have the same ¢
dependence, but let’s try it and see what happens. Note that we’ve explicitly put
the ¢ in the exponent, but there’s no loss of generality here. If o happens to be
imaginary, then the exponent is real. It’s personal preference whether or not you
put the ¢ in.

Plugging our guess into eqs. (3.39), and dividing through by ¢**, we find

2A(—a?) + 5Aw? —3Bw?* = 0,
2B(—a?) + 5Bw? — 34w* = 0, (3.46)

or equivalently, in matrix form,

—202 + 5w? —3w? A 0
< —3w? —202 + 5w? B o] (3.47)

This homogeneous equation for A and B has a nontrivial solution (that is, one where
A and B aren’t both 0) only if the matrix is not invertible. This is true because if
it were invertible, then we could simply multiply through by the inverse to obtain
(A,B) = (0,0).

When is a matrix invertible? There is a straightforward (although tedious)
method for finding the inverse of a matrix. It involves taking cofactors, taking a
transpose, and dividing by the determinant. The step that concerns us here is the
division by the determinant. The inverse will exist if and only if the determinant is
not zero. So we see that eq. (3.47) has a nontrivial solution only if the determinant
equals zero. Because we seek a nontrivial solution, we must therefore have

—202 + 5w? —3w?
—3w? —2a2 + Hw?

= 4a* — 200°w? + 16w, (3.48)
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The roots of this equation are o = +w and o« = +2w. We have therefore found
four types of solutions. If @ = tw, then we can plug this back into eq. (3.47)
to obtain A = B. (Both equations give this same result. This was essentially the
point of setting the determinant equal to zero.) And if & = +2w, then eq. (3.47)
gives A = —B. (Again, the equations are redundant.) Note that we cannot solve
specifically for A and B, but only for their ratio. Adding up our four solutions
according to the principle of superposition, we see that x and y take the general
form (written in vector form for the sake of simplicity and bookkeeping),

€T _ 1 wwt 1 —iwt
1 21wt 1 —2iwt
=+ A3 1 e =+ A4 1 e . (349)

The four A; are determined from the initial conditions.

We can rewrite eq. (3.49) in a somewhat cleaner form. If the coordinates z and
y describe the positions of particles, they must be real. Therefore, A; and As must
be complex conjugates, and likewise for A3 and A4. If we then define some ¢’s and
B’s via Ay = A1 = (B1/2)et and A} = A3z = (B2/2)e!*2, we may rewrite our
solution in the form, as you can verify,

( i ) =B ( 1 > cos(wt + ¢1) + B2 < _11 )COS(QWt‘f‘ b2), (3.50)

where the B; and ¢; are real (and are determined from the initial conditions). We
have therefore reproduced the result in eq. (3.44).

It is clear from eq. (3.50) that the combinations x + y and = — y (the normal
coordinates) oscillate with the pure frequencies, w and 2w, respectively. The com-
bination x 4+ y makes the Bs terms disappear, and the combination x — y makes the
B terms disappear.

It is also clear that if Bs = 0, then z = y at all times, and they both oscillate
with frequency w. And if By = 0, then x = —y at all times, and they both oscillate
with frequency 2w. These two pure-frequency motions are called the normal modes.
They are labeled by the vectors (1,1) and (1,—1), respectively. In describing a
normal mode, both the vector and the frequency should be stated. The significance
of normal modes will become clear in the following example.

Example (Two masses, three springs): Consider two masses, m, connected to
each other and to two walls by three springs, as shown in Fig. 3.9. The three springs
have the same spring constant k. Find the positions of the masses as functions of
time. What are the normal coordinates? What are the normal modes?

Solution: Let x1(t) and x2(¢) be the positions of the left and right masses, respec-
tively, relative to their equilibrium positions. Then the middle spring is stretched a
distance xo — x1. Therefore, the force on the left mass is —kx; + k(22 — 1), and

Figure 3.9



III-16 CHAPTER 3. OSCILLATIONS

the force on the right mass is —kxs — k(2o — x1). It’s easy to make a mistake on the
sign of the second term in these expressions. You can double check the sign by, say,
looking at the force when s is very big. At any rate, the second terms must have
opposite signs in the two expressions, by Newton’s third law.

With these forces, F' = ma on each mass gives, with w? = k/m,

F1 4 wlr — wlzy = 0,
Fo + 2wxy —w?z; = 0. (3.51)

These are rather friendly-looking coupled equations, and we can see that the sum and
difference are the useful combinations to take. The sum gives

(i1 + d9) +w?(21 + 29) = 0, (3.52)
and the difference gives

(i — #9) + 3w? (w1 — 29) = 0. (3.53)
The solutions to these equations are the normal coordinates,

T1+1y = Apcos(wt+ ¢y),
r;—x9 = A_cos(vV3uwt+ o). (3.54)

Taking the sum and difference of these normal coordinates, we have

z1(t) = By cos(wt+ ¢y)+ B_ cos(V3uwt + ¢_),
xo(t) B, cos(wt + ¢) — B_ cos(V3wt + ¢_), (3.55)

where the B’s are half of the A’s. They are determined from the initial conditions,
along with the ¢’s.

REMARK: We can also derive egs. (3.55) by using the determinant method. Letting
21 = Ae*t and 2o = Be' in egs. (3.51), we see that for there to be a nontrivial solution
for A and B, we must have

0 —a® 4 2w° —w?
B —w? —a? 4 2w°
= o' -4’’’ 4 3w (3.56)

The roots of this equation are o = +w and o = £/3w. If o = +w, then eq. (3.51) gives
A=B. If a= i\/gw, then eq. (3.51) gives A = —B. The solutions for 21 and x> therefore
take the general form

T1 _ 1 iwt 1 —iwt
+ A3 < _]-1 ) e\/giwt + A4 ( _11 > e*ﬁiwt

= By ( 1 > cos(wt + ¢4) + B— < _11 > cos(V3wt 4 ¢_). (3.57)

This is equivalent to eq. (3.55). &
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The normal modes are obtained by setting either B_ or By equal to zero in eq. (3.55)
or eq. (3.57). Therefore, the normal modes are (1,1) and (1, —1). How do we visualize
these?

The mode (1, 1) oscillates with frequency w. In this case (where B_ = 0), we have
x1(t) = x2(t) = By cos(wt + ¢4) at all times. So the masses simply oscillate back
and forth in the same manner, as shown in Fig. 3.10. It is clear that such motion
has frequency w, because as far as the masses are concerned, the middle spring is
effectively not there, so each mass moves under the influence of only one spring, and
therefore has frequency w.

The mode (1,—1) oscillates with frequency v/3w. In this case (where B, = 0), we
have z1(t) = —x2(t) = B_ cos(v/3wt + ¢_) at all times. So the masses oscillate back
and forth with opposite displacements, as shown in Fig. 3.11. It is clear that this
mode should have a frequency larger than that for the other mode, because the middle
spring is stretched (or compressed), so the masses feel a larger force. But it takes a
little thought to show that the frequency is v/3w.?

REMARK: The normal mode (1,1) above is associated with the normal coordinate
1+ xo. They both involve the frequency w. However, this association is not due to the fact
that the coefficients of both z1 and x5 in this normal coordinate are equal to 1. Rather, it is
due to the fact that the other normal mode, namely (x1,z2) (1, —1), gives no contribution
to the sum xq7 + 2.

There are a few too many 1’s floating around in the above example, so it’s hard to see
which results are meaningful and which results are coincidence. But the following example
should clear things up. Let’s say we solved a problem using the determinant method, and
we found the solution to be

( ;i > =B ( 2 )cos(w1t+¢>1) + B ( _15 )cos(cugt+¢2). (3.58)

Then 5z + y is the normal coordinate associated with the normal mode (3,2), which has
frequency wy. (This is true because there is no cos(wat + ¢2) dependence in the combina-
tion 52 4+ y.) And similarly, 2z — 3y is the normal coordinate associated with the normal
mode (1, —5), which has frequency ws (because there is no cos(wit + ¢1) dependence in the
combination 2z — 3y). &

ANOTHER REMARK: Note the difference between the types of differential equations
we solved in the previous chapter in Section 2.3, and the types we solved throughout this
chapter. The former dealt with forces that did not have to be linear in x or &, but which
had to depend on only x, or only &, or only . The latter dealt with forces that could depend
on all three of these quantities, but which had to be linear in z and . &

3If you want to obtain this v/3w result without going through all of the above work, just note
that the center of the middle spring doesn’t move. Therefore, it acts like two “half springs,” each
with spring constant 2k (verify this). Hence, each mass is effectively attached to a “k” spring and
a “2k” spring, yielding a total effective spring constant of 3k. Thus the v/3.

Figure 3.10
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Figure 3.11
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3.6 Exercises

Section 3.1: Linear differential equations

1. kxz force x*

A particle of mass m is subject to a force F'(x) = kxz. What is the most general
form of x(¢)? If the particle starts out at xp, what is the one special value of
the initial velocity for which the particle doesn’t eventually get far away from
the origin?

2. Rope on a pulley x*x

A rope of length L and mass density pkg/m hangs over a massless pulley.
Initially, the ends of the rope are a distance xg above and below their average
position. The rope is given an initial speed. If you want the rope to not
eventually fall off the pulley, what should this initial speed be?

Section 3.2: Simple harmonic motion
3. Amplitude
Find the amplitude of the motion given by x(t) = C coswt + D sin wt.

4. Angled rails

Two particles of mass m are constrained to move along two horizontal rails
that make an angle of 20 with respect to each other, as shown in Fig. 3.12.
They are connected by a spring with spring constant k. What is the frequency
of oscillations for the motion where the spring remains parallel to the position
shown?

Figure 3.12

5. Springs all over x*x

k- m k (a) A mass m is attached to two springs that have equilibrium lengths equal
to zero. The other ends of the springs are fixed at two points (see
Fig. 3.13). The two spring constants are equal. The mass sits at its
equilibrium position and is then given a kick in an arbitrary direction.
Describe the resulting motion. (Ignore gravity, although you actually
don’t need to.)

Figure 3.13

(b) A mass m is attached to a number of springs that have equilibrium lengths
equal to zero. The other ends of the springs are fixed at various points in
space (see Fig. 3.14). The spring constants are all the same. The mass
sits at its equilibrium position and is then given a kick in an arbitrary
direction. Describe the resulting motion. (Again, ignore gravity, although

Figure 3.14 you actually don’t need to.)

6. Removing a spring *

The springs in Fig. 3.15 are at their natural equilibrium length. The mass
m oscillates along the line of the springs with amplitude d. At the moment (let

Figure 3.15
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this be ¢t = 0) when the mass is at position z = d/2 (and moving to the right),
the right spring is removed. What is the resulting x(¢)? What is the amplitude
of the new oscillation?

7. Changing k *x*

Two springs each have spring constant k and relaxed length ¢. They are both k k— 3k
stretched a distance ¢ and attached to a mass m and two walls, as shown in
Fig. 3.16. At a given instant, the right spring constant is somehow magically Figure 3.16

changed to 3k (the relaxed length remains ¢). At a time ¢t = T,/ later, what
is the mass’s position? What is its speed?

8. Corrections to the pendulum *x*x

(a) For small oscillations, the period of a pendulum is approximately 7' ~
2m\/f/g, independent of the amplitude, 6y. For finite oscillations, show
that the exact expression for T is

/8¢ [ do
T=4— _— 3.59
g /0 vcos8 — cos by ( )

(b) Find an approximation to this T', up to second order in 63, in the following
way. Make use of the identity cos ¢ = 1—2sin?(¢/2) to write T in terms of
sines (because it’s more convenient to work with quantities that go to zero
as @ — 0). Then make the change of variables, sinx = sin(0/2)/ sin(6y/2).
Finally, expand your integrand in powers of 8y, and perform the integrals

to show that*
14 03

Section 3.8: Damped harmonic motion
9. Crossing the origin
Show that an overdamped or critically damped oscillator can cross the origin
at most once.
10. Strong damping *

In the strong damping (y > w) case discussed in the remark in the overdamp-
ing subsection, we saw that z(t) oc e “*#/27. Show that this can be written
as z(t) oc e */% where b is the coefficient of the damping force. And then
explain, by looking at the forces on the mass, why this makes sense.

11. Minimum speed x*

A critically damped oscillator with natural frequency w starts out at position
xzo. What is the minimum initial speed it must have if it is to cross the origin?

“If you like this sort of thing, you can show that the next term in the parentheses is (11/3072)63.
But be careful, this fourth-order correction comes from two terms.
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12. Another minimum speed x*x

An overdamped oscillator with natural frequency w and damping coefficient
starts out at position xg. What is the minimum initial speed it must have if
it is to cross the origin?

13. Maximum speed x*x

A mass on the end of a spring is released from rest at position xg. The
experiment is repeated, but now with the system immersed in a fluid that
causes the motion to be critically damped. Show that the maximum speed of
the mass in the first case is e times the maximum speed in the second case.?

14. Work =*

A damped oscillator has initial position x¢ and speed vg. After a long time, it
will essentially be at rest at the origin. Therefore, by the work-energy theorem,
the work done by the damping force must equal —kx3/2 —mvd/2. Verify that
this is true. Hint: It’s a bit messy to find £ in terms of the initial conditions
and then calculate the desired integral. An easier way is to use the F' = ma
equation to rewrite one of the ’s in your integral.

Section 3.4: Driven (and damped) harmonic motion

15. Resonance

Given w and ~, show that the R in eq. (3.33) is minimum when wy =
Vw? —2~2 (unless this is imaginary, in which case the minimum occurs at
Wqg = O).

16. No damping force

A particle of mass m is subject to a spring force, —kx, and also a driving force,
F,coswgt. But there is no damping force. Find a solution for x(t) by guessing
x(t) = Acoswgt + Bsinwgt. If you write your solution for x(¢) in the form
C cos(wgt — @), what are C' and ¢? Be careful about the phase.

17. No spring force =*

A particle of mass m is subject to a damping force, —bv, and also a driving
force, Fycoswgt. But there is no spring force. Find a solution for z(t) by
guessing z(t) = Acoswyt + Bsinwgt. If you write your solution for z(t) in the
form C cos(wqt — ¢), what are C' and ¢?

Section 3.5: Coupled oscillators

5The fact that the maximum speeds differ by a fixed numerical factor follows from dimensional
analysis, which tells us that the maximum speed in the first case must be proportional to wzo.
And since 7 = w in the critical-damping case, the damping doesn’t introduce a new parameter,
so the maximum speed has no choice but to again be proportional to wzo. But showing that the
maximum speeds differ by the nice factor of e requires a calculation.
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18.

19.

20.

21.

Springs between walls *x

Four identical springs and three identical masses lie between two walls (see
Fig. 3.17). Find the normal modes.

Springs and one wall *x

Two identical springs and two identical masses are attached to a wall as shown
in Fig. 3.18. Find the normal modes.

Coupled and damped #*x*

The system in the example in Section 3.5 is modified by immersing it in a
fluid so that both masses feel a damping force, Fy = —bv. Solve for z;(t) and

T2 (t)
Coupled and driven xx

The system in the example in Section 3.5 is modified by subjecting the left
mass to a driving force Fycos(2wt), and the right mass to a driving force
2F; cos(2wt), where w = /k/m. Find the particular solution for x;(¢) and

i) (t)

Figure 3.17

Figure 3.18
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3.7 Problems

Section 3.1: Linear differential equations

1. A limiting case =

Consider the equation & = ax. If ¢ = 0, then the solution to & = 0 is of course
z(t) = C' + Dt. Show that in the limit a — 0, eq. (3.2) reduces to this form.
Note: a — 0 is a very sloppy way of saying what we mean. What is the proper
way to write this limit?

Section 8.2: Simple harmonic motion
2. Average tension xx

Is the average (over time) tension in the string of a pendulum larger or smaller
than mg? By how much? As usual, assume that the angular amplitude A is
small.

Section 3.8: Damped harmonic motion
3. Maximum speed x*x

A mass on the end of a spring (with natural frequency w) is released from
rest at position xzg. The experiment is repeated, but now with the system
immersed in a fluid that causes the motion to be overdamped (with damping
coefficient 7). Find the ratio of the maximum speed in the former case to that
in the latter. What is the ratio in the limit of strong damping (v > w)? In
the limit of critical damping?

Section 3.4: Driven (and damped) harmonic motion

4. Exponential force x

A particle of mass m is subject to a force F(t) = me™". The initial position
and speed are both zero. Find z(t).©

5. Driven oscillator
Derive eq. (3.31) by guessing a solution of the form z(t) = A coswgt+ B sin wgt
in eq. (3.29).

Section 3.4: Coupled oscillators

6. Unequal masses x*x

Three identical springs and two masses, m and 2m, lie between two walls as
Figure 3.19 shown in Fig. 3.19. Find the normal modes.

5This problem was already given as Problem 2.9, but solve it here by guessing an exponential
function, in the spirit of Section 3.4.
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7. Driven mass on a circle *x

Two identical masses m are constrained to move on a horizontal hoop. Two
identical springs with spring constant k£ connect the masses and wrap around
the hoop (see Fig. 3.20). One mass is subject to a driving force, F,;coswgt.
Find the particular solution for the motion of the masses.

8. Springs on a circle xxxx

(a) Two identical masses m are constrained to move on a horizontal hoop.
Two identical springs with spring constant k connect the masses and
wrap around the hoop (see Fig. 3.21). Find the normal modes.

(b) Three identical masses are constrained to move on a hoop. Three identical
springs connect the masses and wrap around the hoop (see Fig. 3.22).
Find the normal modes.

(¢) Now do the general case with N identical masses and N identical springs.

Figure 3.22
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3.8 Solutions

1. A limiting case

The expression “a — 07 is sloppy, because a has units of [time] =2, and the number 0
has no units. The proper statement is that eq. (3.2) reduces to x(t) = C + Dt when
Vat < 1, or equivalently when ¢ < 1/4/a, which is now a comparison of quantities
with the same units. The smaller a is, the larger ¢t can be. Therefore, if “a — 0,”
then ¢ can basically be anything.

Under the condition \/at < 1, we can write e*V%* ~ 1 + \/at. Therefore, eq. (3.2)
becomes

A(l+Vat)+ B(1 —at)

= (A+ B)++Va(A—-B)t
= C+ Dt. (3.61)

x(t)

Q

If a is small but nonzero, then ¢ will eventually become large enough so that \/at < 1
doesn’t hold, in which case the linear form in eq. (3.61) isn’t valid.

2. Average tension

Let the length of the pendulum be ¢. We know that the angle # depends on time
according to
0(t) = Acos(wt), (3.62)

where w = y/g/¢. If T' is the tension in the string, then the radial F' = ma equation
is T'— mg cos @ = ml?. Using eq. (3.62), this becomes

T = mgcos (A cos(wt)) + mé( —wA sin(wt)) 2. (3.63)

Since A is small, we can use the small-angle approximation cosa ~ 1 — a?/2, which
gives

1
T = mg (1 - §A2 cosz(wt)> + mlw? A% sin? (wt)

1
mg 4+ mgA* (sin2 (wt) — 3 cos? (wt)) . (3.64)

The average value of both sin?# and cos? 6 over one period is 1/2,7 so the average

value of T' is

_ A2
T=mg+ mi , (3.65)

which is larger than mg, by mgA? /4.

REMARK: It makes sense that T > mg, because the average value of the vertical component
of T equals mg (because the pendulum has no net rise or fall over a long period of time), and
there is some non-zero contribution to the magnitude of 7' from the horizontal component.

&

"You can show this by doing the integrals, or by noting that the averages are equal and that
they add up to 1.
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3. Maximum speed

For the undamped case, the general form of x is z(t) = C cos(wt + ¢). The initial
condition v(0) = 0 tells us that ¢ = 0, and then the initial condition z(0) = z¢ tells
us that C' = xg. Therefore, z(t) = g cos(wt), and so v(t) = —wzgsin(wt). This has
a maximum magnitude of wxyg.

Now consider the overdamped case. Eq. (3.18) gives the position as

z(t) = Ae= (=Dt L Be= (11t (3.66)
The initial conditions are
z(0) = xo = A+ B =z,
v(0) = 0 == —-(y=-QA-(v+Q)B=0. (3.67)
Solving these equations for A and B, and then plugging the results into eq. (3.66),
gives
(t) = ;% (( FQ)emVt (4 - Q)e—<7+ﬂ>t) . (3.68)
Taking the derivative to find v(t), and using v2 — Q2 = w?, gives
—LUQCEO
e R O O L —(W+Q)t)
u(t) 50 (e e . (3.69)

Taking the derivative one more time, we find that the maximum speed occurs at

1 v+ Q
tmax = ﬁ In <H2> . (370)

Plugging this into eq. (3.69), and taking advantage of the logs in the exponentials,

gives
D(bmm) = —waOeXp T 7+ Y+ [y=Q
A 20 20 v —Q v —Q 7+ Q
_Q v/282
= —wxg <Py> . (3.71)

The desired ratio, R, of the maximum speeds in the two scenarios is therefore

/20
(Y
ne (229) -

In the limit of strong damping (v > w), we have Q = /72 — w? ~ v —w?/27. So the
ratio becomes

2 1/2 2y
R= = —. 3.73
(wz/%) w (373
In the limit of critical damping (y = w, 2 & 0), we have, with Q/vy = ¢,
1 1/2€
R~ (1“) ~ (1+26)% ~e, (3.74)
—€

in agreement with the result of Exercise 13. You can also show that in these two
limits, tmax equals In(2y/w) /v and 1/y ~ 1/w, respectively.
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4. Exponential force

Let’s guess a particular solution to & = e~% of the form z(t) = Ce~ . We find
C = 1/b?. And since the solution to the homogeneous equation & = 0 is z(t) = At+B,
the complete solution for z is

o bt
The initial condition #(0) = 0 gives B = —1/b%. And the initial condition v(0) = 0
applied to v(t) = —e~% /b + A gives A = 1/b. Therefore,

et ¢ 1

(t) =+ (3.76)

5. Driven oscillator
Plugging z(t) = Acoswgt + Bsinwgt into eq. (3.29) gives
—w3A coswgt — w2 Bsinwgt
— 2wy A sin wgt + 2ywe B cos wgt
+w?Acoswgt + w?Bsinwgt = F coswgt. (3.77)
If this is to be true for all ¢, the coefficients of coswgt on both sides must be equal.
And likewise for sin wgyt. Therefore,
—w3A +2ywgB +w?A = F,
~wiB - 2ywsA+w?B = 0. (3.78)

Solving this system of equations for A and B gives

F(w? — w?) 2Fywq
A= d , B= , 3.79
(w? — w?)? + 49202 (w? — w?)? + 472w? (3.79)

in agreement with eq. (3.31).

6. Unequal masses
Let 7 and x5 be the positions of the left and right masses, respectively, relative to
their equilibrium positions. The forces on the two masses are —kxzq + k(z2 — z1) and
—kxo — k(x9 — x1), respectively, so the F' = ma equations are

#1420z — Wiy, = 0,

2 + 2wiry —w?r; = 0. (3.80)
The appropriate linear combinations of these equations aren’t obvious, so we’ll use

the determinant method. Letting x1 = A;e’®* and zo = A2e'?, we see that for there
to be a nontrivial solution for A and B, we must have

0 — —a? 4 202 —w?
- —w? —2a2 + 2w?
= 2a* — 60%w? + 3w’ (3.81)

The roots of this equation are

/3 3 3—V3
a=tw +2\[ = +a;, and a=tw 2\[ = tas. (3.82)
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If o® = o2, then the normal mode is proportional to (v/3 + 1, —1). And if o = o2,
then the normal mode is proportional to (v/3 — 1,1). So the normal modes are

( xl ) - ( \/3—41_1 )Cos(alt‘Hbl), and

X2

( o ) _ ( \/31— 1 >Cos(a2t+q§2), (3.83)

X2

Note that these two vectors are not orthogonal (there is no need for them to be).
You can show that the normal coordinates associated with these normal modes are
x1— (V3= 1)29 and 21 + (v/3 4 1)z, respectively, because these are the combinations
that make the as and oy frequencies disappear, respectively.

. Driven mass on a circle

Label two diametrically opposite points as the equilibrium positions. Let the distances
from the masses to these points be 7 and zo (measured counterclockwise). If the
driving force acts on mass “1”, then the F' = ma equations are

miy +2k(z1 —x2) = Fycoswgt,
mio + 2k(xy —x1) = 0. (3.84)

To solve these equations, we can treat the driving force as the real part of F e’ and
try solutions of the form z1(t) = Aje™dt and zo(t) = Age™e!, and then solve for A;
and As. Or we can try some trig functions. If we take the latter route, we will quickly
find that the solutions can’t involve any sine terms (this is due to the fact that there
are no first derivatives of the z’s in eq. (3.84)). Therefore, the trig functions must
look like x1(t) = A1 coswgt and z4(t) = Ag coswgt. Using either of the two methods,
eqs. (3.84) become

—w?lAl + 2w2(A1 — Ag) = F,
7(4)(21142 + 2w2(A2 — Al) = O, (385)

where w = y/k/m and F = Fy/m. Solving for A; and A,, we find that the desired
particular solution is

—F(2w? — w?) —2Fw?
xl(t) = m COS Wdt, X9 (t) = W COS Ct)dt. (386)
The most general solution is the sum of this particular solution and the homogeneous
solution found in eq. (3.91) in Problem 8 below.

REMARKS: If wg = 2w, the amplitudes of the motions go to infinity. This makes sense, con-
sidering that there is no damping, and that the natural frequency of the system (calculated
in Problem 8) is 2w.

If wg = V2w, then the mass that is being driven doesn’t move. What is going on here is
that the driving force balances the force that the mass feels from the springs due to the
other mass’s motion. And indeed, you can show that /2w is the frequency that one mass
moves at if the other mass is at rest (and thereby acts essentially like a brick wall). Note
that wg = v/2w is the cutoff between the masses moving in the same direction or in opposite
directions.

If wqg — oo, then both motions go to zero. But 2 fourth-order small, whereas x; is only
second-order small.
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If wg — 0, then A; =~ Ay ~ —F/2w?. This is very large. The driving force basically spins

the masses around in one direction, and then reverses and spins them around in the other

direction. We essentially have the driving force acting on a mass 2m, and two integrations

of Fjcoswat = (2m)i shows that the amplitude of the motion is F/2w3, as above. &

8. Springs on a circle

(a)

Label two diametrically opposite points as the equilibrium positions. Let the
distances from the masses to these points be 21 and xo (measured counterclock-
wise). Then the F' = ma equations are

maq + 2k($1 - ,Tg) = 0,

The determinant method works here, but let’s just do it the easy way. Adding
the equations gives
1+ 39 =0, (3.88)

and subtracting them gives
(&1 — &) + 4w’ (21 — x2) = 0. (3.89)
The normal coordinates are therefore

T +x0 = At+ B,
C cos(2wt + ¢). (3.90)

Ty — T2

Solving these two equations for x; and xo, and writing the results in vector form,
gives
X1 1 1
a: =1 (At+B)+C 1 cos(2wt + ¢), (3.91)
9 _

where the constants A, B, and C' are defined to be half of what they were in eq.
(3.90). The normal modes are therefore

(%)
( 2 ) - C( _11 >cos(2wt+¢). (3.92)

The first mode has frequency zero. It corresponds to the masses sliding around
the circle, equally spaced, at constant speed. The second mode has both masses
moving to the left, then both to the right, back and forth.

( ' >(At+B), and

Label three equally spaced points as the equilibrium positions. Let the distances
from the masses to these points be x1, z2, and z3 (measured counterclockwise).
Then the F' = ma equations are, as you can show,

mil +k(l‘1 7!172)%’]43(1‘1 71‘3) = O7
mi‘2+k(x2 —1‘3) +k‘(l‘2 —l‘l) = 0,
mis + k(xs —x1) + k(rs —x2) = 0. (3.93)

The sum of all three of these equations definitely gives something nice. Also,
differences between any two of the equations gives something useful. But let’s
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use the determinant method to get some practice. Trying solutions of the form
21 = A€, 19 = Aze’, and x5 = Aze'®, we obtain the matrix equation,

—a? 4+ 22 —w? —w? Ay 0
—w? —a? + 2w? —w? Ay | =1 0 . (3.94)
—w? —w? —a? + 2w? As 0

Setting the determinant equal to zero yields a cubic equation in o?. But it is a
nice cubic equation, with o = 0 as a solution. The other solution is the double
root a? = 3w?.

The o = 0 root corresponds to A; = A, = Az. That is, it corresponds to the
vector (1,1,1). This o = 0 case is the one case where our exponential solution
isn’t really an exponential. But o? equalling zero in eq. (3.94) basically tells us
that we are dealing with a function whose second derivative is zero, that is, a
linear function At + B. Therefore, the normal mode is

I 1
z | = 1 | (At+B). (3.95)
I3 1

This mode has frequency zero, and corresponds to the masses sliding around the
circle, equally spaced, at constant speed.

The two a? = 3w? roots correspond to a two-dimensional subspace of normal
modes. You can show that any vector of the form (a,b,¢) with a +b+c¢ =0
is a normal mode with frequency v/3w. We will arbitrarily pick the vectors
(0,1,—1) and (1,0,—1) as basis vectors for this space. We can then write the
normal modes as linear combinations of the vectors

I 0

To = 1 cos(\/gwt + ¢1),

T3 -1

I 1

T = (s 0 cos(V3wt + ¢). (3.96)
T3 -1

REMARKS: This is very similar to the example in Section 3.5 with two masses and
three springs oscillating between two walls. The way we’ve written these modes, the
first one has the first mass stationary (so there could be a wall there, for all the other
two masses know). Similarly for the second mode. Hence the V3w result here, as in
the example.

The normal coordinates in this problem are x1 + x2 + x3 (obtained by adding the
three equations in (3.93)), and also any combination of the form azi + bx2 + czs,
where a + b+ ¢ = 0 (obtained by taking a times the first eq. in (3.93), plus b times
the second, plus ¢ times the third). The three normal coordinates that correspond to
the mode in eq. (3.95) and the two modes we chose in eq. (3.96) are, respectively,
r1 4+ x2 + x3, —2x1 + T2 + x3, and x1 — 2x2 + x3, because each of these combinations
gets no contribution from the other two modes. &

(¢) In part (b), when we set the determinant of the matrix in eq. (3.94) equal to
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zero, we were essentially finding the eigenvectors and eigenvalues® of the matrix,

2 -1 -1 1 1 1
-1 2 -1 |=3I-|1111 (3.97)
-1 -1 2 1 11

We haven’t bothered writing the common factor w? here, because it doesn’t
affect the eigenvectors. As an exercise, you can show that for the general case of
N springs and masses on a circle, the above matrix becomes the N x N matrix,

1100 1
1110 0
01 11 0
3I—| 00 1 1 0o | =3I - M. (3.98)
1000 ---1

In the matrix M, the three consecutive 1’s keep shifting to the right, and they
wrap around cyclicly. We must now find the eigenvectors of M, which will
require being a little clever.

We can guess the eigenvectors and eigenvalues of M if we take a hint from its
cyclic nature. A particular set of things that are rather cyclic are the Nth roots
of 1. If n is an Nth root of 1, you can verify that (1,7,7%,...,7V ") is an
eigenvector of M with eigenvalue n~! + 1 + 7. (This general method works for
any matrix where the entries keep shifting to the right. The entries don’t have
to be equal.) The eigenvalues of the entire matrix in eq. (3.98) are therefore
3= tH+l+m)=2-n"—n

There are N different Nth roots of 1, namely 7, = e2™"/N for 0 <n < N. So
the N eigenvalues are

Ap =2— (e*%i”/N + ez’rm/N) = 2—2cos(2mn/N)
= 4sin®*(mn/N). (3.99)

The corresponding eigenvectors are

vV, = (1,77“,773,...,77,1:’—1). (3.100)

Since the numbers n and N — n yield the same value for A, in eq. (3.99),
the eigenvalues come in pairs (except for n = 0, and n = N/2 if N is even).
This is fortunate, because we may then form real linear combinations of the
two corresponding complex eigenvectors given in eq. (3.100). We see that the
vectors

1
cos(2mn/N)

V= (Vo + Viven) = cos(4mn/N) (3.101)

N | =

cos(2(N — 1)n/N)

8 An eigenvector v of a matrix M is a vector that gets taken into a multiple of itself when acted
upon by M. That is, Mv = Av, where A is some number (the eigenvalue). This can be rewritten as
(M — AXI)v = 0, where [ is the identity matrix. By our usual reasoning about invertible matrices,
a nonzero vector v exists only if X satisfies det [M — AI| = 0.
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and
0
. sin(27n/N)
Vi = 5 (Vo= Vin) = sin(4rn/N) (3.102)
i .

sin(2(N — D)n/N)

both have eigenvalue A\, = Ax_,,. Referring back to the N = 3 case in eq. (3.94),
we see that we must take the square root of the eigenvalues and then multiply by
w to obtain the frequencies (because it was an o that appeared in the matrix,
and because we dropped the factor of w?). The frequencies corresponding to the
above two normal modes are therefore, using eq. (3.99),

wp, = w\/ Ay = 2wsin(mn/N). (3.103)

REMARK: Let’s check our results for N = 3. If n = 0, we find Ao = 0, and Vj =
(1,1,1). If n =1, we find A\; = 3, and V;" = (1,-1/2,—~1/2) and V;” = (0,1/2,—1/2).
These two vectors span the same space we found in eq. (3.96). And vA; = /3, in
agreement with eq. (3.96). You can also find the vectors for N = 4. These are fairly
intuitive, so try to write them down first without using the above results. &
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Chapter 4

Conservation of Energy and
Momentum

Copyright 2004 by David Morin, morin@physics.harvard.edu

Conservation laws are extremely important in physics. They are enormously helpful,
both quantitatively and qualitatively, in figuring out what is going on in a physical
system.

When we say that something is “conserved”, we mean that it is constant over
time. If a certain quantity is conserved, for example, while a ball rolls around on
a hill, or while a group of particles interact, then the possible final motions are
greatly restricted. If we can write down enough conserved quantities (which we are
generally able to do, at least for the problems in this book), then we can restrict
the final motions down to just one possibility, and so we have solved our problem.
Conservation of energy and momentum are two of the main conservation laws in
physics. A third, conservation of angular momentum, is discussed in Chapters 6-8.

It should be noted that it is not necessary to use conservation of energy and
momentum when solving a problem. We will derive these conservation laws from
Newton’s laws. Therefore, if you felt like it, you could always simply start with
first principles and use F' = ma, etc. You would, however, soon grow weary of this
approach. The point of conservation laws is that they make your life easier, and they
provide a means for getting a good idea of the overall behavior of a given system.

4.1 Conservation of energy in 1-D

Consider a force, in just one dimension for now, that depends only on position. That
is, F' = F(x). If we write a as vdv/dx, then F' = ma becomes

dv
— = F(x). 4.1
v’ = F(z) (11)
Separating variables and integrating gives mv?/2 = E + [ F(a') da’, where E is a
constant of integration, dependent on the choice of xy. (We're simply following the
procedure in Section 2.3 here, for a function that depends only on z.) If we now

Iv-1
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define the potential energy, V(x), as

V() = — / F') de, (4.2)
o
then we may write
1
imv2 +V(z)=E. (4.3)

We define the first term here to be the kinetic energy. Since this equation is true
at all points in the particle’s motion, the sum of the kinetic energy and potential
energy is a constant. If a particle loses (or gains) potential energy, then its speed
increases (or decreases).

In Boston, lived Jack as did Jill,

Who gained mgh on a hill.

In their liquid pursuit,

Jill exclaimed with a hoot,

“I think we’ve just climbed a landfill!”

While noting, “Oh, this is just grand,”
Jack tripped on some trash in the sand.
He changed his potential

To kinetic, torrential,

But not before grabbing Jill’s hand.

Both E and V(x) depend, of course, on the arbitrary choice of z¢ in eq. (4.2).
What this means is that £ and V(x) have no meaning by themselves. Only differ-
ences in F and V(x) are relevant, because these differences are independent of the
choice of xy. For example, it makes no sense to say that the gravitational poten-
tial energy of an object at height y equals — [ F'dy = — [(—mg)dy = mgy. We
have to say that mgy is the potential energy with respect to the ground (if your
xo is at ground level). If we wanted to, we could say that the potential energy is
mgy + Tmg with respect to a point 7 meters below the ground. This is perfectly
correct, although a little unconventional.!

If we take the difference between eq. (4.3) evaluated at two points, x; and o,
then we obtain

1
577“)2(1‘2) - 5"“12(561) =

V(:L’l) — V($2)
_ /I TQ F(2/)da. (4.4)

Here it is clear that only differences in energies matter. If we define the integral
here to be the work done on the particle as it moves from z; to xo, then we have
produced the work-energy theorem,

Tt gets to be a pain to keep repeating “with respect to the ground.” Therefore, whenever
anyone talks about gravitational potential energy in an experiment on the surface of the earth, it
is understood that the ground is the reference point. If, on the other hand, the experiment reaches
out to distances far from the earth, then r = 0o is understood to be the reference point, for reasons
of convenience we will shortly see.



4.1. CONSERVATION OF ENERGY IN 1-D V-3

Theorem 4.1 The change in a particle’s kinetic energy between points x1 and xo
1 equal to the work done on the particle between x1 and xs.

If the force points in the same direction as the motion (that is, if the F'(z) and
the dx in eq. (4.4) have the same sign), then the work is positive and the speed
increases. If the force points in the direction opposite to the motion, then the work
is negative and the speed decreases.

Having chosen a reference point x for the potential energy, if we draw the V (x)
curve and also the constant E line (see Fig. 4.1), then the difference between them
gives the kinetic energy. The places where V(z) > E are the regions where the
particle cannot go. The places where V(x) = E are the “turning points” where the
particle stops and changes direction. In the figure, the particle is trapped between
x1 and 2, and oscillates back and forth. The potential V(x) is extremely useful
this way, because it makes clear the general properties of the motion.

REMARK: It may seem silly to introduce a specific z( as a reference point, considering
that it is only eq. (4.4) (which makes no mention of z() that has any meaning. It’s sort of
like taking the difference between 17 and 8 by first finding their sizes relative to 5, namely
12 and 3, and then subtracting 3 from 12 to obtain 9. However, since integrals are harder
to do than simple subtractions, it is advantageous to do the integral once and for all and
thereby label all positions with a definite number V' (z), and to then take differences between
the V’s when needed. &

Note that eq. (4.2) implies

Flz) = —dzdff) . (4.5)

Given V(x), it is easy to take its derivative to obtain F'(x). But given F(z), it may
be difficult (or impossible) to perform the integration in eq. (4.2) and write V' (x)
in closed form. But this is not of much concern. The function V' (z) is well-defined
(assuming that the force is a function of z only), and if needed it can be computed
numerically to any desired accuracy.

Example 1 (Gravitational potential energy): Consider two point masses, M
and m, separated by a distance r. Newton’s law of gravitation says that the force
between them is attractive and has magnitude GMm/r?. The potential energy of the
system at separation r, measured relative to separation rg, is

" —-GM —-GM GM
V(r)—V(ro):—/ T gyt = AT S

0

(4.6)
r To

A convenient choice for g is 0o, because this makes the second term vanish. It will be
understood from now on that this rqg = oo reference point has been chosen. Therefore
(see Fig. 4.2),

_ —GMm

r

V(r) (4.7)

X1 X2

Figure 4.1

")

Figure 4.2
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Example 2 (Gravity near the earth): What is the gravitational potential energy
of a mass m at height y, relative to the ground? We know, of course, that it is mgy,
but let’s do it the hard way. If M is the mass of the earth and R is its radius, then
(assuming y < R)

—GMm B —GMm

V(R+y)—V(R) =

R+y R
_ —GMm 1 _q
N R 1+y/R
—GMm
~ (1 -y/m)-1)
GMm
- Rzy, (4.8)

where we have used the Taylor series approximation for 1/(1 + €) to obtain the third
line. We have also used the fact that a sphere can be treated like a point mass, as far
as gravity is concerned. We'll prove this in Section 4.4.1.

Using ¢ = GM/R?, we see that the potential energy difference in eq. (4.8) equals
mgy. We have, of course, simply gone around in circles here. We integrated in eq.
(4.6), and then we basically differentiated in eq. (4.8) by taking the difference between
the forces. But it’s good to check that everything works out.

REMARK: A good way to visualize a potential V' (x) is to imagine a ball sliding around
in a valley or on a hill. For example, the potential of a typical spring is V (x) = kx?/2 (which
produces the Hooke’s-law force, F(x) = —dV/dx = —kx), and we can get a decent idea of
what is going on if we imagine a valley with height given by y = 22/2. The gravitational
potential of the ball is then mgy = mgx?/2. Choosing mg = k gives the desired potential.
If we then look at the projection of the ball’s motion on the z-axis, it seems like we have
constructed a setup identical to the original spring.

Howewver, although this analogy helps in visualizing the basic properties of the motion,
the two setups are not the same. The details of this fact are left for Problem 5, but the
following observation should convince you that they are indeed different. Let the ball be
released from rest in both setups at a large value of x. Then the force, kz, due to the spring
is very large. But the force in the z-direction on the particle in the valley is only a fraction
of mg (namely mgsin € cos 6, where 6 is the angle of the ground). &

Conservative forces

Given any force (it can depend on z, v, t, and/or whatever), the work it does on a
particle is defined by W = [ Fdz. If the particle starts at x; and ends up at o,
then no matter how it gets there (it can speed up or slow down, or reverse direction
a few times, perhaps due to the influence of another force), we can calculate the
work done by the given force and equate the result with the change in kinetic energy,

2 2 d 1 1
W = / Fdx = / m (UU> dr = —mv3 — —mui. (4.9)
o o dx 2
For some forces, the work done is independent of how the particle moves. A
force that depends only on position (in one dimension) has this property, because

via
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the integral in eq. (4.4) depends only on the endpoints. The W = [ F' dz integral is
simply the area under the F' vs. x graph, and this area is independent of how the
particle goes from z1 to xs.

For other forces, the work done depends on how the particle moves. Such is the
case for forces that depend on ¢ or v, because it then matters when or how quickly
the particle goes from x1 to 2. An common example of such a force is friction. If
you slide a brick across a table from x1 to xs, then the work done by friction equals
—pmg|Az|. But if you slide the brick by wiggling it back and forth for an hour
before you finally reach s, then the amount of negative work done by friction will
be very large. Since friction always opposes the motion, the contributions to the
W = [ Fdx integral are always negative, so there is never any cancellation. The
result is therefore a large negative number.

The issue with friction is that the umg force isn’t a function only of position,
because at a given location the friction can point to the right or to the left, depending
on which way the particle is moving. Friction is therefore a function of velocity.
True, it’s a function only of the sign of the velocity, but that’s enough to ruin the
position-only dependence.

We now define a conservative force as one for which the work done on a particle
between two given points is independent of how the particle makes the journey. From
the preceding discussion, we know that a one-dimensional force is conservative if and
only if it depends only on z (or is constant).?

The point we're leading up to here is that although we can define the work done
by any force, we can only talk about potential energy associated with a force if the
force is conservative. This is true because we want to be able to label each value
of z with a unique number, V'(z), given by V(z) = — [ F dz. If this integral were
dependent on the path, then it wouldn’t be well-defined, so we wouldn’t know what
number to assign to V(x). We therefore talk only about potential energies that are
associated with conservative forces. In particular, it makes no sense to talk about
the potential energy associated with a friction force.

Work vs. potential energy

When you drop a ball, does its speed increase because the gravitational force is
doing work on it, or because its gravitational potential energy is decreasing? Well,
both (or more precisely, either). Work and potential energy are two different ways
of talking about the same thing (at least for conservative forces). Either method of
reasoning will give the correct result. However, be careful not to use both reasonings
and “double count” the effect of gravity on the ball.

Which terminology you use depends on what you call your “system”. Just as
with F' = ma and free-body diagrams, it is important to label your system when
dealing with work and energy.

The work-energy theorem stated in Theorem 4.1 was relevant to one particle.
What if we are dealing with the work done on a system that is composed of various

2In two or three dimensions, however, we will see in Section 4.3.1 that a conservative force must
satisfy another requirement, in addition to being dependent only on position.
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parts? The general work-energy theorem says that the work done on a system by
external forces equals the change in energy of the system. This energy many come
in the form of kinetic energy, or internal potential energy, or heat (which is really
just kinetic energy). For a point particle, there is no internal structure (so we’ll
assume it can’t heat up), so this general form of the theorem reduces to Theorem
4.1. But to see what happens when a system has internal structure, consider the
following example.

Example (Raising a book): You lift a book up at constant speed, so there is no
change in kinetic energy. Let’s see what the general work-energy theorem says for
various choices of the system.

e System = (book): Both you and gravity are external forces, and there is no
change in energy of the book as a system in itself. So the W-E theorem says

Wyou + Weray =0 = mgh + (—mgh) = 0. (4.10)

e System = (book + earth): Now you are the only external force. The gravita-
tional force between the earth and the book is an internal force which produces
and internal potential energy. So the W-E theorem says

Wyou = AVearth—book < mgh = mgh (411)

e System = (book + earth + you): There is now no external force. The internal
energy of the system changes because the earth-book gravitational potential
energy increases, and also because your potential energy decreases. In order to
lift the book, you have to burn some calories from the dinner you ate. So the
W-E theorem says

0= A‘/earth—book + A‘/you <~ 0= mgh + (—mgh). (412)

Actually, a human body isn’t 100% efficient, so what really happens here is that
your potential energy decreases by more than mgh, but heat is produced. The
sum of these two changes in energy equals —mgh.

The moral of all this is that you can look at a setup in various ways. Potential
energy in one way might be work in another. In practice, it is usually more con-
venient to work in terms of potential energy. So for a dropped ball, people usually
consider gravity to be an internal force in the earth-ball system, as opposed to an
external force on the ball system.

4.2 Small Oscillations

Consider an object in one dimension, subject to the potential V(x). Let the object
initially be at rest at a local minimum of V' (z), and then let it be given a small kick
so that it moves back and forth around the equilibrium point. What can we say
about this motion? Is it harmonic? Does the frequency depend on the amplitude?
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It turns out that for small amplitudes, the motion is indeed simple harmonic
motion, and the frequency can easily be found, given V(z). To see this, expand
V(x) in a Taylor series around the equilibrium point, x.

V(z) = V(xo)—i—V’(mo)(x—xo)+%V”(mo)(m—x0)2+%vl”(:ﬁo)(:z:—xo)3+- . (4.13)
This looks like a bit of a mess, but we can simplify it greatly. V(xg) is an
irrelevant additive constant. We can ignore it because only differences in energy
matter (or equivalently, because F' = —dV/dx). And V'(x¢) = 0, by definition of the
equilibrium point. So that leaves us with the V”(z) and higher-order terms. But for
sufficiently small displacements, these higher-order terms are negligible compared
to the V”(x) term, because they are suppressed by additional powers of (z — zp).

So we are left with? )
V(r) ~ §V”(1:0)(m —z0)% (4.14)

But this looks exactly like the Hooke’s-law potential, V (z) = (1/2)k(z — x¢)?, pro-
vided that we let V”(zg) be our “spring constant,” k. The frequency of small
oscillations, w = /k/m, therefore equals

V”(:C(]) '

m

(4.15)

w =

Example: A particle moves under the influence of the potential V (z) = A/x?— B/x.
Find the frequency of small oscillations around the equilibrium point. This potential
is relevant to planetary motion, as we will see in Chapter 6.

Solution: The first thing we need to do is calculate the equilibrium point, xy. We

have 94 B
V(@)= -5 + . (4.16)
Therefore, V'(z) = 0 when = 2A/B = x¢. The second derivative of V(z) is
6A 2B

Plugging in z¢p = 24/B, we find
v Zo B4

Eq. (4.15) is an important result, because any function V' (z) looks basically like
a parabola (see Fig. 4.3) in a small enough region around a minimum (except in
the special case where V" (z9) = 0).

3Even if V"/(z0) is much larger than V" (z0), we can always pick (z — xo) small enough so that
the V""'(zo) term is negligible. The one case where this is not true is when V' (z9) = 0. But the
result in eq. (4.15) is still valid in this case. The frequency w just happens to be zero.

parabola

Figure 4.3
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A potential may look quite erratic,
And its study may seem problematic.
But down near a min,

You can say with a grin,

“It behaves like a simple quadratic!”

4.3 Conservation of energy in 3-D

The concepts of work and potential energy in three dimensions are slightly more
complicated than in one dimension, but the general ideas are the same. As in the 1-D
case, we start with Newton’s second law, which now takes the vector form, F = ma.
And as in the 1-D case, we will deal only with forces that depend only on position,
that is, F = F(r). This vector equation is shorthand for three equations analogous
to eq. (4.1), namely muv,(dvy/dz) = F,, and likewise for y and z. Multiplying
through by dz, etc., in these three equations, and then adding them together gives

Fpdz + Fydy + F, dz = m(vy dvg + vy dvy + v, dvy). (4.19)

Integrating from the point (xg,yo, 20) to the point (x,y, z) yields
“ Y ? 1 2, .2, 2 Lo
E—i—/ dex—i—/ Fydy—f—/ F,dz = sm(vy + v, + v7) = ;mo’, (4.20)
o Yo Z0 2 2

where F is a constant of integration.® Note that the integrations on the left-hand
side depend on what path in 3-D space the particle takes in going from (zg, yo, 20)
to (z,y,z). We will address this issue below.

With dr = (dz,dy, dz), the left-hand side of eq. (4.19) is equal to F - dr. Hence,
eq. (4.20) may be written as

1 r
Zmw? — / F(r').d' = E. (4.21)
2 o
Therefore, if we define the potential energy, V(r), as
r
V(r) = — / F(r') - dr, (4.22)
ro

then we may write
1
§m112 +V(r)=E. (4.23)

In other words, the sum of the kinetic energy and potential energy is constant.

4Technically, we should put primes on the integration variables so that we don’t confuse them
with the limits of integration, but this gets too messy.
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4.3.1 Conservative forces in 3-D

For a force that depends only on position (as we have been assuming), there is one
complication that arises in 3-D that we didn’t have to worry about in 1-D. In 1-
D, there is only one route that goes from xy to . The motion itself may involve
speeding up or slowing down, or backtracking, but the path is always restricted to
be along the line containing xg and . But in 3-D, there is an infinite number of
routes that go from rg to r. In order for the potential, V(r), to have any meaning
and to be of any use, it must be well-defined. That is, it must be path-independent.
As in the 1-D case, we call the force associated with such a potential a conservative
force. Let’s now see what types of 3-D forces are conservative.

Theorem 4.2 Given a force F(r), a necessary and sufficient condition for the po-
tential,

Vi) = - / :F(r’) Ly, (4.24)

to be well-defined (that is, to be path-independent) is that the curl of F is zero (that
is, VxF =0)5

Proof: First, let us show that V x F = 0 is a necessary condition for path-
independence. In other words, “If V(r) is path-independent, then V x F = 0.”

Consider the infinitesimal rectangle shown in Fig. 4.4. This rectangle lies
in the x-y plane, so in the present analysis we will suppress the z-component of
all coordinates, for convenience. If the potential is path-independent, then the
work done in going from (X,Y) to (X + dX,Y + dY’), which equals the integral
J F - dr, must be path-independent. In particular, the integral along the segments
“1” and “2” must equal the integral along the segments “3” and “4”. That is,
i Fydy+ [, Fyde = [; Fpdx + [, Fy dy. Therefore, a necessary condition for path-
independence is

/Fmdaj—/dex:/Fydy—/Fydy -
2 3 4 1

X+dX
/ (Fele, Y +dY) — Fo(a,Y)) da

X
Y+4dY
= [ (B + Xy - (X)) dy. (4.25)
Now,
Fo(w,Y +dY) — Fy(e, V) ~ dy 2@ dym‘ (4.26)
I @y dy  lxy)

The first approximation holds due to the definition of the partial derivative. The
second approximation holds because our rectangle is small enough so that x is

°If you haven’t seen curl before, it’s defined below in eq. (4.30). But there is actually no need to
be familiar with the definition of curl here, because it is, after all, just a definition. The important
result that we will be deriving is the equality to the right of the “=” sign in eq. (4.30).

(X+dX, Y+dY)

©)

@

y

L °

Figure 4.4

)

@
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essentially equal to X. Any errors due to this approximation will be second-order
small, because we already have one factor of dY in our term.
A similar treatment works for the F, terms, so eq. (4.25) becomes

Y+dY
dr = / ax 2Eu@)

dy. 4.27
Y Ox ’(X,Y) Y (4.27)

X+dX
/ gy O (@y) ‘
X Jy (X,)Y)

The integrands here are constants, so we can quickly perform the integrals to obtain

OF;(z,y) B aFy(x,y)) ’ _ o
8@/ Ox (X,Y)

dXdy ( (4.28)

Cancelling the dXdY factor, and noting that (X,Y’) is an arbitrary point, we see
that if the potential is path-independent, then we must have

an(fB, y) _ aFy(x7y)
oy ox

~0, (4.29)

at any point (z,y).

The preceding analysis also works, of course, for little rectangles in the z-z and
y-z planes. We therefore obtain two other analogous conditions for the potential to
be well-defined. All three conditions may be concisely written as

(4.30)

— <8Fz _OF, OF, OF, OF, an> o

oy 0z Oz ox = Ox oy

We have therefore shown that V x F = 0 is a necessary condition for path indepen-
dence. Let us now show that it is sufficient. In other words, “If V x F = 0, then
V(r) is path-independent.”

The proof of sufficiency follows immediately from Stokes’ theorem (but see the
remark below for another proof), which states that (see Fig. 4.5)

f F(r)-dr = /(v < F) - dA. (4.31)
C S

Here, C is an arbitrary closed curve, which we make pass through rg and r. §'is an
arbitrary surface that has C as its boundary. And dA has a magnitude equal to an
infinitesimal piece of area on S and a direction defined to be orthogonal to S.

Eq. (4.31) implies that if V x F = 0 everywhere, then §, F(r) - dr = 0 for any
closed curve. But Fig. 4.5 shows that traversing the loop C entails traversing path
“1” in the “forward” direction, and then traversing path “2” in the “backward”
direction. Hence, [{ F-dr — [, F - dr = 0, where both integrals run from rq to r.
Therefore, any two paths from rg to r give the same integral, as we wanted to show.
|

REMARKS:

1. If you don’t like invoking Stokes’ theorem, then you can just back up a step and
prove it from scratch. Here’s the rough idea of the proof. For simplicity, pick a path
confined to the z-y plane (the general case proceeds in the same manner). For the
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purposes of the dz and dy integrations, any path can be approximated by a series of

little segments parallel to the coordinate axes (see Fig. 4.6).

Now imagine integrating [ F - dr over every little rectangle in the figure (in a coun-

terclockwise direction). The result can be viewed in two ways: (1) From the above Figure 4.6
analysis leading to eq. (4.28), each integral gives the curl times the area of the rectan-

gle. So whole integral gives [((V xF)dA. (2) Each interior line gets counted twice (in

opposite directions) in the whole integration, so these contributions cancel. We are

therefore left with the integral over only the edge segments, which gives fo F(r) - dr.

Equating these two ways of looking at the integration gives Stokes’ theorem in eq.

(4.31).

2. Another way to show that V x F = 0 is a necessary condition for path-independence
(that is, “If V(r) is path-independent, then V x F = 0.”) is the following. If V(r)
is path-independent (and therefore well-defined), then it is legal to write down the
differential form of eq. (4.22). This is

dV(r) = =F(r) -dr = —(Fydxz + Fydy + F. dz). (4.32)

But another expression for dV' is

LoV v oV

-— -— —dz. 4.
dV (r) 5 dzr + 3y dy + P dz (4.33)
The previous two equations must be equivalent for arbitrary dz, dy, and dz. So we
have
oav. oV oV
Fa:u F 7FZ = “\ 4a. 49 9 a_
( v F2) (ax Oy = 0z )
= F(r) = —-VV(r). (4.34)

In other words, the force is simply the gradient of the potential. Therefore,
VxF=-VxVV(r)=0, (4.35)

because the curl of a gradient is identically zero, as you can explicitly verify. &

Example (Central force): A central force is defined to be a force that points
radially and whose magnitude depends only on r. That is, F(r) = F(r)f. Show that
a central force is a conservative force by explicitly showing that V x F = 0.

Solution: F may be written as
F(e.y,2) = F(ni = F(r) (£,2,2). (4.36)

Now, as you can verify,

or o2+ y?+22 =

— = = 4.37

Ox Ox r’ (4.37)
and similarly for y and z. Therefore, the z component of V x F equals (writing F' for
F(r), and F’ for dF(r)/dr)

OF, - orF,  O(yF/r) 3 O(zF/r)

Or Oy oz dy
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_ (Ypor _ pLlOr _(zpor  plor
B (TF&T yFr23x> (r Ay CEF?“Q(?y

/ /
_ (Wf _ wa) _ (fcyf _ wyF) _o. (4.38)
T T

Likewise for the xz- and y-components.

4.4 Gravity

4.4.1 Gravity due to a sphere

The gravitational force on a point-mass m, located a distance r from a point-mass
M, is given by Newton’s law of gravitation,

~ —GMm

F(r) TR

g (4.39)

where the minus sign indicates an attractive force. What is the force if we replace
the point mass M by a sphere of radius R and mass M? The answer (assuming
that the sphere is spherically symmetric, that is, the density is a function only of 7)
is that it is still —GMm/r?. A sphere acts just like a point mass at its center, for
the purposes of gravity. This is an extremely pleasing result, to say the least. If it
were not the case, then the universe would be a far more complicated place than it
is. In particular, the motion of planets and such things would be much harder to
describe.

To prove this result, it turns out to be much easier to calculate the potential
energy due to a sphere, and to then take the derivative to obtain the force, rather
than to calculate the force explicitly.® So this is the route we will take. It will suffice
to demonstrate the result for a thin spherical shell, because a sphere is the sum of
many such shells.

Our strategy for calculating the potential energy at a point P, due to a spherical
shell, will be to slice the shell into rings as shown in Fig. 4.7. Let the radius of the
shell be R. Let P be a distance r from the center of the shell, and let the ring make
the angle 6 shown.

The distance, ¢, from P to the ring is a function of R, r, and 6. It may be found
as follows. In Fig. 4.8, segment AB has length Rsin 6, and segment BP has length
r — Rcos@. So the length ¢ in triangle ABP is

(= \/(Rsin9)2 + (r— Rcos0)2 = VR?2 +r2 — 2rRcos®. (4.40)

What we’ve done here is just prove the law of cosines.
The area of a ring between 6 and 6 + df is its width (which is Rdf) times its
circumference (which is 2rRsin6). Letting 0 = M/ (47 R?) be the mass density of

5The reason for this is that the potential energy is a scalar quantity (just a number), whereas
the force is a vector. If we tried to calculate the force, we would have to worry about forces pointing
in all sorts of directions. With the potential energy, we simply have to add up a bunch of numbers.
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the shell, we see that the potential energy of a mass m at P due to a thin ring is
—Gmo(RdO)(2nRsin @) /L. This is true because the gravitational potential energy,

—Gmims

Vir) = =

(4.41)
is a scalar quantity, so the contributions from the little mass pieces simply add.
Every piece of the ring is the same distance from P, and this distance is all that
matters; the direction from P is irrelevant (unlike it would be with the force). The
total potential energy at P is therefore

™ 27xcGR2msin b df

o VR2 +1r2—2rRcosf
_27rame\/R2

Vir) =

™

+7r2—2rRcosf | . (4.42)
0

Note that the sin 6 in the numerator is what made this integral nice and doable. We
must now consider two cases. If » > R, then we have

o m 7 20_m m
V() = - ZZE (s Ry — (- py) = TR _GMm g

which is the potential due to a point-mass M located at the center of the shell, as
desired. If r < R, then we have

o m 78 2Um m
vir) = 2T (o gy (m ) = TR GHIm gy

which is independent of 7.

Having found V' (r), we can now find F(r) by simply taking the negative of the
gradient of V. The gradient is just r(d/dr) here, because V is a function only of .
Therefore,

M
F(r)y = ¢ m’ if > R,

r2

F(r) = 0, ifr<R. (4.45)

These forces are directed radially, of course. A sphere is the sum of many spherical
shells, so if P is outside a given sphere, then the force at P is —GMm/r?, where
M 1is the total mass of the sphere. This result will still hold even if the shells have
different mass densities (but each one must have uniform density).

Newton looked at the data, numerical,

And then observations, empirical.

He said, “But, of course,

We get the same force

From a point mass and something that’s spherical!”
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If P is inside a given sphere, then the only relevant material is the mass inside
a concentric sphere through P, because all the shells outside this region give zero
force, from the second equation in eq. (4.45). The material “outside” of P is, for
the purposes of gravity, not there.

It is not obvious that the force inside a spherical shell is zero. Consider the point
P in Fig. 4.9. A piece of mass, dm, on the right side of the shell gives a larger force
on P than a piece of mass, dm, on the left side, due to the 1/7? dependence. But
from the figure, there is more mass on the left side than the right side. These two
effects happen to exactly cancel, as you can show in Problem 9.

Note that the gravitational force between two spheres is the same as if they were
replaced by two point-masses. This follows from two applications of our “point-
mass” result.

4.4.2 Tides

The tides on the earth exist because the gravitational force from a point mass (or a
spherical object, in particular the moon or the sun) is not uniform. The direction of
the force is not constant (the force lines converge to the source), and the magnitude
is not constant (it falls off like 1/r%). On the earth, these effects cause the oceans
to bulge around the earth, producing the observed tides.

The study of tides is useful in part because tides are a very real phenomenon
in the world, and in part because the following analysis gives us an excuse to make
lots of approximations with Taylor series and such. Before considering the general
case of tidal forces, let’s look at two special cases.

Longitudinal tidal force

In Fig. 4.10, two particles of mass m are located at points (R,0) and (R + z,0),
with £ < R. A planet of mass M is located at the origin. What is the difference
between the gravitational forces acting on these two masses?

The difference in the forces is (using x < R to make suitable approximations)

—GMm B —GMm N —GMm n GMm  GMm ( -1 +1)
(R + )2 R2 7 R’242Rx R® R?2 \1+2/R
GMm 2GMmx
~ 7(—(1—233/R)+1) = T (446)

This is, of course, simply the derivative of the force, times x. This difference points
along the line joining the masses, and its effect is to pull the masses apart.

We see that this force difference is linear in the separation z, and inversely
proportional to the cube of the distance from the source. This force difference is
the important quantity (as opposed to the force on each mass) when we are dealing
with the relative motion of objects in free-fall around a given mass (for example,
circular orbiting motion, or radial falling motion). This force difference is referred
to as the “tidal force.”

Consider two people, A and B, both of mass m, in radial free-fall toward a
planet. Imagine that they are connected by a string, and enclosed in a windowless
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box. Neither can feel the gravitational force acting on him (for all they know,
they are floating freely in space). But they each feel a tension in the string equal
to T = GMmz/R? (neglecting higher-order terms in z/R), pulling in opposite
directions. The difference in these tension forces is 27", which exactly cancels the
difference in the gravitational force, thereby allowing the separation to remain fixed.

How do A and B view the situation? They will certainly feel the tension force.
They will therefore conclude that there must be some other mysterious “tidal force”
that opposes the tension, yielding a total net force of zero, as measured in their
windowless box.

Transverse tidal force

In Fig. 4.11, two particles of mass m are located at points (R,0) and (R,y), with
y < R. A planet of mass M is located at the origin. What is the difference between
the gravitational forces acting on these two masses?

Both masses are the same distance R from the origin, up to second-order effects
in y/R (using the Pythagorean theorem), so the magnitudes of the forces on them
are essentially the same. The direction is the only thing that is different, to first
order in y/R. The difference in the forces is the y-component of the force on the
top mass. The magnitude of this component is

M M M
G0 5, M (1) _ Ay, e

72 sin 0 ~ 72 i
This difference points along the line joining the masses, and its effect is to pull the
masses together. As in the longitudinal case, the transverse tidal force is linear in
the separation y, and inversely proportional to the cube of the distance from the
source.

General tidal force

We will now calculate the tidal force at an arbitrary point on a circle of radius r
centered at the origin (this circle represents the earth), due to a mass M located
at the vector —R; see Fig. 4.12. We will calculate the tidal force relative to the
origin. Note that the vector from M to a point P on the circle is R 4+ r. And as
usual, assume |r| < |R/.

The attractive gravitational force may be written as F(x) = —GMmx/|x|?,
where x is the vector from M to the point in question. The cube is in the denom-
inator because the vector in the numerator contains one power of the distance. In
the present case we have x = R +r, so the desired difference between the force on a
mass m at point P and the force on a mass m at the origin is the tidal force Fy(r)
given by

Ft(r) . —(R+ I') -R
GMm ~ R+t |R]’

(4.48)

This is the exact expression for the tidal force. However, it is completely useless.”

"This reminds me of a joke about two people lost in a hot-air balloon.

Figure 4.11

Figure 4.12
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Let us therefore make some approximations in eq. (4.48) and transform it into
something technically incorrect (as approximations tend to be), but far more useful.

The first thing we need to do is rewrite the |R +r| term. We have (using r < R
and ignoring higher-order terms)

IR +r|

JR+1)- (R+1)
VR 412+ 2R -1

~ R\/1+2R-r/R?

R-r
~ R (1 + R ) . (4.49)
Therefore (again using r < R),
Fi(r) R+r N R
GMm =~  R3(1+R-r/R?)3  R3
— R+r n R
~  R31+3R-r/R?) ' R®
R+r 3R -r R
~ - <1 - > 5 (4.50)
Letting R = R/R, we finally have (once again using r < R)
Fy(r) ~ GMmBR(R-r)—r) . (4.51)

R3
This is the general expression for the tidal force. We can put it in a simpler form
if we let M lie on the negative x-axis, which can arrange for with a rotation of the
axes. We then have R = %X, and so R-r = z. Eq. (4.51) then tells us that the tidal
force at the point P = (z,y) equals

N GMm

. . . GMm
Fi(r) ~ 7 (Sxx — (xx + yy)) =

R3
This reduces properly in the two special cases considered above. The tidal forces at
various points on the circle are shown in Fig. 4.13.

If the earth were a rigid body, then the tidal force would have no effect on it.
But the water in the oceans is free to slosh around. The water on the earth bulges
along the line from the earth to the moon, and also along the line from the earth
to the sun. As the earth rotates beneath the bulge, a person on the earth sees the
bulge rotate relative to the earth. From Fig. 4.13, we see that this produces two
high tides and two low tides per day. It’s actually not exactly two per day, because
the moon moves around the earth. But this motion is fairly slow, taking about a
month, so it’s a reasonable approximation for the present purposes to think of the
moon as motionless.

Note that it is not the case that the moon pushes the water away on the far side
of the earth. It pulls on that water, too; it just does so in a weaker manner than it
pulls on the rigid part of the earth. Tides are a comparative effect.

(2z, —y). (4.52)
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REMARKS:

1. Consider two equal masses separated by a given distance on the earth. It turns out
that the gravitational force from the sun on them is (much) larger than that from the
moon, whereas the tidal force from the sun on them is (slightly) weaker than that
from the moon. Quantitatively, the ratio of the gravitational forces is

F G M. G M; 6-1073 2
S R (s et /S s, (4.53)
1oy Ri g R m 3.4-1075m/s?
And the ratio of the tidal forces is
Fis G Mg G My 4.107 14572
= = —— = ~ 0.45. 4.54
Fim ( R} g R}t 9-101s72 (454

2. Eq. (4.54) shows that the moon’s tidal effect is roughly twice the sun’s. This has an
interesting implication about the densities of the moon and sun. Note that the tidal
force from, say, the moon is proportional to

GMM G(%ﬂ'rﬁ/[)pM ( ™ )3 3
= . x<pm | 5— | = pmbi, (4.55)
<R%,M ) ( R%,M Rem .

where 6y is half of the angular size of the moon in the sky. Likewise for the sun’s
tidal force. But it just so happens that the angular sizes of the sun and the moon are
essentially equal, as you can see by looking at them (preferably through some haze),
or by noting that total solar eclipses barely exist. Therefore, the combination of eq.
(4.54) and eq. (4.55) tells us that the moon’s density is about twice the sun’s. &

4.5 Momentum

4.5.1 Conservation of momentum

Newton’s third law says that for every force there is an equal and opposite force.
More precisely, if Fg;, is the force that particle a feels due to particle b, and if Fy, is
the force that particle b feels due to particle a, then Fy, = —F; at all times.

This law has important implications concerning momentum. Consider two par-
ticles that interact over a period of time. Assume that they are isolated from outside
forces. From Newton’s second law,

dp
% 9
we see that the total change in a particle’s momentum equals the time integral of
the force acting on it. That is,

F = (4.56)

to
p(t2) — p(t1) = | F. (4.57)
1
This integral is called the impulse. If we now invoke the third law, Fp, = —Fg, we
find
to
pa(tZ) - pa(tl) = . Fabdt
1 "
= — Fy,dt = —(pb(tg) — pb(tl)). (458)

t1
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Therefore,
Pa(t2) + Po(t2) = Pa(t1) + Po(t1)- (4.59)

In other words, the total momentum of this isolated system is conserved. It does
not depend on time. Note that eq. (4.59) is a vector equation, so it is really three
equations, namely conservation of p, p,, and p..

Example (Splitting mass): A mass M moves with speed V in the a-direction. It
explodes into two pieces that go off at angles 61 and 65, as shown in Fig. 4.14. What
are the magnitudes of the momenta of the two pieces?

Solution: Let P = MV be the initial momentum, and let p; and ps be the final
momenta. Conservation of momentum in the z- and y-directions gives, respectively,

prcosfy +pycostly = P,
prsinfy; —pasinfy = 0. (4.60)

Solving for p; and p2, and using a trig addition formula, gives

Psinfq Psin6,
= ———— d = . 4. 1
P sin(91 + 92) ’ at P2 sin(91 + 92) ( 6 )

Let’s check a few limits. If 6; = 05, then p; = po, as it should. If, in addition, 64
and 0y are both small, then p; = ps &~ P/2, as they should. If, on the other hand,
01 = 6 = 90°, then p; and ps are both very large; the explosion must have provided
a large amount of energy.

Note that with the given information, we can’t determine what the masses of the two
pieces are. To find these, we would need to know two more pieces on information, such
as how much energy the explosion gave to the system, and what one of the masses or
speeds is. Then we would have an equal number of equations and unknowns.

REMARK: Newton’s third law makes a statement about forces. But force is defined
in terms of momentum via F' = dp/dt. So the third law essentially postulates conservation
of momentum. (The “proof” above in eq. (4.58) is hardly a proof. It involves one simple
integration.) So you might wonder if momentum conservation is something you can prove,
or if it’s something you have to assume (as we have basically done).

The difference between a postulate and a theorem is rather nebulous. One person’s
postulate might be another person’s theorem, and vice-versa. You have to start somewhere
in your assumptions. We chose to start with the third law. In the Lagrangian formalism
in Chapter 5, the starting point is different, and momentum conservation is deduced as a
consequence of translational invariance (as we will see). So it looks more like a theorem in
that formalism.

But one thing is certain. Momentum conservation of two particles cannot be proven from
scratch for arbitrary forces, because it is not necessarily true. For example, if two charged
particles interact in a certain way through the magnetic fields they produce, then the total
momentum of the two particles might not be conserved. Where is the missing momentum?
It is carried off in the electromagnetic field. The total momentum of the system is indeed
conserved, but the fact of the matter is that the system consists of the two particles plus
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the electromagnetic field. Said in another way, each particle actually interacts with the
electromagnetic field, and not the other particle. Newton’s third law does not necessarily
hold for particles subject to such a force. &

Let’s now look at momentum conservation for a system of many particles. As
above, let F;; be the force that particle ¢ feels due to particle j. Then F;; = —F};
at all times. Assume the particles are isolated from outside forces.

The change in the momentum of the ith particle from ¢; to to is (we won’t bother
writing all the ¢’s in the expressions below)

J

Therefore, the change in the total momentum of all the particles is

AP = ZAPZ = / Z ZFU dt. (463)

But -, >°; Fi; = 0 at all times, because for every term F, there is a term Fy,, and
F., + Fpe = 0. (And also, Fyq = 0.) Therefore, the total momentum of an isolated
system of particles is conserved.

4.5.2 Rocket motion

The application of momentum conservation becomes a little more exciting when the
mass m is allowed to vary. Such is the case with rockets, because most of their mass
consists of fuel which is eventually ejected.

Let mass be ejected with speed u relative to the rocket,® at a rate dm/dt. We’ll
define the quantity dm to be negative, so during a time dt the mass dm gets added
to the rocket’s mass. (If you wanted, you could define dm to be positive, and then
subtract it from the rocket’s mass. Either way is fine.) Also, we’ll define u to be
positive, so the ejected particles lose a speed u relative to the rocket. It may sound
silly, but the hardest thing about rocket motion is picking a sign for these quantities
and sticking with it.

Consider a moment when the rocket has mass m and speed v. Then at a time dt
later (see Fig. 4.15), the rocket has mass m+dm and speed v+dv, while the exhaust
has mass (—dm) and speed v — u (which may be positive or negative, depending on
the relative size of v and ). There are no external forces, so the total momentum
at each of these times must be equal. Therefore,

mv = (m +dm)(v+ dv) + (—dm)(v — u). (4.64)

8 Just to emphasize, u is the speed with respect to the rocket. It wouldn’t make much sense to
say “relative to the ground,” because the rocket’s engine spits out the matter relative to itself, and
the engine has no way of knowing how fast the rocket is moving with respect to the ground.

v-u

—

U v

m+dm

—
v+dv

Figure 4.15
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Ignoring the second-order term yields m dv = —u dm. Dividing by m and integrating
from t1 to to gives
v2 m2  dm m
/ dv = —/ u— = vy — vy = uln —-. (4.65)
U1 m m ma

For the case where the initial mass is M and the initial speed is 0, we have v =
uln(M/m). And if dm/dt happens to be constant (call it —n, where 1 is positive),
then v(t) = uln[M/(M — nt)].

The log in the result in eq. (4.65) is not very encouraging. If the mass of the
metal in the rocket is m, and if the mass of the fuel is 9m, then the final speed is
only u1In10 ~ (2.3)u. If the mass of the fuel is increased by a factor of 11 up to 99m
(which is probably not even structurally possible, given the amount of metal required
to hold it), then the final speed only doubles to ©1n 100 = 2(u1n 10) ~ (4.6)u. How
do you make a rocket go significantly faster? Exercise 33 deals with this question.

REMARK: If you want, you can solve this rocket problem by using force instead of
conservation of momentum. If a chunk of mass (—dm) is ejected out the back, then its
momentum changes by wdm (which is negative). Since force equals the rate of change of
momentum, the force on this chunk is udm/dt. By Newton’s third law, the remaining
part of the rocket feels a force of —udm/dt (which is positive). This force accelerates the
remaining part of the rocket, so F' = ma gives —udm/dt = mdv/dt,® which is equivalent
to the m dv = —udm result above.

We see that this rocket problem can be solved by using either force or conservation
of momentum. In the end, these two strategies are really the same, because the latter
was derived from F = dp/dt. But the philosophies behind the approaches are somewhat
different. The choice of strategy depends on personal preference. In an isolated system such
as a rocket, conservation of momentum is usually simpler. But in a problem involving an
external force, F' = dp/dt is the way to go. You'll get lots of practice with F' = dp/dt in the
problems for this section and also in Section 4.8.

Note that we used both F' = dp/dt and F' = ma in this second solution to the rocket
problem. These are not equal if the mass of a particle changes. For further discussion on
which expression to use in a given situation, see Appendix E. &

4.6 The CM frame

4.6.1 Definition

When talking about momentum, it is understood that a certain frame of reference
has been picked. After all, the velocities of the particles have to be measured with
respect to some coordinate system. Any inertial (that is, non-accelerating) frame is
as good as any other, but we will see that there is one particular reference frame
that is often advantageous to use.

Consider a frame S and another frame S’ that moves at constant velocity u with
respect to S (see Fig. 4.16). Given a system of particles, the velocity of the ith

9Whether we use m or m + dm here for the mass of the rocket doesn’t matter. Any differences
are of second order.
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particle in S is related to its velocity in S’ by
v=v 4+u (4.66)

It is then easy to see that if momentum is conserved during a collision in frame S’,
then it is also conserved in frame S. This is true because both the initial and final
momenta of the system in S are increased by the same amount (Y m;)u, compared
to what they are in §’.10

Let us therefore consider the unique frame in which the total momentum of a
system of particles is zero. This is called the center of mass frame, or CM frame. If
the total momentum is P = Y m;v; in frame S, then the CM frame S’ is the frame

that moves with velocity

_F

_Zmivi
u= ==

M M
with respect to S, where M = ) m; is the total mass. This is true because we can
use eq. (4.66) to write

(4.67)

!/ /
P = Zmivl-

- P-P=0. (4.68)

The CM frame is extremely useful. Physical processes are generally much more
symmetrical in this frame, and this makes the results more transparent.

The CM frame is also sometimes called the “zero-momentum” frame. But the
“center of mass” name is commonly used because the center of mass of the particles
does not move in the CM frame, defined by the velocity in eq. (4.67). The position
of the center of mass is given by

> Mty
i

Rcoum = (4.69)
This is the location of the pivot upon which a rigid system would balance, as we will
see in Chapter 7. The fact that the CM doesn’t move in the CM frame follows from
the fact that the derivative of Roy is simply the velocity of the CM frame in eq.
(4.67). The center of mass may therefore be chosen as the origin of the CM frame.

Along with the CM frame, the other frame that people generally work with is
the lab frame. There is nothing at all special about this frame. It is simply the
frame (assumed to be inertial) in which the conditions of the problem are given.
Any inertial frame can be called the “lab frame.” Solving problems often involves
switching back and forth between the lab and CM frames. For example, if the final
answer is requested in the lab frame, then you may want to transform the given

10 Alternatively, nowhere in our earlier derivation of momentum conservation did we say what
frame we were using. We only assumed that the frame was not accelerating. If it were accelerating,
then F would not equal ma. We will see in Chapter 9 how F = ma is modified in a non-inertial
frame. But no need to worry about that here.
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information from the lab frame into the CM frame where things are more obvious,
M and then transform back to the lab frame to give the answer.
(]

Example (Two masses in 1-D): A mass m with speed v approaches a stationary
mass M (see Fig. 4.17). The masses bounce off each other without any loss in total
energy. What are the final velocities of the particles? Assume all motion takes place
in 1-D.

Solution: Doing this problem in the lab frame would require a potentially messy
use of conservation of energy (see the example in Section 4.7.1). But if we work in
the CM frame, things are much easier.

The total momentum in the lab frame is mv, so the CM frame moves to the right
with speed mv/(m + M) = u with respect to the lab frame. Therefore, in the CM
frame, the velocities of the two masses are

Mwv mu

Uer:U_U:m+M7 and UM:—U:—m+M. (470)

As a double-check, the difference in the velocities is v, and the ratio of the speeds is
M/m.

The important point to realize now is that in the CM frame, the two particles must
simply reverse their velocities after the collision (provided that they do indeed hit
each other). This is true because the speeds must still be in the ratio M/m after the
collision, in order for the total momentum to remain zero. Therefore, the speeds must
either both increase or both decrease. But if they do either of these, then energy is
not conserved.!!

If we now go back to the lab frame by adding the CM velocity of mv/(m + M) to the
two new velocities of —Mwv/(m+ M) and mv/(m + M), we obtain final lab velocities

of

(m—M)v 2mu

— d = . 4.71
m+M o MM (471)

Um =

REMARK: If m = M, then we see that the left mass stops, and the right mass picks up a
speed of v. If M > m, then the left mass bounces back with speed = v, and the right mass
hardly moves. If m > M, then the left mass keeps plowing along at speed ~ v, and the right
mass picks up a speed of &~ 2v. This 2v is an interesting result (it is clearer if you consider
things in the frame of the heavy mass m, which is essentially the CM frame), and it leads
to some neat effects, as in Problem 22.

4.6.2 Kinetic energy

Given a system of particles, the relationship between the total kinetic energy in
two different frames is generally rather messy and unenlightening. But if one of the
frames is the CM frame, then the relationship turns out to be quite nice.

1186 we did have to use conservation of energy in this CM-frame solution. But it was far less
messy than it would have been in the lab frame.
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Let S’ be the CM frame, which moves at constant velocity u with respect to
another frame S. Then the velocities of the particles in the two frames are related
by

Vi =V, +u (4.72)

The kinetic energy in the CM frame is
1
KEcy = 5 > malvil?. (4.73)
And the kinetic energy in frame S' is
KEs = 1 Z mi|vi 4+ u)?
2 (2
1
= §Zmi(v§-v§+2v§-u+u-u)

1 1
= 3 > milvil* +u- (Zmzv;) + §|u]2 > m;
= KEqy + %Muz, (4.74)

where M is the total mass of the system, and where we have used Y_; m;v, = 0, by
definition of the CM frame. Therefore, the KE in any frame equals the KE in the
CM frame, plus the kinetic energy of the whole system treated like a point mass M
located at the CM (which moves with velocity u). An immediate corollary of this
fact is that if the KE is conserved in a collision in one frame, then it is conserved in
any other frame.

4.7 Collisions

There are two basic types of collisions among particles, namely elastic ones (in which
kinetic energy is conserved), and inelastic ones (in which kinetic energy is lost). In
any collision, the total energy is conserved, but in inelastic collisions some of this
energy goes into the form of heat (that is, relative motion of the atoms inside the
particles) instead of showing up in the net translational motion of the particle.

We'll deal mainly with elastic collisions here, although some situations are in-
herently inelastic, as we’ll discuss in Section 4.8. For inelastic collisions where it is
stated that a certain fraction, say 20%, of the kinetic energy is lost, only a trivial
modification of the following procedure is required.

To solve any elastic collision problem, we simply have to write down the conser-
vation of energy and momentum equations, and then solve for whatever variables
we want to find.

4.7.1 1-D motion

Let’s first look at one-dimensional motion. To see the general procedure, we’ll solve
the example from Section 4.6.1 again.
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Example (Two masses in 1-D, again): A mass m with speed v approaches a
stationary mass M (see Fig. 4.18). The masses bounce off each other elastically.
What are the final velocities of the particles? Assume all motion takes place in 1-D.

Solution: Let v" and V' be the final velocities of the masses.'?> Then conservation
of momentum and energy give, respectively,

mv+0 = mv + MV,

1 1 1
imvz +0 = §mv’2 + §MV’2. (4.75)

We must solve these two equations for the two unknowns v" and V’. Solving for V'
in the first equation and substituting into the second gives

200 _ 212
mv? = mv’Q—l—Mm(q‘;Vjizv),

= 0 = (m+MW?—2muv + (m— M)v?,

— 0 = ((m+ MW — (- Mp) - o). (4.76)

One solution is v/ = v, but this is not the one we are concerned with. It is of course
a solution, because the initial conditions certainly satisfy conservation of energy and
momentum with the initial conditions (a fine tautology indeed). If you want, you can
view v/ = v as the solution where the particles miss each other. The fact that v’ = v
is always a root can often save you a lot of quadratic-formula trouble.

The v/ = v(m — M)/(m+ M) root is the one we want. Plugging this v’ back into the
first of eqs. (4.75) to obtain V' gives
, (m—M)w 2mu

=M d V=
v M an

, (4.77)

in agreement with eq. (4.71).

This solution was somewhat of a pain, because it involved a quadratic equation.
The following theorem is extremely useful because it offers a way to avoid the hassle
of quadratic equations when dealing with 1-D elastic collisions.

Theorem 4.3 In a 1-D elastic collision, the relative velocity of two particles after
a collision is the negative of the relative velocity before the collision.

Proof: Let the masses be m and M. Let v; and V; be the initial velocities, and let
vy and Vy be the final velocities. Conservation of momentum and energy give

mvu; + MV; = mvf+MVf

1 1 1 1

121n Section 4.6, a primed denoted a reference frame, but we’re now using a prime to denote
“final.”
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Rearranging these yields

m(vi —vy) = M(Vy—V).
m(vf — vj%) = M(Vf2 — VZQ) (4.79)
Dividing the second equation by the first gives v; + vy = V; + V. Therefore,
vi — Vi =—(vy = Vy), (4.80)

as we wanted to show. Note that in taking the quotient of these two equations, we
have lost the vy = v; and Vy = V; solution. But as stated in the above example,
this is the trivial solution. m

This is a splendid theorem. It has the quadratic energy-conservation statement
built into it. Hence, using this theorem along with momentum conservation (both of
which are linear statements) gives the same information as the standard combination
of eqgs. (4.78).

Note that the theorem is quite obvious in the CM frame (as we argued in the
example in Section 4.6.1). Therefore, it is true in any frame, because it involves
only differences in velocities.

4.7.2 2-D motion

Let’s now look at the more general case of two-dimensional motion. 3-D motion is
just more of the same, so we’ll confine ourselves to 2-D. Everything is basically the
same as in 1-D, except that there is one more momentum equation, and one more
variable to solve for. This is best seen through an example.

Example (Billiards): A billiard ball with speed v approaches an identical station-
ary one. The balls bounce off each other elastically, in such a way that the incoming
one gets deflected by an angle 6 (see Fig. 4.19). What are the final speeds of the
balls? What is the angle, ¢, at which the stationary ball is ejected?

Solution: Let v" and V' be the final speeds of the balls. Then conservation of p,,
Dy, and E give, respectively,

mv = muv cos@+mV’ cos e,
mv'sinf = mV’sing,
Lo 5 Lo 1
gt = omu + ng . (4.81)

We must solve these three equations for the three unknowns v’, V', and ¢. There are
various ways to do this. Here is one. Eliminate ¢ by adding the squares of the first
two equations (after putting the mv’ cosf on the left-hand side) to obtain

v? — 200 cos O +v"? = V2. (4.82)

Figure 4.19
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Now eliminate V'’ by combining this with the third equation to obtain!?

v’ = wvcosd. (4.83)
The third equation then implies
V' =wvsin. (4.84)

The second equation then gives m(v cos ) sin @ = m(v sin @) sin ¢, which implies cos § =
sin ¢, or
¢ =190°—6. (4.85)

In other words, the balls bounce off at right angles with respect to each other. This fact
is well known to pool players. Problem 18 gives another (cleaner) way to demonstrate
this result.

As we saw in the 1-D example in Section 4.6.1, collisions are often much easier
to deal with in the CM frame. Using the same reasoning (conservation of p and
E) as in that example, we conclude that in 2-D (or 3-D), the final speeds of two
elastically colliding particles must be the same as the initial speeds. The only degree
of freedom is the angle of the line containing the final (oppositely directed) velocities.
This simplicity in the CM frame invariably provides for a cleaner solution than the
lab frame would yield. A good example of this is Exercise 43, which gives yet another
way to derive the above right-angle billiard result.

4.8 Inherently inelastic processes

There is a nice class of problems where the system has inherently inelastic properties,
even if it doesn’t appear so at first glance. In such a problem, no matter how you
try to set it up, there will be inevitable kinetic energy loss that shows up in the form
of heat. Total energy is conserved, of course; heat is simply another form of energy.
But the point is that if you try to write down a bunch of (1/2)mwv?’s and conserve
their sum, then you're going to get the wrong answer. The following example is the
classic illustration of this type of problem.

Example (Sand on conveyor belt): Sand drops vertically at a rate o kg/s onto
a moving conveyor belt.

(a) What force must you apply to the belt in order to keep it moving at a constant
speed v?

(b) How much kinetic energy does the sand gain per unit time?

(¢) How much work do you do per unit time?

(d) How much energy is lost to heat per unit time?

13 Another solution is v’ = 0. In this case, ¢ must equal zero, and 6 is not well-defined. We simply
have the 1-D motion of the example in Section 4.6.1.
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Solution:

(a) Your force equals the rate of change of momentum. If we let m be the combined
mass of the conveyor belt plus the sand on the belt, then

_dp _dimv) _dv dm o (4.86)

F=au~"a "ata

where we have used the fact that v is constant.

(b) The kinetic energy gained per unit time is

d [ muv? dm [ v? ov?
dt<2 )dt<2> = (487)

(¢) The work done by your force per unit time is

d(Work)  Fdx
. dt

= Fv = 0v?, (4.88)

where we have used eq. (4.86).

(d) If work is done at a rate ov?, and kinetic energy is gained at a rate ov?/2, then
the “missing” energy must be lost to heat at a rate ocv? — ov?/2 = ov?/2.

In this example, it turned out that exactly the same amount of energy was lost
to heat as was converted into kinetic energy of the sand. There is an interesting
and simple way to see why this is true. In the following explanation, we’ll just deal
with one particle of mass M that falls onto the conveyor belt, for simplicity.

In the lab frame, the mass simply gains a kinetic energy of Mv?/2 by the time
it finally comes to rest with respect to the belt, because the belt moves at speed v.

Now look at things in the conveyor belt’s reference frame. In this frame, the
mass comes flying in with an initial kinetic energy of Mv?/2, and then it eventually
slows down and comes to rest on the belt. Therefore, all of the Mv?/2 energy is
converted to heat. And since the heat is the same in both frames, this is the amount
of heat in the lab frame, too.

We therefore see that in the lab frame, the equality of the heat loss and the gain
in kinetic energy is a consequence of the obvious fact that the belt moves at the
same rate with respect to the lab (namely v) as the lab moves with respect to the
belt (also v).

In the solution to the above example, we did not assume anything about the
nature of the friction force between the belt and the sand. The loss of energy to
heat is an unavoidable result. You might think that if the sand comes to rest on the
belt very “gently” (over a long period of time), then you can avoid the heat loss. This
is not the case. In that scenario, the smallness of the friction force is compensated
by the fact that the force must act over a very large distance. Likewise, if the sand
comes to rest on the belt very abruptly, then the largeness of the friction force is
compensated by the smallness of the distance over which it acts. No matter how
you set things up, the work done by the friction force is the same nonzero quantity.
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In other problems such as the following one, it is fairly clear that the process is
inelastic. But the challenge is to correctly use F' = dp/dt instead of F' = ma, which
will get you into trouble because the mass is changing.

Example (Chain on a scale): A chain of length L and mass density okg/m is
held such that it hangs vertically just above a scale. It is then released. What is the
reading on the scale, as a function of the height of the top of the chain?

First solution: Let y be the height of the top of the chain, and let F' be the desired
force applied by the scale. The net force on the whole chain is F — (0L)g (with
upward taken to be positive). The momentum of the chain is (oy)y. Note that this is
negative, because 3 is negative. Equating the net force with the change in momentum
gives

d(oyy)
dt
= oyij + oy’ (4.89)

F—olLg =

The part of the chain that is still above the scale is in free fall. Therefore, §j = —g.
And ¢ = /2¢g(L — y), which is the usual result for a falling object. Putting these into
eq. (4.89) gives

F = oLg—oyg+20(L—y)g
= 30(L—vy)g. (4.90)

This answer has the expected property of equaling zero when y = L, and also the
interesting property of equaling 3(cL)g right before the last bit touches the scale.
Once the chain is completely on the scale, the reading will suddenly drop down to the
weight of the chain, namely (oL)g.

Second solution: The normal force from the scale is responsible for doing two
things. It holds up the part of the chain that already lies on the scale, and it also
changes the momentum of the atoms that are suddenly brought to rest when they hit
the scale. The first of these two parts of the force is simply the weight of the chain
already on the scale, which is Fyeight = 0(L — y)g.

To find the second part of the force, we need to find the change in momentum, dp, of
the part of the chain that hits the scale during a given time dt. The amount of mass
that hits the scale in a time dt is dm = o|dy| = o|y|dt = —oy dt. This mass initially
has velocity y, and then it is abruptly brought to rest. Therefore, the change in its
momentum is dp = 0 — (dm)y = oy? dt. The force required to cause this change in

momentum is thus

dp _ .
de/dt = E = UyQ. (4.91)

But as in the first solution, we have § = /2g(L — y). Therefore, the total force from
the scale is

F = chight + de/dt
= o(L—y)g+20(L—y)g
= 30(L —y)g. (4.92)
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Note that Fy, /4 = 2Feignt (until the chain is completely on the scale), independent
of y.

Many other problems of this sort are included in the exercises and problems for
this chapter.
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4.9 Exercises

Section 4.1: Conservation of energy in 1-D

1. Cart in a valley

A cart containing sand starts at rest and then rolls, without any energy loss
to friction, down into a valley and then up a hill on the other side. Let the
initial height be hi, and let the final height attained on the other side be hs.
If the cart leaks sand along the way, how does ho compare to hy?

2. Walking on a escalator

An escalator moves downward at constant speed. You walk up the escalator
at this same speed, so that you remain at rest with respect to the ground. Are
you doing any work?

3. Heading to infinity =*

A particle moves away from the origin under the influence of a potential V(x) =
—A|z|™. For what values of n will it reach infinity in a finite time?

4. Work in different frames x*

An object, initially at rest, is subject to a force that causes it to undergo
constant acceleration a for a time t. Verify explicitly that W = AK in (a) the
lab frame, and (b) a frame moving to the left at speed V.

5. Constant & *x*

A bead, under the influence of gravity, slides along a frictionless wire whose
height is given by the function y(x). Assume that at position (z,y) = (0,0),
the wire is horizontal and the bead passes this point with a given speed vy
to the right. What should the shape of the wire be (that is, what is y as
a function of x) so that the horizontal speed remains vy at all times? One
solution is simply y = 0. Find the other.'

6. Spring energy
Using the explicit form of the position of a mass on the end of a spring,
x(t) = Acos(wt + ¢), verify that the total energy is conserved.

7. Hanging spring *

A massless spring with spring-constant k& hangs vertically from a ceiling, ini-
tially at its relaxed length. A mass m is then attached to the bottom and is
released.

(a) Calculate the total potential energy of the system, as a function of the
height y (which is negative), relative to the initial position. Make a rough
plot of V(y).

13olve this exercise in the spirit of Problem 6, that is, by solving a differential equation. Once
you get the answer, you’ll see that you could have just written it down without any calculations,
based on your knowledge of a certain kind of physical motion.
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(b)
()

Find o, the point at which the potential energy is minimum.

Rewrite the potential energy as a function of z = y — yg. Explain why
your result shows that a hanging spring can be considered to be a spring
in a world without gravity, provided that the new equilibrium point, yo,
is taken to be the “relaxed” length of the spring.

8. Removing the friction *x

A block of mass m is supported by a spring on an inclined plane as shown in
Fig. 4.20. The spring constant is k, the plane’s angle of inclination is 6, and
the coefficient of friction between the block and the plane is p.

(a)

You move the block down the plane, compressing the spring. What is the
maximum compression length of the spring (relative to the relaxed length
it has when nothing is attached to it) that allows the block to remain at
rest when you let go of it?

Assume that the block is at the maximum compression you found in
part (a). At a given instant, you somehow cause the plane to become
frictionless, and the block springs up along the plane. What must the
relation between 6 and the original p be, so that the block reaches its
maximum height when the spring is at its relaxed length?

9. Spring and friction *x

A spring with spring-constant k stands vertically, and a mass m is placed on
top of it. The mass is gradually lowered to its equilibrium position. With the
spring held at this compression length, the system is rotated to a horizontal
position. The left end of the spring is attached to a wall, and the mass is
placed on a table with coefficient of kinetic friction u = 1/8; see Fig. 4.21.
The mass is released.

(a)
(b)

()

What is the initial compression of the spring?

How much does the maximal stretch (or compression) of the spring de-
crease after each half-oscillation? Hint: I wouldn’t try to solve this by
using F' = ma.

How many times does the mass oscillate back and forth before coming to
rest?

10. Over the pipe **

A frictionless cylindrical pipe with radius r is positioned with its axis parallel
to the ground, at height A. What is the minimum initial speed at which a
ball must be thrown (from ground level) in order to make it over the pipe?
Consider two cases: (a) the ball is allowed to touch the pipe, and (b) the ball
is not allowed to touch the pipe.

Figure 4.20

k
"'!!'l

u=1/8
Figure 4.21
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) ) 11. Pendulum projectile *

A pendulum is held with its string horizontal and is then released. The mass
. . swings down, and then on its way back up, the string is cut when it makes an

el R angle of 6 with the vertical; see Fig. 4.22. What should 6 be, so that the mass
travels the largest horizontal distance by the time it returns to the height it
had when the string was cut?

Figure 4.22

12. Bead on a hoop #*x*

A bead is initially at rest at the top of a fixed frictionless hoop of radius R,
which lies in a vertical plane. The bead is given a tiny kick so that it slides
down and around the hoop. At what points on the hoop does the bead exert
a maximum horizontal force on the hoop?

13. Beads on a hoop x*x

Two beads of mass m are initially at rest at the top of a frictionless hoop of
mass M and radius R, which stands vertically on the ground. The beads are
given tiny kicks, and they slide down the hoop, one to the right and one to
the left, as shown in Fig. 4.23. What is the largest value of m/M for which
the hoop will never rise up off the ground?

14. Stationary bowl #xx

Fi 4.23
eure A hemispherical bowl of mass M rests on a table. The inside surface of the

bowl in frictionless, while the coefficient of friction between the bottom of the

bowl and the table is u = 1. A particle of mass m is released from rest at the

top of the bowl and slides down into it, as shown in Fig. 4.24. What is the

\ largest value of m/M for which the bowl will never slide on the table? Hint:
The angle you will be concerned with is not 45°.

M 15. Roller coaster =

n=1 A roller coaster car starts at rest and coasts down a frictionless track. It
Figure 4.24 encounters a vertical loop of radius R. How much higher than the top of the

loop must the car start if it to remain in contact with the track at all times?

16. Pendulum and peg

A pendulum of length L is initially held horizontal, and is then released. The
string runs into a peg a distance d below the pivot, as shown in Fig. 4.25.
What is the smallest value of d for which the string remains taught at all
times?

17. Unwinding string =

Figure 4.25

A mass is connected to one end of a massless string, the other end of which
is connected to a very thin frictionless vertical pole. The string is initially
wound completely around the pole, in a very large number of little horizontal
circles, with the mass touching the pole. The mass is released, and the string
gradually unwinds. What angle does the string make with the pole at the
moment it becomes completely unwound?
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18.

Leaving the hemisphere #xxx

A point particle of mass m sits at rest on top of a frictionless hemisphere of
mass M, which rests on a frictionless table. The particle is given a tiny kick
and slides down the hemisphere. At what angle 6 (measured from the top of
the hemisphere) does the particle lose contact with the hemisphere?

In answering this question for m % M, it is sufficient for you to produce an
equation that € must satisfy (it will be a cubic). However, for the special case
of m = M, this equation can be solved without too much difficulty; find the
angle in this case.

Section 4.4: Gravity

19.

20.

21.

22.

23.

Projectile between planets *

Two planets of mass M and radius R are at rest with respect to each other,
with their centers a distance 4R apart. You wish to fire a projectile from the
surface of one planet to the other. What is the minimum initial speed for
which this is possible?

Spinning quickly
Consider a planet with uniform mass density p. If the planet rotates too fast,
it will fly apart. Show that the minimum period of rotation is given by

Lal
Gp’

What is the minimum 7' if p = 5.5g/cm? (the average density of the earth)?

Supporting a tube *

Imagine the following unrealistic undertaking. Drill a narrow tube (with cross
sectional area A) from the surface of the earth down to the center. Then line
the cylindrical wall of the tube with a frictionless coating. Then fill the tube
back up with the dirt (and magma, etc.) you originally removed. What force
is necessary at the bottom of the tube of dirt (that is, at the center of the
earth) to hold it up? Let the earth’s radius be R, and assume a uniform mass
density p.

Force from a straight wire xx

A particle of mass m is placed a distance £ away from an infinitely long straight
wire with mass density pkg/m. Show that the force on the particle is F' =
2Gpm/L.

Speedy travel xx

A straight tube is drilled between two points on the earth, as shown in
Fig. 4.26. An object is dropped into the tube. What is the resulting mo-
tion? How long does it take to reach the other end? Ignore friction, and
assume (erroneously) that the density of the earth is constant.

Figure 4.26
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24. Ratio of potentials *

Consider the following two systems: (1) a mass m is placed at the corner of a
flat square sheet of mass M, and (2) a mass m is placed at the center of a flat
square sheet of mass M. What is the ratio of the potential energies of m in
the two systems? Hint: Find A and B in the suggestive relations in Fig. 4.27.

"'é"' =B| * 25. Relative speed =*

1 Two particles with masses m and M are initially at rest, a very large (essen-

Figure 4.27 tially infinite) distance apart. They are attracted to each other due to gravity.
What is their relative speed when they are a distance r apart?

26. Orbiting stick *x

’

,,'/later Consider a planet of mass M and radius R. A very long stick of length 2R
-7 extends from just above the surface of the planet, to a radius 3R. If initial
2R conditions have been set up so that the stick moves in a circular orbit while
always pointing radially (see Fig. 4.28), what is the period of this orbit? How

does this period compare to the period of a satellite in a circular orbit of radius

2R?
Figure 4.28 R

27. Geosynchronous orbits *x

(a) Let the earth’s radius be R, its average density be p, and its angular
frequency of rotation be w. Show that if a satellite is to remain above
the same point on the equator at all times, then it must travel in a circle
of radius nR, where

47Gp
3 = R (4.93)

What is the numerical value for n?

(b) Instead of a satellite, consider a long rope with uniform mass density
extending radially from the surface of the earth out to a radius n’R. '
Show that if the rope is to remain above the same point on the equator
at all times, then 1’ must be given by

_ 8nGp

12 /
— . 4.94
N =2 (4.94)

What is the numerical value for n’? Where is the tension in the rope
maximum? Hint: No messy calculations required.

28. Spherical shell *x

(a) A spherical shell of mass M has inner radius R; and outer radius Ry. A
particle of mass m is located a distance r from the center of the shell.
Calculate (and make a rough plot of) the force on m, as a function of r,
for 0 <r < 0.

15 Any proposed space elevator wouldn’t have uniform mass density. But this simplifies problem
still gives a good idea of the general features.



4.9. EXERCISES IV-35

(b) If the mass m is dropped from r = oo and falls down through the shell
(assume that a tiny hole has been drilled in it), what will m’s speed be at
the center of the shell? You can let Ry = 2R, in this part of the problem,
to keep things from getting too messy. Give your answer in terms of
R= Rl.

29. Roche limit *

A small spherical rock covered with sand falls in radially toward a planet.
Let the planet have radius R and density pp, and let the rock have density
pr- It turns out that when the rock gets close enough to the planet, the tidal
force ripping the sand off the rock will be larger than the gravitational force
attracting the sand to the rock. The cutoff distance is called the Roche limit.
Show that it is given by!®

1/3
d=R (2;’") . (4.95)

30. Maximal gravity #*x*

Given a point P in space, and given a piece of malleable material of constant
density, how should you shape and place the material in order to create the
largest possible gravitational field at P?

Section 4.5: Momentum
31. Sticking masses

A mass 3m moving east at speed v collides with a mass 2m moving northeast
at speed 2v. The masses stick together. What is the resulting speed and
direction of the combined mass?

32. Snow on a sled

A sled on which you are riding is given an initial push and slides across friction-
less ice. Snow is falling vertically (in the frame of the ice) on the sled. Assume
that the sled travels in tracks that constrain it to move in a straight line.
Which of the following three strategies causes the sled to move the fastest?
The slowest? Explain your reasoning.

(a) You sweep the snow off the sled so that it leaves the sled in the direction
perpendicular to the sled’s tracks, as seen by you in the frame of the sled.

(b) You sweep the snow off the sled so that it leaves the sled in the direction
perpendicular to the sled’s tracks, as seen by someone in the frame of the
ice.

(¢) You do nothing.

18For things orbiting circularly instead of falling radially inward, the cutoff distance is different,
but only slightly. See the exercise in Chapter 9. The Roche limit gives the radial distance below
which loose objects won’t collect into larger blobs. Our moon (which is a sphere of rock and sand)
lies outside the earth’s Roche limit. But Saturn’s rings (which consists of loose ice particles) lie
inside its limit.
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33. Speedy rockets *x

Assume that it is impossible to build a structurally sound container that can
hold fuel of more than, say, nine times its mass. It would then seem like the
limit for the speed of a rocket is uIn 10. How can you build a rocket that goes
faster than this?

34. Maximum P and FE of rocket x*

A rocket ejects its exhaust at a given speed u. What is the mass of the rocket
(including unused fuel) when its momentum is maximum? What is the mass
when its energy is maximum?

35. Leaky bucket *xx

Consider the setup in Problem 16, but now let the sand leak at a rate dm/dt =
—bM . In other words, the rate is constant with respect to time, not distance.
We'’ve factored out an M here, just to make the calculations a little nicer.

(a) Find v(t) and z(t) for the times when the bucket contains a nonzero
amount of sand.

(b) What is the maximum value of the bucket’s kinetic energy, assuming it
is achieved before it hits the wall?

(c) What is the maximum value of the magnitude of the bucket’s momentum,
assuming it is achieved before it hits the wall?

(d) For what value of b does the bucket become empty right when it hits the
wall?

36. Throwing a brick sxx

A brick is thrown from ground level, at an angle 6 with respect to the (hor-
izontal) ground. Assume that the long face of the brick remains parallel to
the ground at all times, and that there is no deformation in the ground or
the brick when the brick hits the ground. If the coefficient of friction between
the brick and the ground is u, what should 6 be so that the brick travels the
maximum total horizontal distance before finally coming to rest? Hint: The
brick slows down when it hits the ground. Think in terms of impulse.

Section 4.7: Collisions

37. A 1-D collision *

Consider the following one-dimensional collision. A mass 2m moves to the
right, and a mass m moves to the left, both with speed v. They collide
elastically. Find their final lab-frame velocities. Solve this by:

(a) Working in the lab frame.
(b) Working in the CM frame.
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39.

40.
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42.

43.

44.

EXERCISES IvV-37

Perpendicular vectors *

A mass m, moving with speed v, collides elastically with a stationary mass
2m. Let their resulting velocities be ¥; and ¥, respectively. Show that ¥
must be perpendicular to s 4+ 2v7. Hint: See Problem 18.

Maximum number of collisions *x

N balls are constrained to move in one dimension. If you are allowed to
pick the initial velocities, what is the maximum number of collisions you can
arrange for the balls to have among themselves? Assume the collisions are
elastic.

Triangular room *x

A ball is thrown against a wall of a very long triangular room which has vertex
angle 6. The initial direction of the ball is parallel to the angle bisector (see
Fig. 4.29). How many bounces does the ball make? Assume the walls are
frictionless.

Three pool balls x*

A pool ball with initial speed v is aimed right between two other pool balls,
as shown in Fig. 4.30. If the two right balls leave the collision at 30° with
respect to the initial line of motion, find the final speeds of all three balls.

Equal angles x*x

(a) A mass 2m moving at speed Vj collides elastically with a stationary mass
m. If the two masses scatter at equal angles with respect to the incident
direction, what is this angle?

(b) What is the largest number that the above “2” can be replaced with, if
you want it to be possible for the masses to scatter at equal angles?

Right angle in billiards x**

A billiard ball collides elastically with an identical stationary one. By looking
at the collision in the CM frame, show that the angle between the resulting
trajectories in the lab frame is 90°.

Maximum v, **

A mass M moving in the positive z-direction collides elastically with a sta-
tionary mass m. The collision is not necessarily head-on, so the masses may
come off at angles, as shown in Fig. 4.31. Let 6 be the angle of m’s resulting
motion. What should € be so that m has the largest possible speed in the
y-direction? Hint: Think about what the collision should look like in the CM
frame.

Figure 4.29

Figure 4.30

<
'

Figure 4.31
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45. Maximum deflection **x

A mass M collides with a stationary mass m. If M < m, then it is possible for
M to bounce directly backwards. However, if M > m, then there is a maximal
angle of deflection of M. Show that this maximal angle equals sin™!(m/M).
Hint: Tt is possible to do this problem by working in the lab frame, but you
can save yourself a lot of time by considering what happens in the CM frame,
and then shifting back to the lab frame.

46. Balls in a semicircle sxxx

<mme e, N identical balls lie equally spaced in a semicircle on a frictionless horizontal
*e table, as shown. The total mass of these balls is M. Another ball of mass m
‘e approaches the semicircle from the left, with the proper initial conditions so
Total mass M ¢ that it bounces (elastically) off all N balls and finally leaves the semicircle,

N heading directly to the left. See Fig. 4.32.
m oo (a) In the limit N — oo (so the mass of each ball in the semicircle, M /N,
& — oo goes to zero), find the minimum value of M /m that allows the incoming
Figure 4.32 ball to come out heading directly to the left. Hint: You’ll need to do

Exercise 45 first.

(b) In the minimum M /m case found in part (a), show that the ratio of m’s

final speed to initial speed equals e~ ™.

47. Midair collision *x

A ball is held and then released. At the instant it is released, an identical
ball, moving horizontally with speed v, collides elastically with it. What is the
maximum horizontal distance the latter ball can travel by the time it returns

RN to the height of the collision?
f,‘ \ 48. Bouncing between rings x
A Two fixed circular rings, in contact with each other, stand in a vertical plane.
A ball bounces elastically back and forth between the rings (see Fig. 4.33).

Assume that initial conditions have been set up so that the ball’s motion
forever lies in one parabola. Let this parabola hit the rings at an angle 6

Figure 4.33 from the horizontal. Show that if you want the magnitude of the change
in the horizontal component of the ball’s momentum at each bounce to be
maximum, then you should pick cos = (\/5 —1)/2, which just happens to be
the inverse of the golden ratio.

/;, 1. 49. Bouncing between surfaces x*x
< \\ Consider the following generalization of the previous exercise. A ball bounces
f(—;)\ -ﬂx) back and forth between a surface defined by f(z) and its reflection across the
‘ y-axis (see Fig. 4.34). Assume that initial conditions have been set up so
that the ball’s motion forever lies in one parabola, with the contact points
X0 Xo located at £x¢. For what function f(z) is the magnitude of the change in the

Figure 4.34
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50.

o1.

horizontal component of the ball’s momentum at each bounce independent of
:C()?

Drag force on a sphere xx

A sphere of mass M and radius R moves with speed V through a region of
space that contains particles of mass m that are at rest. There are n of these
particles per unit volume. Assume m < M, and assume that the particles do
not interact with each other. What is the drag force on the sphere?

Block and bouncing ball xxxx

A block with large mass M slides with speed V{ on a frictionless table toward
a wall. It collides elastically with a ball with small mass m, which is initially
at rest at a distance L from the wall. The ball slides towards the wall, bounces
elastically, and then proceeds to bounce back and forth between the block and
the wall.

(a) How close does the block come to the wall?

(b) How many times does the ball bounce off the block, by the time the block
makes its closest approach to the wall?

Assume that M > m, and give your answers to leading order in m/M.

Section 4.8: Inherently inelastic processes

52.

93.

54.

55.

Slowing down, speeding up *

A plate of mass M initially moves horizontally at speed v on a frictionless
table. A mass m is dropped vertically onto it and soon comes to rest with
respect to the plate. How much energy is required to bring the system back
up to speed v?

Falling rope x*x

A rope with mass M and length L is held in the position shown in Fig. 4.35,
with one end attached to a support. Assume that only a negligible length of
the rope starts out below the support. The rope is released. Find the force
that the support applies to the rope, as a function of time.

Pulling the rope back *x

A rope of length L and mass density o kg/m lies outstretched on a frictionless
horizontal table. You grab one end and pull it back along itself, in a parallel
manner, as shown in Fig. 4.36. If your hand starts from rest and has constant
acceleration a, what is your force right before the rope is straightened out?

Pulling the rope x*x

A rope with mass density o kg/m lies in a heap at the edge of a table. One
end of the rope initially sticks out an infinitesimal distance from the heap.
You grab this end and accelerate it downward with acceleration a. Assume

hand

—
Figure 4.35

(top view)
hand
(- —

L

Figure 4.36
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that there is no friction of the rope with itself as it unravels. As a function of
time, what force does your hand apply to the rope? Find the value of a that
makes your force always equal to zero.

56. Heap and block #x

A rope of mass m and length L lies in a heap on the floor, with one end

E» attached to a block of mass M. The block is given a sudden kick and instantly
m acquires a speed Vj. Let x be the distance traveled by the block. In terms of
x, what is the tension in the rope, just to the right of the heap, that is, at the
(start) point P shown? See Fig. 4.37. There is no friction in this problem — none
‘U’ with the floor, and none in the rope with itself.
- 57. Downhill dustpan xx
_‘P = m A dustpan slides down a plane inclined at angle . Dust is uniformly dis-
(later) tributed on the plane, and the dustpan collects the dust in its path. After a
long time, what is the acceleration of the dustpan? Assume there is no friction
Figure 4.37 between the dustpan and plane.

58. Touching the floor sxxx

A rope with mass density o kg/m hangs from a spring with spring-constant k.
k g In the equilibrium position, a length L is in the air, and the bottom part of

the rope lies in a heap on the floor; see Fig. 4.38. The rope is raised by a very
small distance, b, and then released. What is the amplitude of the oscillations,

sl L as a function of time?
Assume that (1) L > b, (2) the rope is very thin, so that the size of the heap
v heap on the floor is very small compared to b, (3) the length of the rope in the initial
—

heap is larger than b, so that some of the rope always remains in contact with

the floor, and (4) there is no friction of the rope with itself inside the heap.
Figure 4.38
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4.10 Problems

Section 4.1: Conservation of energy in 1-D

1.

Minimum length x

The shortest configuration of string joining three given points is the one shown
at the top of Fig. 4.39, where all three angles are 120°. 7 Explain how you
could experimentally prove this fact by cutting three holes in a table and
making use of three equal masses attached to the ends of strings (the other
ends of which are connected), as shown in Fig. 4.39.

Heading to zero *

A particle moves toward x = 0 under the influence of a potential V(x) =
—A|z|™, where A > 0 and n > 0. The particle has barely enough energy to
reach x = 0. For what values of n will it reach x = 0 in a finite time?

. Leaving the sphere x

A small ball rests on top of a fixed frictionless sphere. The ball is given a tiny
kick and slides downward. At what point does it lose contact with the sphere?

. Pulling the pucks *x

(a) A massless string of length 2¢ connects two hockey pucks that lie on
frictionless ice. A constant horizontal force I is applied to the midpoint
of the string, perpendicular to it (see Fig. 4.40). How much kinetic
energy is lost when the pucks collide, assuming they stick together?

(b) The answer you obtained above should be very clean and nice. Find the
slick solution (assuming that you solved the problem the “normal” way,
above) that makes it transparent why the answer is so nice.

. V(z) vs. a hill sk

A bead, under the influence of gravity, slides along a frictionless wire whose
height is given by the function V(x) (see Fig. 4.41). Find an expression for
the bead’s horizontal acceleration, . (It can depend on whatever quantities
you need it to depend on.)

You should find that the result is not the same as the # for a particle moving
in one dimension in the potential mgV (x), in which case & = —gV’. But if you
grab hold of the wire, is there any way you can move it so that the bead’s & is
equal to the & = —gV’ result due to the one-dimensional potential mgV (z)?

Constant g *x

A bead, under the influence of gravity, slides along a frictionless wire whose
height is given by the function y(x). Assume that at position (z,y) = (0,0),

171f the three points form a triangle that has an angle greater than 120°, then the string simply
passes through the point where that angle is. We won’t worry about this case.

1200 1200
120°

Figure 4.39

°
Figure 4.40

height = V(x)

X

Figure 4.41
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the wire is vertical and the bead passes this point with a given speed v
downward. What should the shape of the wire be (that is, what is y as a
function of x) so that the vertical speed remains vy at all times?

Section 4.2: Small Oscillations

7. Small oscillations *
A particle moves under the influence of the potential V(z) = —Cz"e™**. Find
the frequency of small oscillations around the equilibrium point.

8. Hanging mass

The potential for a mass hanging from a spring is V (y) = ky?/2 + mgy, where
y = 0 corresponds to the position of the spring when nothing is hanging from
it. Find the frequency of small oscillations around the equilibrium point.

Section 4.4: Gravity

9. Zero force inside a sphere x*

Show that the gravitational force inside a spherical shell is zero by showing
that the pieces of mass at the ends of the thin cones in Fig. 4.42 give canceling
forces at point P.

—

Figure 4.42

10. Escape velocity *

(a) Find the escape velocity (that is, the velocity above which a particle will
escape to r = oo) for a particle on a spherical planet of radius R and
mass M. What is the numerical value for the earth? The moon? The
sun?

(b) Approximately how small must a spherical planet be in order for a human
to be able to jump off?7 Assume a density roughly equal to the earth’s.

11. Through the hole x*x

(a) A hole of radius R is cut out from an infinite flat sheet of mass density
o. Let L be the line that is perpendicular to the sheet and that passes
through the center of the hole. What is the force on a mass m that is
located on L, at a distance x from the center of the hole? Hint: Consider
the plane to consist of many concentric rings.

(b) If a particle is released from rest on L, very close to the center of the
hole, show that it undergoes oscillatory motion, and find the frequency
of these oscillations.

(c) If a particle is released from rest on L, at a distance x from the sheet,
what is its speed when it passes through the center of the hole? What is
your answer in the limit x > R?
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12. Ratio of potentials *x*

Consider a cube of uniform mass density. Find the ratio of the gravitational
potential energy of a mass at a corner to that of a mass at the center. Hint:
There’s a slick way that doesn’t involve any messy integrals.

Section 4.5: Momentum
13. Snowball *

A snowball is thrown against a wall. Where does its momentum go? Where
does its energy go?

14. Propelling a car x*x

For some odd reason, you decide to throw baseballs at a car of mass M, which
is free to move frictionlessly on the ground. You throw the balls at the back of
the car at speed u, and at a mass rate of o kg/s (assume the rate is continuous,
for simplicity). If the car starts at rest, find its speed and position as a function
of time, assuming that the balls bounce elastically directly backwards off the
back window.

15. Propelling a car again x*x

Do the previous problem, except now assume that the back window is open,
so that the balls collect inside the car.

16. Leaky bucket xx

At t = 0, a massless bucket contains a mass M of sand. It is connected to r
a wall by a massless spring with constant tension T (that is, independent of cooo )
length).'® See Fig. 4.43. The ground is frictionless, and the initial distance
to the wall is L. At later times, let & be the distance from the wall, and let m
be the mass of sand in the bucket.

Figure 4.43

The bucket is released. On its way to the wall, it leaks sand at a rate dm/dx =
M/L. In other words, the rate is constant with respect to distance, not time.
Note that dx is negative, so dm is also.

(a) What is the kinetic energy of the (sand in the) bucket, as a function of
the distance from the wall? What is its maximum value?
(b) What is the magnitude of the momentum of the bucket, as a function of
the distance from the wall? What is its maximum value?
17. Another leaky bucket sxxx

Consider the setup in Problem 16, but now let the sand leak at a rate pro-
portional to the bucket’s acceleration. That is, dm/dt = bZ. Note that Z is
negative, so dm is also.

18You can construct a constant-tension spring with a regular Hooke’s-law spring in the following
way. Pick the spring constant to be very small, and stretch the spring a very large distance; have
it pass through a hole in the wall, with its other end bolted down a large distance to the left of the
wall. Any changes in the bucket’s position will then yield a negligible change in the spring’s force.
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(a) Find the mass as a function of time, m(t).

(b) Find v(t) and z(t) for the times when the bucket contains a nonzero
amount of sand. Also find v(m) and xz(m). What is the speed right
before all the sand leaves the bucket (assuming it hasn’t hit the wall
yet)?

(c) What is the maximum value of the bucket’s kinetic energy, assuming it
is achieved before it hits the wall?

(d) What is the maximum value of the magnitude of the bucket’s momentum,
assuming it is achieved before it hits the wall?

(e) For what value of b does the bucket become empty right when it hits the
wall?

Section 4.7: Collisions

18.

19.

20.

Right angle in billiards =*

A Dbilliard ball collides elastically with an identical stationary one. Use the
fact that mov?/2 may be written as m(v - v)/2 to show that the angle between
the resulting trajectories is 90°.

Bouncing and recoiling **

A ball of mass m and initial speed vy bounces back and forth between a fixed
wall and a block of mass M (with M > m). See Fig. 4.44. M is initially
at rest. Assume that the ball bounces elastically and instantaneously. The
coefficient of kinetic friction between the block and the ground is p. There is
no friction between the ball and the ground.

What is the speed of the ball after the nth bounce off the block? How far
does the block eventually move? How much total time does the block actually
spend in motion? Work in the approximation where M > m, and assume
that p is large enough so that the block comes to rest by the time the next
bounce occurs.

Drag force on a sheet xx

A sheet of mass M moves with speed V' through a region of space that contains
particles of mass m and speed v. There are n of these particles per unit volume.
The sheet moves in the direction of its normal. Assume m < M, and assume
that the particles do not interact with each other.

(a) If v < V, what is the drag force per unit area on the sheet?

(b) If v > V, what is the drag force per unit area on the sheet? Assume, for
simplicity, that the component of every particle’s velocity in the direction
of the sheet’s motion is exactly +v/2.1

9
lJIn

reality, the velocities are randomly distributed, but this idealization actually gives the correct

answer because the average speed in any direction is |v.| = v/2. The result v2 = v?/3, which may
be familiar to you, isn’t relevant here.
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Drag force on a cylinder xx

A cylinder of mass M and radius R moves with speed V through a region of
space that contains particles of mass m that are at rest. There are n of these
particles per unit volume. The cylinder moves in a direction perpendicular to
its axis. Assume m < M, and assume that the particles do not interact with
each other. What is the drag force per unit length on the cylinder?

Basketball and tennis ball *x

(a) A tennis ball with a small mass my sits on top of a basketball with a
large mass m; (see Fig. 4.45). The bottom of the basketball is a height h
above the ground, and the bottom of the tennis ball is a height h+d above
the ground. The balls are dropped. To what height does the tennis ball
bounce? Note: Work in the approximation where m; is much larger than
msg, and assume that the balls bounce elastically. Also assume, for the
sake of having a nice clean problem, that the balls are initially separated
by a small distance, and that the balls bounce instantaneously.

(b) Now consider n balls, By, ..., By, having masses my, ma, ..., m, (with
mi > mg > -+ > m,y), standing in a vertical stack (see Fig. 4.46). The
bottom of Bj is a height h above the ground, and the bottom of B, is
a height h + ¢ above the ground. The balls are dropped. In terms of n,
to what height does the top ball bounce? Note: Make assumptions and
approximations similar to the ones in part (a).

If h = 1 meter, what is the minimum number of balls needed for the top
one to bounce to a height of at least 1 kilometer? To reach escape veloc-
ity? Assume that the balls still bounce elastically (which is a bit absurd
here), and ignore wind resistance, etc., and assume that ¢ is negligible.

Section 4.8: Inherently inelastic processes

23.

24.

Colliding masses

A mass M, initially moving at speed v, collides and sticks to a mass m, initially
at rest. Assume M > m, and work in this approximation. What are the final
energies of the two masses, and how much energy is lost to heat, in:

(a) The lab frame?
(b) The frame in which M is initially at rest?

Pulling a chain *x

A chain of length L and mass density o lies straight on a frictionless horizontal
surface. You grab one end and pull it back along itself, in a parallel manner
(see Fig. 4.47). Assume that you pull it at constant speed v. What force
must you apply? What is the total work that you do, by the time the chain is
straightened out? How much energy is lost to heat, if any?

B

B
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Figure 4.45
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Figure 4.46
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Figure 4.47
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25. Pulling a rope *x

A rope of mass density o lies in a heap on the floor. You grab an end and
pull horizontally with constant force F'. What is the position of the end of the
rope, as a function of time, while it is unravelling? Assume that the rope is
greased, so that it has no friction with itself.

26. Raising the rope x*x

A rope of length L and mass density o lies in a heap on the floor. You grab
one end of the rope and pull upward with a force such that the rope moves
at constant speed v. What is the total work you do, by the time the rope is
completely off the floor? How much energy is lost to heat, if any? Assume
that the rope is greased, so that it has no friction with itself.

27. Falling rope #xx

(a) A rope of length L lies in a straight line on a frictionless table, except
for a very small piece at one end which hangs down through a hole in
the table. This piece is released, and the rope slides down through the
hole. What is the speed of the rope at the instant it loses contact with
the table?

(b) Answer the same question, but now let the rope lie in a heap on a table,
except for a very small piece at one end which hangs down through the
hole. Assume that the rope is greased, so that it has no friction with
itself.

28. The raindrop *xx*x

Assume that a cloud consists of tiny water droplets suspended (uniformly
distributed, and at rest) in air, and consider a raindrop falling through them.
What is the acceleration of the raindrop? Assume that the raindrop is initially
of negligible size and that when it hits a water droplet, the droplet’s water
gets added to it. Also, assume that the raindrop is spherical at all times.
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4.11 Solutions

1. Minimum length

Cut three holes in the table at the locations of the three given points. Drop the masses
through the holes, and let the system reach its equilibrium position. The equilibrium
position is the one with the lowest potential energy of the masses, that is, the one
with the most string hanging below the table. In other words, it is the one with the
least string lying on the table. This is the desired minimum-length configuration.

What are the angles at the vertex of the string? The tensions in all three strings are
equal to mg. The vertex of the string is in equilibrium, so the net force on it must
be zero. This implies that each string must bisect the angle formed by the other two.
Therefore, the angles between the strings must all be 120°.

2. Heading to zero

Write F = ma as mvdv/dx = —V’(x). Separating variables and integrating gives
mv?/2 = C —V(z), where C is a constant of integration. The given information tells
us that v = 0 when # = 0. Therefore C' = 0. C is simply the total energy of the
particle. Writing v as dz/dt and separating variables again gives

dx 2
———— = ddty/ —. (4.96)
V=V(x) m
Assume that the particle starts at position xg > 0. Let T be the time to reach the
origin. Integrating the previous equation from xg to x = 0 gives

0 T
LY = N (4.97)
0 xn/Q m Jo m

The integral on the left is finite only if n/2 < 1. Therefore, the condition that T is
finite is

n<2. (4.98)

REMARK: The particle will take a finite time to reach the top of a triangle or the curve
—Az?/?. But it will take an infinite time to reach the top of a parabola, cubic, etc. A circle
looks like a parabola at the top, so T is infinite in that case also. In fact, any nice polynomial
function V' (x) will require an infinite 7" to reach a local maximum, because the Taylor series
starts at order (at least) two around an extremum. &

3. Leaving the sphere

First Solution: Let R be the radius of the sphere, and let 6 be the angle of the
ball, measured from the top of the sphere. The radial F' = ma equation is

mU2

0—N=— 4.99
mg cos R ( )

where NN is the normal force. The ball loses contact with the sphere when the normal
force becomes zero (that is, when the normal component of gravity is not large enough

to account for the centripetal acceleration of the ball). Therefore, the ball loses contact

when

va

g = Mg cos 0. (4.100)
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But conservation of energy gives mv? /2 = mgR(1—cos ). Hence, v = 1/2gR(1 — cos6).
Plugging this into eq. (4.100), we see that the ball leaves the sphere when

2
cosf = 3" (4.101)

This corresponds to 0 = 48.2°.

Second Solution: Let’s assume that the ball always stays in contact with the sphere,
and then we’ll find the point where the horizontal component of v starts to decrease
(which it of course can’t do, because the normal force doesn’t have a “backwards”
component). From above, the horizontal component of v is

vy =vcosh = /2gR(1 — cos ) cosb. (4.102)

Taking the derivative of this, we find that the maximum occurs when cos = 2/3. So
this is where v, would start to decrease if the ball were constrained to remain on the
sphere. But since there is no such constraining force available, the ball loses contact
when cosf = 2/3.

4. Pulling the pucks

(a) Let 6 be defined as in Fig. 4.48 Then the tension in the string is T = F/(2 cos §),
because the force on the massless kink in the string must be zero. Consider the
“top” puck. The component of the tension in the y-direction is —7T'sinf =
—Ftan /2. The work done on the puck by this component is therefore

Figure 4.48 0 _
W, — / Ftanﬁd
; 2
0
—Ftan6
- / —Htanb o rsing)
/2 2
_ /0 —Fﬂsin&de
/2 2
_ FlcosO 0
2 w/2
F
= 76 (4.103)

By the work-energy theorem (or equivalently, by separating variables and in-
tegrating Fy, = mu, dv,/dy), this work equals mvg /2. The kinetic energy lost

system A when the two pucks stick together is twice this quantity (v, doesn’t change
during the collision). Therefore,

ceee» F
KEjoee = FV. (4.104)
(b) Consider two systems, A and B (see Fig. 4.49). A is the original setup, while B
system B starts with 6 already at zero. Let the pucks in both systems start simultaneously
e e F at © = 0. As the force F is applied, all four pucks will have the same z(t), because
the same force in the z-direction, namely F/2, is being applied to every puck at
Figure 4.49 all times. After the collision, both systems will therefore look exactly the same.

Let the collision of the pucks occur at = d. At this point, F(d + £) work
has been done on system A, because the center of the string (where the force



4.11. SOLUTIONS IV-49

is applied) ends up moving a distance ¢ more than the masses. However, only
Fd work has been done on system B. Since both systems have the same kinetic
energy after the collision, the extra F'¢ work done on system A must be what is
lost in the collision.

I
REMARK: The reasoning in this second solution makes it clear that this F¢ result

holds even if we have many masses distributed along the string, or if we have a rope

with a continuous mass distribution (so that the rope flops down, as in Fig. 4.50). Figure 4.50

The only requirement is that the mass be symmetrically distributed around the mid-
point. Analyzing this more general setup along the lines of the first solution would be
extremely tedious, to say the least. &

5. V(z) vs. a hill

First solution: Consider the normal force, N, acting on the bead at a given point.
Let 6 be the angle that the tangent to V(x) makes with the horizontal, as shown in
Fig. 4.51. The horizontal F' = ma equation is

—Nsinf = mi. (4.105)

Figure 4.51

The vertical F' = ma equation is
N cosl —mg =mj = N cos = mg +mg. (4.106)

Dividing eq. (4.105) by eq. (4.106) gives

—tanf = —— . (4.107)
gty
But tanf = V'(z). Therefore,
i=—(g+iV. (4.108)

We see that this is not equal to —gV”’. In fact, there is in general no way to construct
a curve with height y(z) that gives the same horizontal motion that a 1-D potential
V(z) gives, for all initial conditions. We would need (g + )y’ = V’, for all z. But
at a given z, the quantities V' and y’ are fixed, whereas ¢ depends on the initial
conditions. For example, if there is a bend in the wire, then ¢ will be large if y is
large. And ¢ depends (in general) on how far the bead has fallen.

Eq. (4.108) holds the key to constructing a situation that does give the & = —gV’
result for a 1-D potential V' (z). All we have to do is get rid of the § term. So here’s
what we do. We grab our y = V(z) wire and then move it up and/or down in precisely
the manner that makes the bead stay at the same height with respect to the ground.
(Actually, constant vertical speed would be good enough.) This will make the §j term
vanish, as desired. Note that the vertical movement of the curve doesn’t change the
slope, V', at a given value of z.

REMARK: There is one case where & is (approximately) equal to —gV’, even when the
wire remains stationary. In the case of small oscillations of the bead near a minimum of
V(x), ¢ is small compared to g. Hence, eq. (4.108) shows that # is approximately equal to
—gV'. Therefore, for small oscillations, it is reasonable to model a particle in a 1-D potential
mgV (x) as a particle sliding in a valley whose height is given by y = V(z). &
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Second solution: The component of gravity along the wire is what causes the
change in speed of the bead. That is,

—gsinf = % , (4.109)

where 6 is given by
Vv’ 1

tanf = V' (x — sinf = ——, cosf = ———. 4.110
) iTve igva o

We are, however, not concerned with the rate of change of v, but rather with the rate
of change of . In view of this, let us write v in terms of &. Since & = v cos 8, we have
v =2x/cosf = xv/1+ V2. (Dots denote d/dt. Primes denote d/dx.) Therefore, eq.
(4.109) becomes

V= L(avive)

V14+Vr2
. zV'(dV’ /d)
= V14 V24 ——rt-. 4.111
V1+Vr2 ( )
Hence, & is given by
. —gV’ B V' (dV' /dt)
14V 1+ V72
We'll simplify this in a moment, but first a remark.

(4.112)

REMARK: A common incorrect solution to this problem is the following. The acceleration
along the curve is gsin = —g(V’/+/1 + V'2). Calculating the horizontal component of this
acceleration brings in a factor of cos @ = 1/4/1 + V’2. Therefore, we might think that
!
5= 9V
1+ v

But we have missed the second term in eq. (4.112). Where is the mistake? The error is

(incorrect). (4.113)

that we forgot to take into account the possible change in the curve’s slope. (Eq. (4.113)
is true for straight lines.) We addressed only the acceleration due to a change in speed. We
forgot to consider the acceleration due to a change in the direction of motion. (The term we
missed is the one with dV'/dt.) Intuitively, if we have sharp enough bend in the wire, then
4 can change at an arbitrarily large rate, even if v is roughly constant. In view of this fact,
eq. (4.113) is definitely incorrect, because it is bounded (by g/2, in fact). &

To simplify eq. (4.112), note that V' = dV/dx = (dV/dt)/(dz/dt) = V /i. Therefore,
V'l (Y
Ve T Vald
by
= V'V Vi <V>
@

= V'V -V"?. (4.114)
Substituting this into eq. (4.112), we obtain
i=—(g+ V)V, (4.115)
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in agreement with eq. (4.108), since y(z) = V(x).

Eq. (4.115) is valid for a curve V(z) that remains fixed. If we grab the wire and start
moving it up and down, then the above solution is invalid, because the starting point,
eq. (4.109), rests on the assumption that gravity is the only force that does work on
the bead. But if we move the wire, then the normal force also does work.

It turns out that for a moving wire, we simply need to replace the V in eq. (4.115) by
9. This can be seen by looking at things in the (instantaneously inertial) vertically-
moving frame in which the wire is at rest. In this new frame, the normal force does
no work, so the above solution is valid. And in this new frame, j = V. Eq. (4.115)
therefore becomes & = —(g + §)V’. Shifting back to the lab frame (which moves at
constant speed with respect to the instantaneous inertial frame of the wire) doesn’t
change 4. We thus arrive at eq. (4.108), valid for a stationary or vertically moving
wire.

Constant y
By conservation of energy, the bead’s speed at any time is given by (note that y is

negative here)
1 1
§mv2 +mgy = Emv% = v=1/v}—2gy. (4.116)

The vertical component of the speed is ¢ = vsin6, where tan = ¢y = dy/dx is the
slope of the wire. Hence, sinf = y'//1+ y’2. The requirement § = —vg, which is
equivalent to vsin# = —vy, may therefore be written as

y/

Squaring both sides and solving for ¢ = dy/dz yields dy/dx = —vo/+/—2gy. Sepa-
rating variables and integrating gives

-9 3/2
/\/ngy dy = fvo/dx = % = Vo, (4.118)

39

where the constant of integration has been set to zero, because (z,y) = (0,0) is a
point on the curve. Therefore,

(3gvox)*/®

% (4.119)

y=-

Small oscillations

We will calculate the equilibrium point xg, and then use w = /V"(xg)/m. The
derivative of V is
V'(z) = —Ce 2" (n — ax). (4.120)

Therefore, V'(z) = 0 when z = n/a = zo. The second derivative of V is
V" (x) = —Ce *"g" 2 ((n —1—ax)(n—azx)— ax). (4.121)

Plugging in 29 = n/a simplifies this a bit, and we find

" —npn—1
w= \/V (zo) _ [Cemm Tt (4.122)

m man—2
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8. Hanging mass

We will calculate the equilibrium point yg, and then use w = /V”(yo)/m. The
derivative of V is
V'(y) = ky + myg. (4.123)

Therefore, V'(y) = 0 when y = —mg/k = yo. The second derivative of V is

V' (y) = k. (4.124)

w= V/;;yo) = \/z (4.125)

REMARK: This is independent of yo, which is what we expect. The only effect of gravity is
to change the equilibrium position. If y, is the position relative to yo (so that y = yo + yr),
then the total force as a function of y, is

We therefore have

m
F(yr) = —k(yo +yr) —mg = -k (—Tg + y) —mg = —kyr, (4.126)

so it still looks like a regular spring. (This only works, of course, because the spring force is
linear.) Equivalently, we can complete the square and write the given potential as

Vig) =& (y+ M)Z _mg (4.127)

2 k 2k

The additive constant —m292/2k is irrelevant in determining the curvature (that is, the
second derivative) of the parabola at the minimum, as is the shift in the origin of y by
—mg/k. We basically have a mass on a spring in zero gravity, in which case the frequency

is simply 1/k/m. &

9. Zero force inside a sphere

Let a be the distance from P to piece A, and let b be the distance from P to piece B
(see Fig. 4.52). Draw the “perpendicular” bases of the cones, and call them A’ and
B’. The ratio of the areas of A’ and B’ is a?/b?.

The key point here is that the angle between the planes of A and A’ is the same as
the angle between B and B’; this is true because the chord between A and B meets
Figure 4.52 the circle at equal angles at its ends. So the ratio of the areas of A and B is also
a?/b%. But the gravitational force decreases like 1/r2, and this effect exactly cancels
the a?/b? ratio of the areas. Therefore, the forces at P due to A and B (which can
be treated like point masses, because the cones are assumed to be thin) are equal in
magnitude (and opposite in direction, of course).

10. Escape velocity

(a) The cutoff case is where the particle barely makes it to infinity, that is, where
its speed is zero at infinity. Conservation of energy for this situation gives
1 4 GMm

muv,

- o — =0+0. 4.128
2 esc R + ( )

2

In other words, the initial kinetic energy, muvg,,

potential energy, GMm/R. Therefore,

2GM
esc — . 4.12
Y (4129)

/2, must account for the gain in
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In terms of the acceleration, g = GM/R?, at the surface of a planet, we can
Write Vese as Vesce = V2gR. Using M = 47rpR3/3, we can also write it as

Vese = /8TGR2p/3. So for a given density p, vese grows like R.

Using the values of g given in Appendix J, we have:

For the earth, vesc = v/29R ~ 1/2(9.8 m/s2)(6.4 - 106 m) ~ 11,200 m/s.
For the moon, vese = /2gR ~ 1/2(1.6 m/s?)(1.7 - 105 m) ~ 2,300 m/s.
For the sun, vese = v/2gR = 1/2(270 m/s2)(7.0 - 108 m) ~ 620, 000 m/s.

REMARK: Another reasonable question to ask is: what is the escape velocity from the
sun for an object located where the earth is? (But imagine that the earth isn’t there.)
The answer is \/2GMs/Rg, s, where R s is the earth-sun distance. Numerically, this
is \/2(6.67- 10—11)(2-1039) /(1.5 - 1011) ~ 42,000 m/s. &

To get a rough answer, let’s assume that the initial speed of a person’s jump on
the small planet is the same as it is on the earth. This probably isn’t quite true,
but it’s close enough for the purposes here. A good jump on the earth is about a
meter. For this jump, mv?/2 = mg(1m). Therefore, v = \/2g(1 m) ~ v/20m/s.
So we want v/20 = /871G R2p/3. Using p ~ 5500kg/m>, we find R ~ 2.5km.
On such a planet, you should tread lightly.

11. Through the hole

(a)

By symmetry, only the component of the gravitational force perpendicular to
the plane will survive. A piece of mass dm at radius r on the plane will provide
a force equal to Gm(dm)/(r? + x?). To obtain the component perpendicular to
the plane, we must multiply this by «/+/r2? + z2. Slicing the plane up into rings
with mass dm = (27r dr)o, we find that the total force is

* Gm(2nro dr)x
F = - R S A
() /R (r2 1 22)3/2

= 2noGmx(r? + %) /2 :R
2roGmx
_ ) 4.130
VR? 4 22 ( )
If x < R, then eq. 4.130 gives
2
Pla) ~ — 2R0Gmz. (4.131)
R
F' = ma then becomes —
fé+< W; )xO. (4.132)

The frequency of small oscillations is therefore

2o G
= . 4.133
YTV R (4.133)

REMARK: For everyday values of R, this is a rather small number because G is so
small. Let’s determine the rough size. If the sheet has thickness d, and if it is made of
a material with density p (per volume), then o = pd. Hence, w = +/27pdG/R.
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In the above analysis, we assumed that the sheet was infinitely thin. In practice, we
need d to be much smaller than the amplitude of the motion. But this amplitude must
be much smaller than R in order for our approximation to hold. So we conclude that
d < R. To get a rough upper bound on w, let’s pick d/R = 1/10. And let’s make
our sheet out of gold (with p ~ 2 - 10* kg/m?®). We then find w ~ 1-107*s™*, which
corresponds to an oscillation about every 100 minutes.

For the analogous system consisting of electrical charges, the frequency is much larger,
because the electrical force is so much stronger than the gravitational force. &

(c) Integrating the force in eq. 4.130 to obtain the potential energy (relative to the
center of the hole) gives

/IF( )d * 2rocGmz dx
— z)dr = -
0 o VR?+2?

= 2m0Gmv R? + xQ‘z =210Gm(VR?*+ 22— R) (4.134)

V(z)

By conservation of energy, the speed at the center of the hole is given by mv? /2 =
V(z). Therefore,

v:2\/7mG(\/R2+:c2—R). (4.135)
For large x this reduces to v = 2vmoGx.

REMARK: You can also obtain this last result by noting that for large z, the force
in eq. (4.130) reduces to F' = —2wrocGm. This is constant, so it’s basically just like
a gravitational force F' = mg’, where ¢’ = 27r0G. But we know that in this familiar

case, v = v/2¢’h — /2(2710G)x, as above. &

Ratio of potentials

Let p be the mass density of the cube. Let V" be the potential energy of a mass m
at the corner of a cube of side ¢, and let V" be the potential energy of a mass m at
the center of a cube of side £. By dimensional analysis,

G(pt?
Ve o w x (2. (4.136)
Therefore,?°
Ve = AVgy (4.137)

But a cube of side £ can be built from eight cubes of side ¢/2. So by superposition,
we have

Ve =8V (4.138)

because the center of the larger cube lies at a corner of the eight smaller cubes.
Therefore,

1/ cor 4y cor 1

U — (4.139)

‘/KCCH 8 ‘/'ZC/O;‘ 2

2OIH

other words, imagine expanding a cube of side £/2 to one of side . If we consider corre-

sponding pieces of the two cubes, then the larger piece has 2° = 8 times the mass of the smaller.
But corresponding distances are twice as big in the large cube as in the small cube. Therefore, the

cor cor

larger piece contributes 8/2 = 4 times as much to V;°" as the smaller piece contributes to V; 75 -
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Snowball

All of the snowball’s momentum goes into the earth, which then translates (and
rotates) a tiny bit faster (or slower, depending on which way the snowball was thrown).

What about the energy? Let M be the mass of the earth, and let V' be the final
speed of the earth, with respect to the original rest frame of the earth. Then m <« M
implies V' &~ mv/M. The kinetic energy of the earth is therefore

2
%M (%) = %va (%) < %va. (4.140)
There is also a rotational kinetic-energy term of the same order of magnitude, but
that doesn’t matter. Wee see that essentially none of the snowball’s energy goes into
the earth. It therefore must all go into the form of heat, which melts some of the
snow. This is a general result for a small object hitting a large object: The large
object picks up essentially all of the momentum but essentially none of the energy.

Propelling a car

Let the speed of the car be v(t). Consider the collision of a ball of mass dm with
the car. In the instantaneous rest frame of the car, the speed of the ball is u — v. In
this frame, the ball reverses velocity when it bounces, so its change in momentum is
—2(u — v) dm. This is also the change in momentum in the lab frame, because the
two frames are related by a given speed at any instant. Therefore, in the lab frame
the car gains a momentum of 2(u — v)dm from each ball that hits it. The rate of
change in momentum of the car (that is, the force) is thus

% = 20" (u —v), (4.141)
where ¢/ = dm/dt is the rate at which mass hits the car. ¢’ is related to the given
o by ¢/ = o(u — v)/u, because although you throw the balls at speed u, the relative
speed of the balls and the car is only (u — v). We therefore have

M@ _ 2(u —v)30
dt U
— /U 76[1} = Q(T/tdt
o (w—v)2 — MuJy
L1 2t
u—v u  Mu
() u
= () = A (4.142)
1+ 57

Note that v — u as t — oo, as it should. Integrating this speed to obtain the position

gives
Mu 20t

We see that even though the speed approaches u, the car will eventually be an arbi-
trarily large distance behind a ball with constant speed u (for example, pretend that
your first ball misses the car and continues forward at speed u).
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15. Propelling a car again

We can carry over some of the results from the previous problem. The only change in
the calculation of the force on the car is that since the balls don’t bounce backwards,
we don’t pick up the factor of 2 in eq. (4.141). The force on the car is therefore

dv  (u—v)o
m—=-——->——, 4.144
dt U ( )
where m(t) is the mass of the car-plus-contents, as a function of time. The main
difference between this problem and the previous one is that this mass m changes
because the balls are collecting inside the car. As in the previous problem, the rate
at which the balls enter the car is ¢/ = o(u — v)/u. Therefore,

dm  (u—v)o

—_— = 4.145
dt U ( )
We must now solve the two preceding differential equations. Dividing eq. (4.144) by
eq. (4.145), and separating variables, gives?!
vod m™d — M
/ vo_[Tem 1n<“ "’)m(m) — m=" . (4.147)
0o U—Uv Mom U M uU—v

Note that m — oo as v — wu, as it should. Substituting this value of m into either eq.
(4.144) or eq. (4.145) gives

v dv _ Lodt
/0 (w—0)3  Jo Mu2
1 1 _ ot
- 2u—v)2 2u2  Mu?
1
= v(t) = ul|l- —]. (4.148)

20
V1422

Note that v — u as t — oo, as it should. Integrating this speed to obtain the position

gives
M 20t
o(t) = ut — 1+ == (4.149)
o M

REMARK: For a given t, the v(¢) in eq. (4.148) is smaller than the v(t) in eq. (4.142). This
makes sense, because the balls have less of an effect on v(t), because now (1) they don’t
bounce back, and (2) the mass of the car-plus-contents is larger. &

16. Leaky bucket

(a) First Solution: The initial position is x = L. The given rate of leaking implies
that the mass of the bucket at position x is m = M (xz/L). Therefore, F' = ma

21'We can also quickly derive this equation by writing down conservation of momentum for the
time interval when a mass dm enters the car:

dmu 4+ mv = (m + dm)(v + dv). (4.146)

This yields eq. (4.147). But we still need to use one of egs. (4.144) and eq. (4.145).
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gives =T = (Mxz/L)Z. Writing the acceleration as vdv/dz, and separating
variables and integrating, gives

TL [*dx v TL x v?
A dv. = i (7):7. 4.150
M/L z /0 vav M \L) T2 (4.150)
The kinetic energy at position x is therefore
mu? Mz\ v? T
p="1" (22 —:—Tl(—). 4.151
2 ( L ) 2 Tz (4.151)

In terms of the fraction z = /L, we have F = —T'LzInz. Setting dFE/dz = 0
to find the maximum gives

1 TL
z== = BEpam=-—. (4.152)
e &

Note that both E,,.x and its location are independent of M.

REMARK: We began this solution by writing down F' = ma, where m is the mass
of the bucket. You may be wondering why we didn’t use F' = dp/dt, where p is
the momentum of the bucket. This would certainly give a different result, because
dp/dt = d(mv)/dt = ma + (dm/dt)v. We used F' = ma because at any instant, the
mass m is what is being accelerated by the force F'.

If you want, you can imagine the process occurring in discrete steps: The force pulls
on the mass for a short period of time, then a little piece falls off. Then the force pulls
again on the new mass, then another little piece falls off. And so on. In this scenario,
it is clear that F' = ma is the appropriate formula, because it holds for each step in
the process.

It is indeed true that F = dp/dt, if you let F' be total force in the problem, and let
p be the total momentum. The tension T is the only horizontal force in the problem,
because we’ve assumed the ground to be frictionless. However, the total momentum
consists of both the sand in the bucket and the sand that has leaked out and is sliding
along on the ground. If we use F' = dp/dt, where p is the total momentum, then we
obtain

_ dpbucket dpleaked o dm dm -
T = P + b (ma-l- ¥ v) + ( 7 ) v = ma, (4.153)

as expected. (Note that —dm/dt is a positive quantity.) See Appendix E for further
discussion on the uses of F' = ma and F =dp/dt. &

Second solution: Consider a small time interval during which the bucket
moves from x to x + dr (where dz is negative). The bucket’s kinetic energy
changes by (—T')dz (this is a positive quantity) due to the work done by the
spring, and also changes by a fraction dz/z (this is a negative quantity) due to
the leaking. Therefore, dE = —T dx + E dx/x, or

dE F
— =T+ —. 4.154
dx + T ( )

In solving this differential equation, it is convenient to introduce the variable
y = E/x. Then E' = xy’ +y, where a prime denotes differentiation with respect
to z. Eq. (4.154) then becomes xy’ = —T', which gives

dy = -T — E=-Tzln(— 4.155
/0 Y /L x — i (L) ’ ( )

as in the first solution.
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From eq. (4.150), the speed is v = /2T L/M +/—In z, where z = x/L. There-
fore, the magnitude of the momentum is

p=mv=(Mz)v=V2TLM+/—2?1nz. (4.156)
Setting dp/dz = 0 to find the maximum gives

1 TLM
= — — Pmax — . (4157)
Ve e
We see that the location of pyax is independent of M, T', and L, but its value
is not.

REMARK: Emax occurs at a later time (that is, closer to the wall) than pmax. This
is because v matters more in E = mwv?/2 than it does in p = mv. As far as E is
concerned, it is beneficial for the bucket to lose a little more mass if it means being
able to pick up a little more speed (up to a certain point). &

17. Another leaky bucket

(a)

F = ma says that —T = m&. Combining this with the given dm/dt = bz yields
mdm = —bT dt. Integration then gives m?/2 = C' — bTt. But m = M when
t =0, so we have C' = M?/2. Therefore,

m(t) = /M2 — 2bTt. (4.158)

This holds for ¢ < M?/2bT, provided that the bucket hasn’t hit the wall yet.

The given equation dm/dt = bi = bdv/dt integrates to v =m/b+D. But v =0
when m = M, so we have D = —M/b. Therefore,
m— M VM2 =2Tt M

v(m) = 2 = v(t) 5 b

At the instant right before all the sand leaves the bucket, we have m = 0.
Therefore, v = —M/b.
Integrating v(t) to obtain x(t), we find

(4.159)

—(M? - 2bTt)%? M M3
t) = — —t+ L+ ——= 4.160
z() 3027 b T s (4.160)
where the constant of integration has been chosen to satisfy = L when t = 0.
Solving for ¢ in terms of m from eq. (4.158), substituting the result into eq.

(4.160), and simplifying, gives

(M —m)?(M + 2m) '

x(m)=1L— 2T (4.161)
Using eq. (4.159), the kinetic energy is
o im(m — M) (4.162)
2 2b?
Taking the derivative dE/dm to find the maximum, we obtain
m = M = Erax 207 (4.163)

3 T ome
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(d) Using eq. (4.159), the momentum is
1
p=mu = gm(m—M). (4.164)

Taking the derivative to find the maximum magnitude, we obtain

M M?

m= — = |p|max = Tb . (4165)

(e) We want z = 0 when m = 0. Eq. (4.161) then gives

M3 M3
0=L-for = b:\/GT—L. (4.166)

Right angle in billiards

Let v be the initial velocity, and let v; and vy be the final velocities. Conservation
of momentum and energy give

mv mvy + mva,

1 1 1
im(v -v) = im(vl “vy) + im(vQ - Va). (4.167)

Substituting the v from the first equation into the second, and using (vq +va) - (vi +
Va) = V1 -V + 2vy - Vo + Vo - Vg, gives

V1 Vg = 0. (4168)

In other words, the angle between v; and vy is 90°. (Or vi = 0, which means the
incoming mass stops because the collision is head-on. Or vy = 0, which means the
masses miss each other.)

Bouncing and recoiling

Let v; be the speed of the ball after the ith bounce, and let V; be the speed of the
block right after the ith bounce. Then conservation of momentum gives

muv; = MV;+1 — MVj41. (4169)
But Theorem 4.3 says that v; = Vii1 + v;41. Solving this system of two linear
equations gives
M — , 1— )
Vit = ( m)vi = (L= v ~ (1 — 2€)v;, and Vi1 = 2ev;, (4.170)

M+m 1+e¢

where e = m/M < 1. This expression for v;;1 implies that the speed of the ball after
the nth bounce is
v, = (1 — 2€)"vy. (4.171)

The total distance traveled by the block can be obtained by looking at the work done
by friction. Eventually, the ball has negligible energy, so all of its initial kinetic energy
goes into heat from friction. Therefore, mv3/2 = Fyd = (uMg)d, which gives

. omyg
- 2uMg’

(4.172)
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To find the total time, we can add up the times, t,,, the block moves after each bounce.
Since force times time equals the change in momentum, we have Fyt, = MV, and
so (uMg)t, = M(2ev,_1) = 2Me(1 — 2¢)"1vy. Therefore,

t= i t 2evo iu —2e)"
n=1

ng =

- 267]0 1

- ong 1—(1-2€)
Vo

= 2, 4173
1y (4.173)

REMARKS: This ¢ is independent of the masses. Note that it is much larger than the
result obtained in the case where the ball sticks to the block on the first hit, in which case
the answer is mwo /(M g). The total time is proportional to the total momentum that the
block picks up, and the present answer is larger because the wall keeps transferring positive
momentum to the ball, which then transfers it to the block.

The calculation of d above can also be done by adding up the geometric series of the distances
moved after each bounce. Note that d is the same as it would be in the case where the ball
sticks to the block on the first hit. The total distance is proportional to the total energy that
the block picks up, and in both cases the total energy given to the block is mv%/?. The wall
(which is attached to the very massive earth) transfers essentially no energy to the ball. &

20. Drag force on a sheet

(a) We will set v = 0 here. When the sheet hits a particle, the particle acquires a
speed of essentially 2V. This follows from Theorem 4.3, or by working in the
frame of the heavy sheet. The momentum of the particle is then 2mV. In time
t, the sheet sweeps through a volume AVt, where A is the area of the sheet.
Therefore, in time ¢, the sheet hits AVin particles. The sheet therefore loses
momentum at a rate of dP/dt = (AVn)(2mV). But F = dP/dt, so the force
per unit area is

F
1= 2nmV? = 2pV?, (4.174)

where p is the mass density of the particles. We see that the force depends
quadratically on V.

(b) If v > V, the particles now hit the sheet on both sides. Note that we can’t set V'
exactly equal to zero here, because we would obtain a result of zero and miss the
lowest-order effect. In solving this problem, we need only consider the particles’
motions in the direction of the sheet’s motion. As stated in the problem, we will
assume that all velocities in this direction are equal to +v/2.

Consider a particle in front of the sheet, moving backward toward the sheet.
The relative speed between the particle and the sheet is v/2 + V. This relative
speed simply reverses direction during the collision, so the change in momentum
of this particle is 2m(v/2 + V). We have used the fact that the speed of the
heavy sheet is essentially unaffected by the collision. The rate at which particles
collide with the sheet is A(v/2 + V)(n/2), from the reasoning in part (a). The
n/2 factor comes from the fact that half of the particles move toward the sheet,
and half move away from it.

Now consider a particle in back of the sheet, moving forward toward the sheet.
The relative speed between the particle and the sheet is v/2 — V. This relative
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speed simply reverses direction during the collision, so the change in momentum
of this particle is —2m(v/2 — V). And the rate at which particles collide with
the sheet is A(v/2 — V) (n/2).

Therefore, the force per unit area on the sheet is

F 1 dP
A A d
- (g(v/2 +V)) (2mv/2+V)) + (g(v/2 ~) (= 2m(v/2-V))
dnm(v/2)V
= 2,V (4.175)

We see that the force depends linearly on V. The fact that it agrees with the
result in part (a) in the case of v = V is coincidence. Neither result is valid
when v ="V.

21. Drag force on a cylinder

Consider a particle that makes contact with the cylinder at an angle 6 with respect
to the line of motion. In the frame of the heavy cylinder (see Fig. 4.53), the particle
comes in with velocity —V and then bounces off with a horizontal velocity component
of Vcos26. So in this frame (and therefore also in the lab frame, because the heavy
cylinder is essentially unaffected by the collision), the particle increases its horizontal
momentum by mV (1 + cos 26).

cylinder frame

Figure 4.53

The area on the cylinder that lies between 6 and 6 + df sweeps out volume at a rate
(Rdf cos0)V L, where £ is the length of the cylinder. The cosf factor here gives the
projection orthogonal to the direction of motion.

The force per unit length on the cylinder (that is, the rate of change of momentum,
per unit length) is therefore

£ / 7;/; (n(Rd0 cos0)V') (mV (1 + cos 20))

Y4 _
/2
= 2nmRV? / cos (1 — sin® 6) df
—71'/2
1 /2
= 2nmRV? (sin 6 — = sin® 9)
3 —7/2
8 5 _ 8 2

Note that the average force per cross-sectional area, F'//(2Rf), equals (4/3)pV?. This
is smaller than the result for the sheet in the previous problem, as it should be,
because the particles bounce off somewhat sideways in the cylinder case.

22. Basketball and tennis ball
(a) Right before the basketball hits the ground, both balls move downward with

speed (using mwv?/2 = mgh)
v = \/2gh. (4.177)

Right after the basketball bounces off the ground, it moves upward with speed
v, while the tennis ball still moves downward with speed v. The relative speed
is therefore 2v. After the balls bounce off each other, the relative speed is still
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2v. This follows from Theorem 4.3, or by working in the frame of the heavy
basketball. Since the upward speed of the basketball essentially stays equal to
v, the upward speed of the tennis ball is 2v+v = 3v. By conservation of energy,
it will therefore rise to a height of H = d + (3v)?/(2g). But v? = 2gh, so we
have

H=d+9h. (4.178)

(b) Right before B; hits the ground, all of the balls move downward with speed
v = +/2gh.
We will inductively determine the speed of each ball after it bounces off the one
below it. If B; achieves a speed of v; after bouncing off B;_;, then what is the
speed of B;;1 after it bounces off B;? The relative speed of B;y; and B; (right
before they bounce) is v + v;. This is also the relative speed after they bounce.
Therefore, since B; is still moving upward at essentially speed v;, we see that
the final upward speed of B;11 equals (v 4+ v;) + v;. Thus,

Vit1 = 20; + v. (4.179)

Since v1 = v, we obtain v = 3v (in agreement with part (a)), and then vy = Tv,
and then vy = 15v, etc. In general,

vn = (2" — 1o, (4.180)

which is easily seen to satisfy eq. (4.179), with the initial value v; = v.
From conservation of energy, B, will bounce to a height of
(2" = 1)v)*

H=/(+ oy T 0+ (2" —1)*h. (4.181)

If h is 1 meter, and we want this height to equal 1000 meters, then (assuming ¢
is not very large) we need 2" — 1 > /1000. Five balls won’t quite do the trick,
but six will, and in this case the height is almost four kilometers.

Escape velocity from the earth (which is vese = /2¢gR &~ 11,200 m/s) is reached
when

IR
Up > Vese —> (2" —1)y/2¢gh > /29R = n21n2< h—l—l). (4.182)

With R = 6.4-10°m and h = 1m, we find n > 12. Of course, the elasticity
assumption is absurd in this case, as is the notion that one can find 12 balls
with the property that m; > mg > -+ > mys.

23. Colliding masses

(a) By conservation of momentum, the final speed of the combined masses is Mv/(M+
m) & (1—m/M)v, plus higher-order corrections. The final energies are therefore

1 2 1
E, = im (1 — %) i~ 5m1}2,
1 2 1
By = 5M (1 - %) vP xS MY — e, (4.183)

These energies add up to Mv?/2 — mv?/2, which is mv?/2 less than the initial
energy of mass M, namely Mv?/2. Therefore, mv?/2 is lost to heat.
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(b) In this frame, mass m has initial speed v, so its initial energy is F; = mv?/2. By
conservation of momentum, the final speed of the combined masses is mv/(M +
m) =~ (m/M)v, plus higher-order corrections. The final energies are therefore

1 m\2 , m\2
En = ym(5p) 0= (57) Bimo
1 m 2 m
Ey = 7M<—) 2:(7)]54%. 4184
M 5 ) Y ) Ei 0 (4.184)

This negligible final energy is mv?/2 less than E;. Therefore, mv?/2 is lost to
heat, in agreement with part (a).

Pulling a chain

Let z be the distance your hand has moved. Then x/2 is the length of the moving part
of the chain, because the chain gets “doubled up”. The momentum of this moving part
is therefore p = (ca/2)&. The force that your hand applies is found from F' = dp/dt,
which gives F' = (0/2)(i? 4+ xi#). But since v is constant, the # term vanishes. The
change in momentum here is due simply to additional mass acquiring speed v, and
not due to any increase in speed of the part already moving. Hence,

O"U2

F=— 4.185
2 ) ( )

which is constant. Your hand applies this force over a total distance 2L, so the total
work you do is

F(2L) = oLv*. (4.186)
The mass of the chain is oL, so its final kinetic energy is (0 L)v?/2. This is only half
of the work you do. Therefore, an energy of o Lv?/2 is lost to heat.

Each atom in the chain goes abruptly from rest to speed v, and there is no way to
avoid heat loss in such a process. This is clear when viewed in the reference frame of
your hand. In this frame, the chain initially moves at speed v and eventually comes
to rest, piece by piece. All of its initial kinetic energy, (0 L)v?/2, goes into heat.

Pulling a rope

Let = be the position of the end of the rope. The momentum of the rope is then
p = (cx)t. F = dp/dt gives (using the fact that F is constant) Ft = p, so we have
Ft = (ox)z. Separating variables and integrating yields

x t
/ crdr = / Ftdt
0 0

2 2
= r = t\/FJo. (4.187)

The position therefore grows linearly with time. In other words, the speed is constant,

and it equals \/F/o.

REMARK: Realistically, when you grab the rope, there is some small initial value of z (call it
€). The dzx integral above now starts at € instead of 0, so x takes the form, x = \/ Ft?/o + €2.
If € is very small, the speed very quickly approaches 4/ F/o. Even if € is not small, the position

becomes arbitrarily close to t1/F/o, as t becomes large. The “head-start” of € will therefore
not help you in the long run. &
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26. Raising the rope
Let y be the height of the top of the rope. Let F(y) be the desired force applied
by your hand. Consider the moving part of the rope. The net force on this part is
F — (oy)g, with upward taken to be positive. The momentum is (oy)y. Equating the

net force on the moving part with the rate of change in momentum gives??
d(oyy)
F — =
oyg dt
= oyij+ oy (4.188)
But § = 0, and y = v. Therefore,
F = oyg + ov?. (4.189)

The work that you do is the integral of this force, from y = 0 to y = L. Since v is
constant, we have

oL?g

5+ oLv?. (4.190)

L
W :/ (oyg + ov?) dy =
0

The final potential energy of the rope is (¢ L)g(L/2), because the center of mass is
raised by distance L/2. This is the first term in eq. (4.190). The final kinetic energy
is (0L)v?/2. This accounts for half of the last term. The missing energy, (o L)v?/2,
is converted into heat.

27. Falling rope

(a) First Solution: Let o be the mass density of the rope. From conservation of
energy, we know that the rope’s final kinetic energy, which is (¢ L)v?/2, equals
the loss in potential energy. This loss equals (6 L)(L/2)g, because the center of
mass falls a distance L/2. Therefore,

v=1/gL. (4.191)

This is the same as the speed obtained by an object that falls a distance L/2.
Note that if the initial piece hanging down through the hole is arbitrarily short,
then the rope will take an arbitrarily long time to fall down. But the final speed
will be still be (arbitrarily close to) v/gL.

Second Solution: Let x be the length that hangs down through the hole. The
gravitational force on this length, which is (ox)g, is responsible for changing the
momentum of the entire rope, which is (¢L)&. Therefore, F' = dp/dt gives
(cx)g = (o L)&, which is simply the F' = ma equation. Hence, & = (g/L)x, and
the general solution to this equation is

z(t) = AetV9I/L 4 BetVI/L, (4.192)
Note that if € is the initial value for x, then A = B = ¢/2 satisfies the initial con-

ditions z(0) = € and £(0) = 0, in which case we may write x(t) = ecosh(tv/g/L).
But we won’t need this information in what follows.

221f you instead wanted to use the entire rope as your system, then eq. (4.188) would still look
the same, because the net force is the same (the extra weight of the rope on the floor is cancelled
by normal force from the floor), and the momentum is the same (only the moving part has nonzero

D).
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Let T be the time for which x(T) = L. If € is very small, then T will be
very large. But for large t,2® we may neglect the negative-exponent term in eq.
(4.192). We then have

z~ AetVIll = i~ AeVI'E gL ~ x2\/g/L (for large t).
(4.193)
When x = L, we obtain

@(T) = L\/g/L = /gL, (4.194)

in agreement with the first solution.

(b) Let o be the mass density of the rope, and let z be the length that hangs down
through the hole. The gravitational force on this length, which is (oz)g, is
responsible for changing the momentum of the rope. This momentum is (cz)%,
because only the hanging part is moving. Therefore, F' = dp/dt gives

rg = v + 2. (4.195)

Note that F' = ma gives the wrong equation, because it neglects the fact that
the moving mass, oz, is changing. It therefore misses the second term on the
right-hand side of eq. (4.195). In short, the momentum of the rope increases
because it is speeding up (which gives the & term) and because additional mass
is continually being added to the moving part (which gives the #? term, as you
can show).

To solve eq. (4.195) for z(t), note that g is the only parameter in the equation.
Therefore, the solution for z(t) can involve only ¢’s and t's.?* By dimensional
analysis, x(t) must then be of the form z(t) = bgt?, where b is a numerical
constant to be determined. Plugging this expression for z(t) into eq. (4.195)
and dividing by ¢?t? gives b = 2b% + 4b>. Therefore, b = 1/6, and our solution
may be written as

(t) = % (g) £ (4.196)

This is the equation for something that accelerates downward with acceleration
g’ = g/3. The time the rope takes to fall a distance L is then given by L = ¢'t?/2,
which yields ¢t = \/2L/¢’. The final speed in thus

29L
v=g't=+/2Lg = %. (4.197)

This is smaller than the v/gL result from part (a). We therefore see that although
the total time for the scenario in part (a) is very large, the final speed in that
case is in fact larger than that in the present scenario.

REMARKS: Using eq. (4.197), you can show that 1/3 of the available potential energy
is lost to heat. This inevitable loss occurs during the abrupt motions that suddenly
bring the atoms from zero to non-zero speed when they join the moving part of the

23More precisely, for t > 1/L/g.
24The other dimensionful quantities in the problem, L and o, do not appear in eq. (4.195), so

they cannot appear in the solution. Also, the initial position and speed (which will in general
appear in the solution for z(t), because eq. (4.195) is a second-order differential equation) do not
appear in this case, because they are equal to zero.
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rope. The use of conservation of energy is therefore not a valid way to solve this
problem.

You can show that the speed in part (a)’s scenario is smaller than the speed in part
(b)’s scenario for = less than 2L/3, but larger for = greater than 2L/3.

The raindrop

Let p be the mass density of the raindrop, and let A be the average mass density in
space of the water droplets. Let r(t), M (t), and v(t) be the radius, mass, and speed
of the raindrop, respectively.

We need three equations to solve for the above three unknowns. The equations we
will use are two different expressions for dM/dt, and the F' = dp/dt expression for
the raindrop.

The first expression for M is obtained by simply taking the derivative of M =
(4/3)7r3p, which gives

M = 4nrip (4.198)

SM; . (4.199)

The second expression for M is obtained by noting that the change in M is due to
the acquisition of water droplets. The raindrop sweeps out volume at a rate given by
its cross-sectional area times its velocity. Therefore,

M = mrlu). (4.200)

The F = dp/dt equation is found as follows. The gravitational force is Mg, and the
momentum is Mv. Therefore, F = dp/dt gives

Mg = Mv + Mq. (4.201)

We now have three equations involving the three unknowns, r, M, and v.2°
Our goal is to find ©. We will do this by first finding 7. Eqs. (4.198) and (4.200) give

4
v o= Tpf (4.202)

4
— 0 = Tpr (4.203)

Plugging eqs. (4.199, 4.202, 4.203) into eq. (4.201) gives
_ \ (4p. 4p ..
Mg—(?)MT)()\T)-i-M()\T). (4.204)

gr = 1272 + 4r#, (4.205)

Therefore,

where we have defined § = g\/p, for convenience. The only parameter in eq. (4.205)
is g. Therefore, r(t) can depend only on § and ¢. Hence, by dimensional analysis, r
must take the form

r= Agt?, (4.206)

#Note that we cannot write down the naive conservation-of-energy equation (which would say
that the decrease in the water’s potential energy equals the increase in its kinetic energy), because
mechanical energy is mot conserved. The collisions between the raindrop and the droplets are
completely inelastic. The raindrop will, in fact, heat up. See the remark at the end of the solution.
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where A is a numerical constant, to be determined. Plugging this expression for r
into eq. (4.205) gives

G(Agt?) 12(2A5t)% + 4(Agt?)(2Ag)

— A = 48A? 1842 (4.207)

Therefore, A = 1/56, and so # = 2A5 = §/28 = gA/28p. Eq. (4.203) then gives the
acceleration of the raindrop as

.9
=2 4.208
=2, (4.208)
independent of p and .

REMARKS: A common invalid solution to this problem is the following, which (incorrectly)
uses conservation of energy.

The fact that v is proportional to 7 (shown in eq. (4.202)) means that the volume swept
out by the raindrop is a cone. The center of mass of a cone is 1/4 of the way from the base
to the apex (as you can show by integrating over horizontal circular slices). Therefore, if M
is the mass of the raindrop after it has fallen a height h, then an (incorrect) application of
conservation of energy gives

1 2 h 2 gh
2Mv fMg4 = vt =5 (4.209)
Taking the derivative of this (or equivalently, using the general result, v*> = 2ad), we obtain
U= % (incorrect). (4.210)

The reason why this solution is invalid is that the collisions between the raindrop and the
droplets are completely inelastic. Heat is generated, and the overall kinetic energy of the
raindrop is smaller than you would otherwise expect.

Let’s calculate how much mechanical energy is lost (and therefore how much the raindrop
heats up) as a function of the height fallen. The loss in mechanical energy is

h 1

Eost = Mgz - §M’U24 (4211)
Using v* = 2(g/7)h, this becomes
ABiws = Biow = o= Mgh, (4.212)

where AFjn is the gain in internal thermal energy.

The energy required to heat 1g of water by 1 C° is 1 calorie (= 4.18 joules). Therefore, the
energy required to heat 1 kg of water by 1 C° is & 4200 J. In other words,

AFEin = 4200 M AT, (4.213)
where M is measured in kilograms, and T is measured in Celsius. Eqgs. (4.212) and (4.213)
give the increase in temperature as a function of h,

4200 AT = % gh. (4.214)

How far must the raindrop fall before it starts to boil? If we assume that the water droplets’
temperature is near freezing, then the height through which the raindrop must fall to have
AT =100 C° is found from eq. (4.214) to be

h ~ 400 km, (4.215)

which is much larger than the height of the atmosphere. We have, of course, idealized the
problem. But needless to say, there is no need to worry about getting burned by the rain.
A typical value for h is a few kilometers, which would raise the temperature by only about
one degree. This effect, of course, is washed out by many other factors. &
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Chapter 5

The Lagrangian Method

Copyright 2004 by David Morin, morin@physics.harvard.edu

Consider the problem of a mass on the end of a spring. We can solve this, of course,
by using F' = ma to write down mZ = —kz. The solutions to this equation are
sinusoidal functions, as we well know. We can, however, solve this problem by using
another method which doesn’t explicitly use F' = ma. In many (in fact, probably
most) physical situations, this new method is far superior to using F' = ma. You
will soon discover this for yourself when you tackle the problems for this chapter.

We will present our new method by first stating its rules (without any justifica-
tion) and showing that they somehow end up magically giving the correct answer.
We will then give the method proper justification.

5.1 The Euler-Lagrange equations

Here is the procedure. Form the following seemingly silly combination of the kinetic
and potential energies (T" and V, respectively),

[L=7-V]. (5.1)

This is called the Lagrangian. Yes, there is a minus sign in the definition (a plus
sign would simply give the total energy). In the problem of a mass on the end of a
spring, T = mi?/2 and V = ka?/2, so we have

1 1

_ Lt .2 1. 9
L= 5N Qk:p . (5.2)
Now write
d (0L oL
dt <3:t) " oz | (5:3)

Don’t worry, we’ll show you in Section 5.2 where this comes from. This equation
is called the FEuler-Lagrange (E-L) equation. For the problem at hand, we have
OL/0& = mi and OL/0x = —kzx, so eq. (5.3) gives

mi = —kux, (5.4)

V-1
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which is exactly the result obtained by using F© = ma. An equation such as eq.
(5.4), which is derived from the Euler-Lagrange equation, is called an equation of
motion.!

If the problem involves more than one coordinate, as most problems do, we sim-
ply have to apply eq. (5.3) to each coordinate. We will obtain as many equations as
there are coordinates. Each equation may very well involve many of the coordinates
(see the example below, where both equations involve both x and ).

At this point, you may be thinking, “That was a nice little trick, but we just
got lucky in the spring problem. The procedure won’t work in a more general
situation.” Well, let’s see. How about if we consider the more general problem of
a particle moving in an arbitrary potential, V(z) (we’ll just stick to one dimension
for now). Then the Lagrangian is

|
L= §mx2 —V(z). (5.5)

The Euler-Lagrange equation, eq. (5.3), gives

av

-=. (5.6)

mi =
But —dV/dz is simply the force on the particle. So we see that egs. (5.1) and
(5.3) together say exactly the same thing that F' = ma says, when using a cartesian
coordinate in one dimension (but this result is in fact quite general, as we will see
in Section 5.4).

Note that shifting the potential by a given constant has no effect on the equation
of motion, because eq. (5.3) involves only derivatives of V. This, of course, is
equivalent to saying that only differences in energy are relevant, and not the actual
values, as we well know.

In a three-dimensional problem, where the potential takes the form V(z,y, 2), it
immediately follows that the three Euler-Lagrange equations (obtained by applying
eq. (5.3) to z, y, and z) may be combined into the vector statement,

mx = —VV. (5.7)

But —VV = F, so we again arrive at Newton’s second law, F = ma, now in three
dimensions.

Let’s now do one more example to convince you that there’s really something
nontrivial going on here.

Example (Spring pendulum): Consider a pendulum made out of a spring with
a mass m on the end (see Fig. 5.1). The spring is arranged to lie in a straight line
(which we can arrange by, say, wrapping the spring around a rigid massless rod). The

!The term “equation of motion” is a little ambiguous. It is understood to refer to the second-
order differential equation satisfied by x, and not the actual equation for x as a function of ¢, namely
z(t) = Acos(wt+ ¢) in this problem, which is obtained by integrating the equation of motion twice.
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equilibrium length of the spring is ¢. Let the spring have length ¢ + x(¢), and let its
angle with the vertical be 0(¢). Assuming that the motion takes place in a vertical
plane, find the equations of motions for x and 6.

Solution: The kinetic energy may be broken up into the radial and tangential parts,
so we have

T = %m(ﬁ (2. (5.8)

The potential energy comes from both gravity and the spring, so we have
V(z,0) = —mg(£ + x)cosb + %ka. (5.9)
The Lagrangian therefore equals
L=T-V= %m(ﬁf + L+ x)zéz) +mg(€ + ) cosf — %k‘xz. (5.10)

There are two variables here, x and 6. As mentioned above, the nice thing about the
Lagrangian method is that we can simply use eq. (5.3) twice, once with 2 and once
with 0. Hence, the two Euler-Lagrange equations are

d (0L 0L .. )2
T (&E) = = m& =m(f + x)0° + mgcosd — kx, (5.11)
and
d (OL\ 0L d 2 .
7 (80) =2 = 7 (m(€+ x) 9) = —mg({ + x)sinf
= m(l + x)%0 + 2m({ + x)i = —mg({ + x) sin 6.
= m(l + )0 + 2mif = —mgsin 6. (5.12)

Eq. (5.11) is simply the radial F = ma equation, complete with the centripetal
acceleration, —(£ + )62, The first line of eq. (5.12) is the statement that the torque
equals the rate of change of the angular momentum (one of the subjects of Chapter
7).2

After writing down the E-L equations, it is always best to double-check them by
trying to identify them as F' = ma or 7 = dL/dt equations. Sometimes, however, this
identification is not obvious. For the times when everything is clear (that is, when
you look at the E-L equations and say, “Oh, of course!”), it is usually clear only after
you’ve derived them. The Lagrangian method is generally the safer method to use.

The present example should convince you of the great utility of the Lagrangian
method. Even if you've never heard of the terms “torque”, “centripetal”, “centrifu-
gal”, or “Coriolis”, you can still get the correct equations by simply writing down the
kinetic and potential energies, and then taking a few derivatives.

2 Alternatively, if you want to work in a rotating frame, then eq. (5.11) is the radial F' = ma
equation, complete with the centrifugal force, m (¢ + x)t92 And the third line of eq. (5.12) is the
tangential F' = ma equation, complete with the Coriolis force, —2mi6. But never mind about this
now. We'll deal with rotating frames in Chapter 9.
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At this point it seems to be personal preference, and all academic, whether you
use the Lagrangian method or the F' = ma method. The two methods produce the
same equations. However, in problems involving more than one variable, it usually
turns out to be much easier to write down T and V', as opposed to writing down
all the forces. This is because T" and V are nice and simple scalars. The forces, on
the other hand, are vectors, and it’s easy to get confused if they point in various
directions. The Lagrangian method has the advantage that once you’ve written
down L =T — V, you don’t have to think anymore. All you have to do is blindly
take some derivatives.?

When jumping from high in a tree,
Just write down del L by del z.

Take del L by z dot,

Then t-dot what you’ve got,

And equate the results (but quickly!)

But ease and speed of computation aside, is there any fundamental difference be-
tween the two methods? Is there any deep reasoning behind eq. (5.3)7 Indeed,
there is...

5.2 The principle of stationary action

Consider the quantity,

t

S= [ L(xt)dt. (5.13)

t1
S is called the action. It is a number with the dimensions of (Energy) x (Time). S
depends on L, and L in turn depends on the function x(t) via eq. (5.1).* Given any
function z(t), we can produce the number S. We’ll just deal with one coordinate,
x, for now.

S is called a functional, and is sometimes denoted by S[z(t)]. It depends on the
entire function z(t), and not on just one input number, as a regular function f(¢)
does. S can be thought of as a function of an infinite number of values, namely
all the z(t) for ¢ ranging from t; to to. If you don’t like infinities, you can imagine
breaking up the time interval into, say, a million pieces, and then replacing the
integral by a discrete sum.

Let us now pose the following question: Consider a function z(t), for t; <t < ta,
which has its endpoints fixed (that is, z(t1) = z1 and x(t2) = x2, where x; and z2
are given), but is otherwise arbitrary. What function z(t) yields a stationary value
of S? A stationary value is a local minimum, maximum, or saddle point.’®

30f course, you eventually have to solve the resulting equations of motion, but you have to do
that when using the F' = ma method, too.

4In some situations, the kinetic and potential energies in L = T — V may explicitly depend on
time, so we have included the “t” in eq. (5.13).

A saddle point is a point where there are no first-order changes in S, and where some of the
second-order changes are positive and some are negative (like the middle of a saddle, of course).



5.2. THE PRINCIPLE OF STATIONARY ACTION V-5

For example, consider a ball dropped from rest, and consider the function y(t)
for 0 < ¢t < 1. Assume that we somehow know that y(0) = 0 and y(1) = —g/2.5
A number of possibilities for y(t) are shown in Fig. 5.2, and each of these can (in
theory) be plugged into egs. (5.1) and (5.13) to generate S. Which one yields a
stationary value of S7 The following theorem gives us the answer.

Theorem 5.1 If the function xy(t) yields a stationary value (that is, a local mini-
mum, mazimum, or saddle point) of S, then

d (0L oL
- = .14
dt <8$0> 8$0 (5 )

It is understood that we are considering the class of functions whose endpoints are
fixed. That is, x(t1) = x1 and x(t2) = x2.

Proof:  We will use the fact that if a certain function xo(¢) yields a stationary
value of S, then any other function very close to z(t) (with the same endpoint
values) yields essentially the same S, up to first order in any deviations. This is
actually the definition of a stationary value. The analogy with regular functions is
that if f(b) is a stationary value of f, then f(b+ €) differs from f(b) only at second
order in the small quantity e. This is true because f’(b) = 0, so there is no first-order
term in the Taylor series around b.

Assume that the function xy(t) yields a stationary value of S, and consider the
function

xa(t) = xo(t) + aB(t), (5.15)

where ((t) satisfies 5(t1) = ((t2) = 0 (to keep the endpoints of the function fixed),
but is otherwise arbitrary.

The action S[z,(t)] is a function of a (the ¢ is integrated out, so S is just a
number, and it depends on a), and we demand that there be no change in S at first
order in a. How does S depend on a? Using the chain rule, we have

d d [t

%S[l’a(t)] = % " Ldt
t2 L
= | G
t2 1 OL Oz,  OL 04
N /t1 <69:a Oa + 0z, Oa > dt. (5.16)

In other words, a influences S through its effect on x, and also through its effect on
#. From eq. (5.15), we have

0z, 0%, .

— d = 1

5This follows from y = —gt?/2, but pretend that we don’t know this formula.

_g/2 +4

Figure 5.2
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7

3 st = [

t1

so eq. (5.16) becomes

oL oL .
( 5Bt o 5) dt. (5.18)

Now comes the one sneaky part of the proof. You will see this trick many times in
your physics career. We will integrate the second term by parts. Using

oL . oL d dL
aj:aﬂdt: 8x’a5_/<dt(%a> Bt (5.19)

to

eq. (5.18) becomes

d t2 1 0L d OL oL
ﬂ%W—[lg%—ﬁ%)ﬁﬁ+%f

(5.20)
t1
But §(t1) = B(t2) = 0, so the last term (the “boundary term”) vanishes. We now
use the fact that (d/da)S[z(t)] must be zero for any function 3(t), because we are
assuming that xo(t) yields a stationary value. The only way this can be true is if
the quantity in parentheses above (evaluated at a = 0) is identically equal to zero,

that is,
d (0L oL
— === 21

dt (8.%'0) 81‘0 " (5 )

The E-L equation, eq. (5.3), therefore doesn’t just come out of the blue. It is a
consequence of requiring that the action be at a stationary value. We may therefore
replace F' = ma by the following principle.

e The Principle of Stationary-Action:

The path of a particle is the one that yields a stationary value of the action.

This principle is equivalent to F' = ma because the above theorem shows that if
(and only if, as you can show by working backwards) we have a stationary value of
S, then the E-L equations hold. And the E-L equations are equivalent to F' = ma
(as we showed for Cartesian coordinates in Section 5.1 and which we’ll prove for
any coordinate system in Section 5.4). Therefore, “stationary-action” is equivalent
to F' = ma.

If we have a multidimensional problem, where the lagrangian is a function of
the variables x;(t), z2(t), . .., then the above principle of stationary action is still all
we need. With more than one variable, we can now vary the path by varying each
coordinate (or combinations thereof). The variation of each coordinate produces an
E-L equation which, as we caw in the cartesian case, is equivalent to an F' = ma
equation.

Given a classical mechanics problem, we can solve it with F' = ma, or we can
solve it with the E-L equations, which derive from the principle of stationary action

"Note that nowhere do we assume that z, and @, are independent variables. The partial
derivatives in eq. (5.17) are very much related, in that one is the derivative of the other. The use
of the chain rule in eq. (5.16) is still perfectly valid.
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(often called the principle of “minimal action”, but see the third remark below).
Either method will get the job done. But as mentioned at the end of Section 5.1, it
is often easier to use the latter, because it avoids the use of force, and it’s easy to
get confused if you have forces pointing in all sorts of complicated directions.

It just stood there and did nothing, of course,
A harmless and still wooden horse.

But the minimal action

Was just a distraction;

The plan involved no use of force.

Let’s now return to the example of a ball dropped from rest, mentioned above.
The Lagrangian is L = T — V = mg?/2 — mgy, so eq. (5.21) gives jj = —g, which is
simply the F' = ma equation, as expected. The solution is y(t) = —gt%/2 + vot + yo,
as we well know. But the initial conditions tell us that vg = yg = 0, so our solution is
y(t) = —gt%/2. You are encouraged to verify explicitly that this y(¢) yields an action
that is stationary with respect to variations of the form, say, y(t) = —gt?/2+€t(t—1),
which also satisfies the endpoint conditions (this is the task of Exercise 3). There
are, of course, an infinite number of other ways to vary y(t¢), but this specific result
should help convince you of the general result of Theorem 5.1.

Note that the stationarity implied by the Euler-Lagrange equation, eq. (5.21),
is a local statement. It gives information only about nearby paths. It says nothing
about the global nature of how the action depends on all possible paths. If we find
that a solution to eq. (5.21) happens to produce a local minimum, there is no reason
to conclude that it is a global minimum, although in many cases it turns out to be.

REMARKS:

1. Theorem 5.1 is based on the assumption that the ending time, t5, of the motion is
given. But how do we know this final time? Well, we don’t. In the example of a ball
thrown upward, the total time to rise and fall back to your hand can be anything,
depending on the ball’s initial speed. This initial speed will show up as an integration
constant when solving the E-L Equations. The motion has to end sometime, and
the principle of stationary action says that for whatever time this happens to be, the
physical path has a stationary action.

2. Theorem 5.1 shows that we can explain the E-L equations by the principle of sta-
tionary action. This, however, simply shifts the burden of proof. We are now left
with the task of justifying why we should want the action to have a stationary value.
The good news is that there is a very solid reason for this. The bad news is that the
reason involves quantum mechanics, so we won’t be able to discuss it properly here.
Suffice it to say that a particle actually takes all possible paths in going from one
place to another, and each path is associated with the complex number e*5/" (where
h =1.05-1073%Js is Planck’s constant). These complex numbers have absolute value
1 and are called “phases”. It turns out that the phases from all possible paths must
be added up to give the “amplitude” of going from one point to another. The absolute
value of the amplitude must then be squared to obtain the probability.®

8This is one of those remarks that is completely useless, because it is incomprehensible to those
who haven’t seen the topic before, and trivial to those who have. My apologies. But this and the
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The basic point, then, is that at a non-stationary value of S, the phases from different
paths differ (greatly, because % is so small) from one another, which effectively leads to
the addition of many random vectors in the complex plane. These end up cancelling
each other, yielding a sum of essentially zero. There is therefore no contribution to
the overall amplitude from non-stationary values of S. Hence, we do not observe
the paths associated with these S’s. At a stationary value of S, however, all the
phases take on essentially the same value, thereby adding constructively instead of
destructively. There is therefore a non-zero probability for the particle to take a path
that yields a stationary value of S. So this is the path we observe.

But again, the preceding remark simply shifts the burden of proof one step further.
We must now justify why these phases e*5/" should exist, and why the Lagrangian
that appears in S should equal T"— V. But here’s where we’re going to stop.

The principle of stationary action is sometimes referred to as the principle of “least”
action, but this is misleading. True, it is often the case that the stationary value
turns out to be a minimum value, but it need not be, as we can see in the following
example.

Consider a harmonic oscillator. The Lagrangian is

1 1
L= 5ma’ﬂ - ika:Q. (5.22)
Let xo(t) be a function which yields a stationary value of the action. Then we know
that xo(t) satisfies the E-L equation, mio = —kxg.
Consider a slight variation on this path, xo(¢) + £(¢), where £(t) satisfies £(t1) =
&(t2) = 0. With this new function, the action becomes

Se = /:2 (7; (a':g + 20€ + 5'2) - g (xg + 2mof + 52)) dt. (5.23)

The two cross-terms add up to zero, because after integrating the m'oé term by parts,

their sum is
ta

to
mao&| — / (m{,ﬁo + k‘xo)f dt. (524)

tl t1

The first term is zero, due to the boundary conditions on £(¢). The second term is
zero, due to the E-L equation. We’ve basically just reproduced the proof of Theorem
5.1 for the special case of the harmonic oscillator here.

The terms involving only z( give the stationary value of the action (call it Sp). To
determine whether Sy is a minimum, maximum, or saddle point, we must look at the
difference,
L[
AS =8 =S =5 / (m&? — k&?) dt. (5.25)
t1

It is always possible to find a function £ that makes AS positive. Simply choose £ to
be small, but make it wiggle very fast, so that & is large. Therefore, it is never the
case that Sy is a maximum. Note that this reasoning works for any potential, not just
a harmonic oscillator, as long as it is a function of only position (that is, it contains
no derivatives, as we always assume).

following remarks are by no means necessary for an understanding of the material in this chapter.
If you’re interested in reading more about these quantum mechanics issues, you should take a look
at Richard Feynman’s book, QFED. Feynman was, after all, the one who thought of this idea.
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You might be tempted to use the same line of reasoning to say that it is also always
possible to find a function £ that makes AS negative, by making £ large and 5 small. If
this were true, then we could put everything together and conclude that all stationary
points are saddle points, for a harmonic oscillator. However, it is not always possible to
make £ large enough and & small enough so that AS is negative, due to the boundary
conditions £(t1) = &(t2) = 0. If € changes from zero to a large value and then back to
zero, then f may also have to be large, if the time interval is short enough. Problem
6 deals quantitatively with this issue. For now, let’s just say that in some cases Sy
is a minimum, in some cases it is a saddle point, and it is never a maximum. “Least
action” is therefore a misnomer.

. It is sometimes said that nature has a “purpose”, in that it seeks to take the path that

produces the minimum action. In view of the second remark above, this is incorrect.
In fact, nature does exactly the opposite. It takes every path, treating them all on
equal footing. We simply end up seeing the path with a stationary action, due to the
way the quantum mechanical phases add.

It would be a harsh requirement, indeed, to demand that nature make a “global”
decision (that is, to compare paths that are separated by large distances), and to
choose the one with the smallest action. Instead, we see that everything takes place
on a “local” scale. Nearby phases simply add, and everything works out automatically.

When an archer shoots an arrow through the air, the aim is made possible by all the
other arrows taking all the other nearby paths, each with essentially the same action.
Likewise, when you walk down the street with a certain destination in mind, you’re
not alone.

When walking, I know that my aim

Is caused by the ghosts with my name.
And although I don’t see

Where they walk next to me,

I know they’re all there, just the same.

Consider a function, f(z), of one variable (for ease of terminology). Let f(b) be a
local minimum of f. There are two basic properties of this minimum. The first is
that f(b) is smaller than all nearby values. The second is that the slope of f is zero
at b. From the above remarks, we see that (as far as the action S is concerned) the
first property is completely irrelevant, and the second one is the whole point. In other
words, saddle points (and maxima, although we showed above that these never exist
for S) are just as good as minima, as far as the constructive addition of the e*5/"
phases is concerned.

Given that classical mechanics is an approximate theory, while quantum mechanics
is the (more) correct one, it is quite silly to justify the principle of stationary action
by demonstrating its equivalence with F' = ma, as we did above. We should be doing
it the other way around. However, because our intuition is based on F' = ma, we’ll
assume that it’s easier to start with F' = ma as the given fact, rather than calling
upon the latent quantum-mechanical intuition hidden deep within all of us. Maybe
someday...

At any rate, in more advanced theories dealing with fundamental issues concerning
the tiny building blocks of matter (where the action is of the same order of magnitude
as 1), the approximate F' = ma theory is invalid, and you have to use the Lagrangian
method. &
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5.3 Forces of constraint

One nice thing about the Lagrangian method is that we are free to impose any
given constraints at the beginning of the problem, thereby immediately reducing
the number of variables. This is always done (perhaps without thinking) whenever
a particle is constrained to move on a wire or surface, etc. Often we are not concerned
with the exact nature of the forces doing the constraining, but only with the resulting
motion, given that the constraints hold. By imposing the constraints at the outset,
we can find the motion, but we can’t say anything about the constraining forces.

If we want to determine the constraining forces, we must take a different ap-
proach. The main idea of the strategy, as we will show below, is that we must not
impose the constraints too soon. This, of course, leaves us with a larger number of
variables to deal with, so the calculations are more cumbersome. But the benefit is
that we are able to find the constraining forces.

Consider the problem of a particle sliding off a fixed frictionless hemisphere
of radius R (see Fig. 5.3). Let’s say that we are concerned only with finding
the equation of motion for 8, and not the constraining force. Then we can write
everything in terms of 6, because we know that the radial distance, r, is constrained
to be R. The kinetic energy is mR292/2, and the potential energy (relative to the
bottom of the hemisphere) is mgr cos §. The Lagrangian is therefore

1 )
L= imR292 —mgRcos 0, (5.26)

and the equation of motion, via eq. (5.3), is
0 = (g/R)sinb, (5.27)

which is simply the tangential F' = ma statement.

Now let’s say that we want to find the constraining normal force that the hemi-
sphere applies to the particle. To do this, let’s solve the problem in a different way
and write things in terms of both r and 6. Also (and here’s the critical step), let’s
be really picky and say that r isn’t exactly constrained to be R, because in the real
world the particle actually sinks into the hemisphere a little bit. This may seem
a bit silly, but it’s really the whole point. The particle pushes and sinks inward
a tiny distance until the hemisphere gets squashed enough to push back with the
appropriate force to keep the particle from sinking in any more. (Just consider the
hemisphere to be made of lots of little springs with very large spring constants.)
The particle is therefore subject to a (very) steep potential due to the hemisphere.
The constraining potential, V(r), looks something like the plot in Fig. 5.4. The
true Lagrangian for the system is thus

L oo 24
L= im(T +7°0°) — mgrcosf — V(r). (5.28)
(The 72 term in the kinetic energy will turn out to be insignificant.) The equations
of motion obtained from varying 6 and r are therefore

mr?0 = mgrsiné,
mi = mrf* —mgcosd — V'(r). (5.29)
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Having written down the equations of motion, we will now apply the constraint
condition that r = R. This condition implies 7 = # = 0. (Of course, r isn’t really
equal to R, but any differences are inconsequential from this point onward.) The
first of egs. (5.29) then simply gives eq. (5.27), while the second yields

av

o | . = mg cos ) — mR6>. (5.30)

But F' = —dV/dr is the constraint force applied in the r direction, which is precisely
the force we are looking for. The normal force of constraint is therefore

F(0,0) = mgcosf — mR6?, (5.31)

which is simply the radial F' = ma statement. Note that this result is valid only if
F(8, 9) > 0. If the normal force becomes zero, then this means that the particle has
left the sphere, in which case r is no longer equal to R (except at the instant right
when it leaves).

REMARKS:

1. What if we instead had (unwisely) chosen Cartesian coordinates, x and y, instead of
polar coordinates, r and 7 Since the distance from the particle to the surface of the
sphere is n = v/x2 + y2 — R, we obtain a true Lagrangian equal to

L= %m(m'2 +9?) —mgy — V(n). (5.32)

The equations of motion are (using the chain rule)

dV on dV on
mi=———, and my =-—mg— ——. 5.33
dn Oz 4 g dn Oy (5.33)
We now apply the constraint condition n = 0. Since —dV/dn equals the constraint
force F, you can show that the equations we end up with (namely, the two E-L
equations and the constraint equation) are

x

mj&:FE, my:fngrF%, and vVr2+y2—R=0. (5.34)
These three equations are sufficient to determine the three unknowns #, ¢, and F as
functions of the quantities z, &, y, and y (see Exercise 9, which should convince you
that polar coordinates are the way to go).

2. You can see from eqs. (5.29) and (5.34) that the E-L equations end up taking the

form,
d (0L oL on
—_ = F .
dt <8qi) 9q; - dq;’ (5.35)

for each coordinate, g;. Here 7 is the constraint equation of the form n = 0. In our
hemisphere problem, we have n = r — R in polar coordinates, and n = \/22 + y2 — R
in cartesian coordinates. The E-L equations, combined with the n = 0 condition,
give us exactly the number of equations (N + 1 of them, where N is the number of
coordinates) needed to determine all of the N + 1 unknowns (the ¢; and F), in terms
of the ¢; and ¢;.
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3. When trying to determine the forces of constraint, you can simply start with egs.
(5.35), without bothering to write down V' (n). But you must be careful to make sure
that n does indeed represent the distance the particle is from where it should be. In
polar coordinates, if someone gives you the constraint condition as 7(r — R) = 0, and
if you use the left-hand side of this as the 7 in eq. (5.35), then you will get the wrong
constraint force, off by a factor of 7. Likewise, in cartesian coordinates, writing the
constraint as y — v R? — 2 = 0 would give you the wrong force.

The best way to avoid this problem is, of course, to pick one of your variables as the
distance the particle is from where it should be (up to an additive constant, as in the
case of the r in eq. (5.28)). &

5.4 Change of coordinates

When L is written in terms of cartesian coordinates x,y,z, we showed in Section 5.1
that the Euler-Lagrange equations are equivalent to Newton’s F' = ma equations;
see eq. (5.7). But what about the case where we use polar, spherical, or some other
coordinates? The equivalence of the E-L equations and F = ma is not so obvious.
As far as trusting the E-L equations for such coordinates goes, you can achieve
peace-of-mind in two ways. You can accept the principle of stationary action as
something so beautiful and profound that it simply has to work for any choice of
coordinates. Or, you can take the more mundane road and show through a change
of coordinates that if the E-L equations hold for one set of coordinates,” then they
also hold for any other coordinates (of a certain form, described below). In this
section, we will demonstrate the validity of the E-L equations through the explicit
change of coordinates.!®
Consider the set of coordinates,

Ty @ ((L‘l,{L'Q,...,xN). (536)

For example, x1,x2,23 could be the cartesian x,y,z coordinates of one particle, and
24,25,2¢ could be the r,0,¢ polar coordinates of a second particle, and so on. Assume
that the E-L equations hold for these variables, that is,

d (0L oL
— = <1< . .
7 (6%) 0z, (1<i<N) (5.37)

We know that there is at least one set of variables for which this is true, namely the
cartesian coordinates. Consider a new set of variables which are functions of the x;
and t,

g = ¢i(x1,22,...,TN;t). (5.38)
We will restrict ourselves to the case where the ¢; do not depend on the &;. (This

is quite reasonable. If the coordinates depended on the velocities, then we wouldn’t
be able to label points in space with definite coordinates. We’d have to worry about

9We know that they do hold for cartesian coordinates, because we showed in this case that the
E-L equations are equivalent to F' = ma, and we are assuming F' = ma to be true.

10This calculation is straightforward but a bit messy, so you may want to skip this section and
just settle for the “beautiful and profound” reasoning.
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how the particles were behaving when they were at the points. These would be
strange coordinates indeed.) Note that we can, in theory, invert egs. (5.38) and
express the x; as functions of the ¢; and ¢,

xi:xi(q17QQ7"‘7QN;t)‘ (539)

Claim 5.2 If eq. (5.87) is true for the x; coordinates, and if the x; and q; are
related by eqs. (5.39), then eq. (5.37) is also true for the q; coordinates. That is,

d (0L oL
=) = < < . .
ﬁ(%J D (1sms<N) (5.40)
Proof: We have N

oL 0L Oz;

%~ ; 9%, 96, (5.41)

(Note that if the x; depended on the ¢;, then we would have the additional term,
> (0L/0x;)(0x;/Ddm,), but we have excluded such dependence.) Let’s rewrite the
O0t; /¢y, term. From eq. (5.39), we have

N
b, = im + — . 5.42
T 2 g, T (5:42)
Therefore,

= ) 5.43
Substituting this into eq. (5.41) and taking the time derivative of both sides gives

d (L Nod (0L dx; L OL d ([ O
222 = — — ) 5.44

In the second term here, it is legal to switch the order of the total derivative, d/dt,
and the partial derivative, 9/9qy,.

REMARK: In case you have your doubts, let’s prove that this switching is legal.

d (O —ii Oui \ . 0 (O
it \Oqm ) ~ Z=0g; \Ogm )" 0t \ O

k=1

0 (Lo Oz
"%(;%ﬂ+m>

O,
= e (5.45)

as was to be shown. &

In the first term on the right-hand side of eq. (5.44), we can use the given
information in eq. (5.37) and rewrite the (d/dt)(0L/0%;) term. Eq. (5.44) then
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becomes
d (aL) N oL 0x; L OL 0%
dt \ 9¢pm P ox; Oqm P 0t; Oqm
OL
= — A4
O’ (5.46)

as we wanted to show. m

We have therefore demonstrated that if the Euler-Lagrange equations are true
for one set of coordinates, x; (and they are true for cartesian coordinates), then they
are also true for any other set of coordinates, ¢;, satisfying eq. (5.38). For those
of you who look at the principle of stationary action with distrust (thinking that
it might be a coordinate-dependent statement), this proof should put you at ease.
The Euler-Lagrange equations are valid in any coordinates.

Note that the above proof did not in any way use the precise form of the La-
grangian. If L were equal to T+V, or 7T +7V?2/T, or any other arbitrary function,
our result would still be true: If eqs. (5.37) are true for one set of coordinates, then
they are also true for any other coordinates ¢; satisfying eqs. (5.38). The point is
that the only L for which the hypothesis is true at all (that is, for which eq. (5.37)
holds) is L =T — V (or any constant multiple of this).

REMARK: On one hand, it is quite amazing how little we assumed in proving the above
claim. Any new coordinates of the very general form (5.38) satisfy the E-L equations, as
long as the original coordinates do. If the E-L equations had, say, a factor of 5 on the
right-hand side of eq. (5.37), then they would not hold in arbitrary coordinates. To see this,
just follow the proof through with the factor of 5.

On the other hand, the claim is quite believable, if you make an analogy with a function
instead of a functional. Consider the function f(z) = 22. This has a minimum at z = 0,
consistent with the fact that df/dz = 0 at z = 0. But let’s now write f in terms of the
variable y defined by, say, z = y*. Then f(y) = %%, and f has a minimum at y = 0, consistent
with the fact that df /dy equals zero at y = 0. So f = 0 holds in both coordinates at the
corresponding points y = z = 0. This is the (simplified) analog of the E-L equations holding
in both coordinates. In both cases, the derivative equation describes where the stationary
value occurs.

This change-of-variables result may be stated in a more geometrical (and friendly) way.
If you plot a function and then stretch the horizontal axis in an arbitrary manner (which
is what happens when you change coordinates), then a stationary value (that is, one where
the slope is zero) will still be a stationary value after the stretching. A picture is worth a
dozen equations, it appears.

As an example of an equation that does not hold for all coordinates, consider the pre-
ceding example, but with f* = 1 instead of f' = 0. In terms of z, f/ = 1 when z = 1/2.
And in terms of y, f’ = 1 when y = (1/8)"/7. But the points z = 1/2 and y = (1/8)'/7
are not the same point. In other words, f’ = 1 is not a coordinate-independent statement.
Most equations, of course, are coordinate dependent. The special thing about f’ = 0 is that

a stationary point is a stationary point no matter how you look at it.!! &

HThere is, however, one exception. A stationary point in one coordinate system might be located
at a kink in another coordinate system, so that f’ is not defined there. For example, if we had
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5.5 Conservation Laws

5.5.1 Cyeclic coordinates

Consider the case where the Lagrangian does not depend on a certain coordinate

qr- Then
d (0L oL
i (5) =00 =© 47
Therefore oL
— =C| 5.48
i (5.48)

where C is a constant, independent of time. In this case, we say that g is a cyclic
coordinate, and that L/0qy is a conserved quantity (meaning that it doesn’t change
with time).

If cartesian coordinates are used, then 0L/ is simply the momentum, miy,
because 1 appears in only the mw% /2 term (we exclude cases where V' depends
on ). We therefore call 0L/Jqx the generalized momentum corresponding to the
coordinate g;. And in cases where JL/dq; does not change with time, we call it a
conserved momentum. Note that a generalized momentum need not have the units
of linear momentum, as the angular-momentum examples below show.

Example 1: Linear momentum

Consider a ball thrown through the air. In the full three dimensions, the Lagrangian
is
1
L= §m(:t2 + 9% 4 %) —mgz. (5.49)

There is no z or y dependence here, so both dL/0& = mz and IL/0y = my are
constant, as we well know. The fancy way of saying this is that conservation of
p. = mid arises from spatial translation invariance in the z-direction. The fact that
the Lagrangian doesn’t depend on x means that it doesn’t matter if you throw the
ball in one spot, or in another spot a mile down the road. The setup is independent
of the x value. This independence leads to conservation of p,.

Example 2: Angular and linear momentum in cylindrical coordinates

Consider a potential that depends only on the distance to the z-axis. In cylindrical
coordinates, the Lagrangian is

1 .
L= im(v‘Q + 72607 4 %) =V (r). (5.50)

There is no z dependence here, so 0L/02 = mz is constant. Also, there is no 6
dependence, so 0L/ 90 = mr26 is constant. Since rf is the speed in the tangential
direction around the z-axis, we see that our conserved quantity, mr(ré), is the angular
momentum around the z-axis. (We actually haven’t defined angular momentum yet;
we’ll talk about it at great length in Chapters 6-8.) In the same manner as in the

instead defined y by z = y*/%, then fly) = y*/2, which has an undefined slope at y = 0. Basically,
we’ve stretched (or shrunk) the horizontal axis by a factor of infinity at the origin, and this is a
process that can indeed change a zero slope into an undefined one. But let’s not worry about this.
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preceding example, conservation of angular momentum around the z-axis arises from
rotation invariance around the z-axis.

Example 3: Angular momentum in spherical coordinates

In spherical coordinates, consider a potential that depends only on r and 6. (Our
convention for spherical coordinates will be that 6 is the angle down from the north
pole, and ¢ is the angle around the equator.) The Lagrangian is

1 . .
L= im(f‘Q + 7202 + r?sin? 04%) — V(r,6). (5.51)

There is no ¢ dependence here, so 8L/8¢ = mr2sin? 0¢ is constant. Since 7sinf is
the distance from the z-axis, and since r sin Gé is the speed in the tangential direction
around the z-axis, we see that our conserved quantity, m(rsin®)(rsinf¢), is the
angular momentum around the z-axis.

5.5.2 Energy conservation

We will now derive another conservation law, namely conservation of energy. The
conservation of momentum or angular momentum above arose when the Lagrangian
was independent of z, y, z, 6, or ¢. Conservation of energy arises when the La-
grangian is independent of time. This conservation law is different from those in the
above momenta examples, because t is not a coordinate which the stationary-action
principle can be applied to. You can imagine varying the coordinates z, 6, etc.,
which are functions of ¢. But it makes no sense to vary t. Therefore, we’re going to
have to prove this conservation law in a different way.
Consider the quantity

(Z 9 q1> : (5.52)

E will (usually) turn out to be the energy. We’ll show this below. The motivation
for this expression for E comes from the theory of Legendre transforms, but we
won’t get into that here. Let’s just accept the definition in eq. (5.52), and now we’ll
prove a nice little theorem about it.

Claim 5.3 If L has no explicit time dependence (that is, if OL/0t = 0), then E is
conserved (that is, dE/dt = 0), assuming the motion obeys the E-L equations (which
it does).

Note that there is one partial derivative and one total derivative in this statement.

Proof: L is a function of the ¢;, the ¢;, and possibly t. Making copious use of the
chain rule, we have

dE d (SLOL.\ dL
e dt \ =

d JL oL .. N /oL 8L oL
- (2 i 2Ea) - (3 (S2a+ 22a) + %) oo
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There are five terms here. The second cancels with the fourth. And the first (after
using the E-L equation, eq. (5.3), to rewrite it) cancels with the third. We therefore
arrive at the simple result,

dE 0L

ot
In the event that L/0t = 0 (that is, there are no t’s sitting on the paper when you
write down L), which is invariably the case in the situations we consider (because
we won’t consider potentials that depend on time), we have dE/dt = 0. m

(5.54)

Not too many things are constant with respect to time, and the quantity E has
units of energy, so it’s a good bet that it is the energy. Let’s show this in cartesian
coordinates (however, see the remark below). The Lagrangian is

1
L= om(a® +§* + %) = V(z,y,2), (5.55)

so eq. (5.52) gives
1
E=om(@® + 9%+ 2%) + V(2,y,2), (5.56)

which is, of course, the total energy. The effect of the operations in eq. (5.52) in
most cases is to simply switch the sign in front of the potential.

Of course, taking the kinetic energy 7' and subtracting the potential energy V
to obtain L, and then using eq. (5.52) to produce E = T + V, seems like a rather
convoluted way of arriving at 7'+ V. But the point of all this is that we used the
E-L equations to prove that E is conserved. Although we know very well from the
F' = ma methods in Chapter 4 that the sum 7'+ V is conserved, it’s not fair to
assume that it is conserved in our new Lagrangian formalism. We have to show that
this follows from the E-L equations.

As with the translation and rotation invariance we observed in the examples
in Section 5.5.1, we now see that energy conservation arises from time translation
invariance. If the Lagrangian has no explicit ¢ dependence, then the setup looks the
same today as it did yesterday. This fact leads to conservation of energy.

REMARK: The quantity E in eq. (5.52) gives the energy of the system only if the
entire system is represented by the Lagrangian. That is, the Lagrangian must represent a
closed system with no external forces. If the system is not closed, then Claim 5.3 (or more
generally, eq. (5.54)) is still perfectly valid for the E defined in eq. (5.52), but this E may
simply not be the energy of the system. Problem 8 is a good example of such a situation.

Another example is projectile motion in the z-y plane. The normal thing to do is
to say that the particle moves under the influence of the potential V(y) = mgy. The
Lagrangian for this closed system is L = m(i? + ¢)2/2 — mgy, and so eq. (5.52) gives
E = m(2% +9)?/2 + mgy, which is indeed the energy of the particle. However, another way
to do this problem is to consider the particle to be subject to an external gravitational force,
which gives an acceleration of —g in the y direction. If we assume that the mass starts at
rest, then § = —gt. The Lagrangian is therefore L = m?/2 + m(gt)?/2, and so eq. (5.52)
gives E = mi?/2 — m(gt)?/2. This is not the energy.

At any rate, most of the systems we will deal with are closed, so you can usually ignore
this remark and assume that the E in eq. (5.52) gives the energy. &
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5.6 Noether’s Theorem

We now present one of the most beautiful and useful theorems in physics. It deals
with two fundamental concepts, namely symmetry and conserved quantities. The
theorem (due to Emmy Noether) may be stated as follows.

Theorem 5.4 (Noether’s Theorem) For each symmetry of the Lagrangian, there
is a conserved quantity.

By “symmetry”, we mean that if the coordinates are changed by some small quan-
tities, then the Lagrangian has no first-order change in these quantities. By “con-
served quantity”, we mean a quantity that does not change with time. The result
in Section 5.5.1 for cyclic coordinates is a special case of this theorem.

Proof:  Let the Lagrangian be invariant (to first order in the small number ¢)
under the change of coordinates,

g — ¢ + eK;(q). (5.57)

Each K;(q) may be a function of all the ¢;, which we collectively denote by the
shorthand, q.

REMARK: As an example of what these K;’s might look like, consider the Lagrangian
(which we just pulled out of a hat), L = (m/2)(5i? — 2@y + 29%) + C(2x — y). This is
invariant under the transformation x — x 4+ € and y — y + 2¢, as you can easily check. (It
is actually invariant to all orders in €, and not just first order. But this isn’t necessary for
the theorem to hold.) Therefore, K, =1 and K, = 2. In the problems we’ll be doing, the
K;’s can generally be determined by simply looking at the potential term.

Of course, someone else might come along with K, = 3 and K, = 6, which is also a
symmetry. And indeed, any factor can be taken out of € and put into the K;’s without
changing the quantity eK;(q) in eq. (5.57). Any such modification will simply bring an
overall constant factor (and hence not change the property of being conserved) into the
conserved quantity in eq. (5.60) below. It is therefore irrelevant. &

The fact that the Lagrangian does not change at first order in ¢ means that

AL~ (L0 | OL0i
O_de N Z(@qiae+aqié)e)

oL oL .
= Z (&]K + aqu,) . (5.58)

Using the E-L equation, eq. (5.3), we may rewrite this as

d (0L oL .
0= 2l (G) w5

7

d oL
= = <Z a%KZ) . (5.59)
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Therefore, the quantity

OL

P(a,q) =) @Kz‘(Q) (5.60)

does not change with time. It is given the generic name of conserved momentum.
But it need not have the units of linear momentum. m

As Noether most keenly observed

(And for which much acclaim is deserved),
We can easily see,

That for each symmetry,

A quantity must be conserved.

Example 1: Consider the Lagrangian in the above remark, L = (m/2)(5i? — 249 +
29%) + C(2z — y). We saw that K, = 1 and K, = 2. The conserved momentum is
therefore

. oL oL
P(x’yaxay) = 7Kw+

5 1ot 5 Ky = m(5 =) (1) +m(—-+2)(2) = m(3¢+3)). (5.61)

The overall factor of 3m doesn’t matter, of course.

Example 2: Consider a thrown ball. We have L = (m/2)(i? 4+ 92 + 22) —mgz. This
is invariant under translations in z, that is, z — x + €; and also under translations in
y, that is, y — y + €. (Both x and y are cyclic coordinates.) Note that we only need
invariance to first order in e for Noether’s theorem to hold, but this L is invariant to
all orders.

We therefore have two symmetries in our Lagrangian. The first has K, =1, K, =0,
and K, = 0. The second has K, =0, Ky, = 1, and K, = 0. Of course, the nonzero
K;’s here may be chosen to be any constant, but we may as well pick them to be 1.
The two conserved momenta are

oL OL oL

Pl(xvyaz7j;7yv2) = %K;C_Faiy[(y“‘&[(z = ma,
o oL . oL .. oL ,
Pg(l',y, Z, T, Y, Z) = %Kx + @Ky + &KZ = my. (562)

These are simply the x- and y-components of the linear momentum, as we saw in
Example 1 in Section 5.5.1.

Note that any combination of these momenta, say 3P, + 8P, is also conserved. (In
other words, x — x + 3¢, y — y + 8¢, 2 — z is a symmetry of the Lagrangian.) But
the above P; and P, are the simplest conserved momenta to choose as a “basis” for
the infinite number of conserved momenta (which is how many you have, if there are
two or more independent symmetries).

Example 3: Consider a mass on a spring, with zero equilibrium length, in the z-y
plane. The Lagrangian, L = (m/2)(i? + ¢?) — (k/2)(2? + y?), is invariant under the
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change of coordinates, x — = + ey, y — y — ex, to first order in € (as you can check).

So we have K, =y and K,, = —z. The conserved momentum is therefore
oL oL

This is simply the (negative of the) z-component of the angular momentum. The
angular momentum is conserved here because the potential, V (z,y) = 22 + y? = r?,
depends only on the distance from the origin; we’ll discuss such potentials in Chapter

6.

In contrast with the first two examples above, the x — = + ey, y — y — ex transfor-
mation isn’t so obvious here. How did we get this? Well, unfortunately there doesn’t
seem to be any fail-proof method of determining the K;’s in general, so sometimes
you just have to guess around, as was the case here. But in many problems, the K;’s
are simple constants which are easy to see.

REMARKS:

1. As we saw above, in some cases the K;’s are functions of the coordinates, and in some
cases they are not.

2. The cyclic-coordinate result in eq. (5.48) is a special case of Noether’s theorem, for
the following reason. If L doesn’t depend on a certain coordinate g, then ¢ — g +e€
is certainly a symmetry. Hence K} = 1 (with all the other K;’s equal to zero), and
eq. (5.60) reduces to eq. (5.48).

3. We use the word “symmetry” to describe the situation where the transformation in eq.
(5.57) produces no first-order change in the Lagrangian. This is an appropriate choice
of word, because the Lagrangian describes the system, and if the system essentially
doesn’t change when the coordinates are changed, then we say that the system is
symmetric. For example, if we have a setup that doesn’t depend on 6, then we say
that the setup is symmetric under rotations. Rotate the system however you want,
and it looks the same. The two most common applications of Noether’s theorem are
the conservation of angular momentum, which arises from symmetry under rotations;
and conservation of linear momentum, which arises from symmetry under translations.

4. In simple systems, as in Example 2 above, it is clear why the resulting P is conserved.
But in more complicated systems, as in Example 1 above (which has an L of the
type that arises in Atwood’s machine problems; see Exercise 11 and Problem 9), the
resulting P might not have an obvious interpretation. But at least you know that it
is conserved, and this will invariably help in solving a problem.

5. Although conserved quantities are extremely useful in studying a physical situation,
it should be stressed that there is no more information contained in the them than
there is in the E-L equations. Conserved quantities are simply the result of integrating
the E-L equations. For example, if you write down the E-L equations for Example 1
above, and then add the “a” equation (which is 5mi — mg = 2C) to twice the “y”
equation (which is —m& 4 2mg = —C), then you find 3m(& + §) = 0. In other words,
3m(x + g) is constant, as we found from Noether’s theorem.

Of course, you might have to do some guesswork to find the proper combination of

the E-L equations that gives a zero on the right-hand side. But you’d have to do
some guesswork anyway, to find the symmetry for Noether’s theorem. At any rate, a
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conserved quantity is useful because it is an integrated form of the E-L equations. It
puts you one step closer to solving the problem, compared to where you would be if
you started with the second-order E-L equations.

6. Does every system have a conserved momentum? Certainly not. The one-dimensional
problem of a falling ball (mz = —mg) doesn’t have one. And if you write down an
arbitrary potential in 3-D, odds are that there won’t be one. In a sense, things have
to contrive nicely for there to be a conserved momentum. In some problems, you can
just look at the physical system and see what the symmetry is, but in others (for
example, in the Atwood’s-machine problems for this chapter), the symmetry is not at
all obvious.

7. By “conserved quantity”, we mean a quantity that depends on (at most) the coor-
dinates and their first derivatives (that is, not on their second derivatives). If we
do not make this restriction, then it is trivial to construct quantities that do not

vary with time. For example, in Example 1 above, the “z” E-L equation (which is
5mi — my = 2C) tells us that 5m& — mg has its time derivative equal to zero. Note
that an equivalent way of excluding these trivial cases is to say that the value of a
conserved quantity depends on initial conditions (that is, velocities and positions).
The quantity 5mi — my does not satisfy this criterion, because its value is always

constrained to be 2C. &

5.7 Small oscillations

In many physical systems, a particle undergoes small oscillations around an equilib-
rium point. In Section 4.2, we showed that the frequency of these small oscillations
is
"
w= Vi) , (5.64)
m
where V' (x) is the potential energy, and x( is the equilibrium point.

However, this result holds only for one-dimensional motion (we will see below
why this is true). In more complicated systems, such as the one described below, it
is necessary to use another procedure to obtain the frequency w. This procedure is
a fail-proof one, applicable in all situations. It is, however, a bit more involved than
simply writing down eq. (5.64). So in one-dimensional problems, eq. (5.64) is still
what you want to use.

We'll demonstrate our fail-proof method through the following problem.

Problem: A mass m is free to move on a frictionless table and is connected by a
string, which passes through a hole in the table, to a mass M which hangs below (see
Fig. 5.5). Assume that M moves in a vertical line only, and assume that the string
always remains taut.

(a) Find the equations of motion for the variables r and 6 shown in the figure.

(b) Under what condition does m undergo circular motion?

(c) What is the frequency of small oscillations (in the variable r) about this circular
motion?

V\m

L -

D -

K

M

Figure 5.5
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Solution:

(a)

Let the string have length ¢ (this length won’t matter). Then the Lagrangian
(we'll call it “L” here, to save “L” for the angular momentum, which arises
below) is
1 1 .

L= §M7'“2 + §m(7'“2 +720%) + Mg(L —r). (5.65)
For the purposes of the potential energy, we’ve taken the table to be at height
zero, but any other value could be chosen, of course. The equations of motion
obtained from varying 6 and r are

d, o
dt(mr ) = 0,
(M +m)i = mré?> — Mg. (5.66)

The first equation says that angular momentum is conserved (much more about
this in Chapter 6). The second equation says that the Mg gravitational force
accounts for the acceleration of the two masses along the direction of the string,
plus the centripetal acceleration of m.

The first of egs. (5.66) says that mr20 = L, where L is some constant (the
angular momentum) which depends on the initial conditions. Plugging 6 =
L/mr? into the second of eqs. (5.66) gives

2

L

Circular motion occurs when 7 = # = 0. Therefore, the radius of the circular
orbit is given by

L2
3
ry = . 5.68
O M mg ( )
REMARK: Note that since L = mr26, eq. (5.68) is equivalent to
mrof® = Mg, (5.69)

which can be obtained by simply letting # = 0 in the second of egs. (5.66). In other
words, the gravitational force on M exactly accounts for the centripetal acceleration
of m if the motion is circular. Given 7o, eq. (5.69) determines what 6 must be (in
order to have circular motion), and vice versa. &

To find the frequency of small oscillations about the circular motion, we need
to look at what happens to r if we perturb it slightly from its equilibrium value,
ro. Our fail-proof procedure is the following.

Let r(t) = ro + d(t), where 0(t) is very small (more precisely, 6(t) < rg), and
expand eq. (5.67) to first order in §(¢). Using

1__1 1 ! ~ (o (5.70)
" (rg+0)3 - 8 +3r2s  r3(1+36/ro) - 3 ro /)’ ’
we obtain 2 5
. 3
(M +m)o ~ v (1 - 7”0) — Mg. (5.71)

The terms not involving ¢ on the right-hand side cancel, by the definition of rg
given in eq. (5.68). This cancellation will always occur in such a problem at
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this stage, due to the definition of the equilibrium point. We are therefore left

with 2
. 3
1) — )5 =0. 72
+((M—i—m)mré) 0 (5.72)

This is a good old simple-harmonic-oscillator equation in the variable §. There-
fore, the frequency of small oscillations about a circle of radius r is

,/M+mmr0 \/ +m\/> (5.73)

where we have used eq. (5.68) to eliminate L in the second expression.

To sum up, the above frequency is the frequency of small oscillations in the
variable r. In other words, if you plot r as a function of time (and ignore what
0 is doing), then you will get a nice sinusoidal graph whose frequency is given
by eq. (5.73), provided that that amplitude is small. Note that this frequency
need not have anything to do with the other relevant frequency in this problem,
namely the frequency of the circular motion, which is /Mg/mrg, from eq.
(5.69).

REMARKS: Let’s look at some limits. For a given 7o, if m > M, then w =
\/3Mg/mro ~ 0. This makes sense, because everything will be moving very slowly.

Note that this frequency is equal to v/3 times the frequency of circular motion, /Mg /mro,
which isn’t at all obvious.

For a given 1o, if m < M, then w & 1/3g/ro, which isn’t so obvious, either.

Note that the frequency of small oscillations is equal to the frequency of circular motion

if M = 2m (once again, not obvious). This condition is independent of 9. &

The above procedure for finding the frequency of small oscillations may be
summed up in three steps: (1) Find the equations of motion, (2) Find the equi-
librium point, and (3) Let z(t) = xo + 0(t), where zg is the equilibrium point of the
relevant variable, and expand one of the equations of motion (or a combination of
them) to first order in 4, to obtain a simple-harmonic-oscillator equation for 4.

REMARK: Note that if you simply used the potential energy in the above problem
(which is Mgr, up to a constant) in eq. (5.64), then you would obtain a frequency of zero,
which is incorrect. You can use eq. (5.64) to find the frequency, if you instead use the
“effective potential” for this problem, namely L?/(2mr?) + Mgr, and if you use the total
mass, M + m, as the mass in eq. (5.64), as you can check. The reason why this works will
become clear in Chapter 6 when we introduce the effective potential.

In many problems, however, it is not obvious what “modified potential” should be used,
or what mass should be used in eq. (5.64), so it is generally much safer to take a deep breath
and go through an expansion similar to the one in part (c) above. &

The one-dimensional result in eq. (5.64) is, of course, simply a special case
of our above expansion procedure. We can repeat the derivation of Section 4.2

in the present language. In one dimension, we have mi = —V'(x). Let 2y be
the equilibrium point (so that V’(xg) = 0), and let z(t) = o + 0(t). Expanding
mi = —V'(x) to first order in §, we have mo = —V'(xg) — V"(x9)d — ---. Hence,

mod ~ —V" ()0, as desired.
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5.8 Other applications

The formalism developed in Section 5.2 works for any function L(x, &,t). If our goal
is to find the stationary points of S = [ L, then eq. (5.14) holds, no matter what L
is. There is no need for L to be equal to T'— V, or indeed, to have anything to do
with physics. And t need not have anything to do with time. All that is required
is that the quantity x depend on the parameter ¢, and that L depend on only z, &,
and t (and not, for example, on #; see Exercise 6). The formalism is very general
and powerful, as the following example demonstrates.

Example (Minimal surface of revolution): A surface of revolution has two given
rings as its boundary; see Fig. 5.6. What should the shape of the surface be so that
it has the minimum possible area? We’ll present two solutions. A third is left for
Problem 23.

First solution: Let the surface be generated by rotating the curve y = y(z) around
the z-axis. The boundary conditions are y(a;) = ¢; and y(az) = co; see Fig. 5.7.
Slicing the surface up into vertical rings, we see that the area is given by

A :/ 2ny/1+y? dx. (5.74)

The goal is to find the function y(x) that minimizes this integral. We therefore have
exactly the same situation as in Section 5.2, except that x is now the parameter
(instead of t), and y in now the function (instead of x). Our “Lagrangian” is thus
L x yy/1+ 2. To minimize the integral A, we “simply” have to apply the E-L
equation to this Lagrangian. This calculation, however, gets a bit tedious, so we've
relegated it to Lemma 5.5 at the end of this section. For now we’ll just use the result
in eq. (5.83) which gives (with f(y) = y here)

1+y? = By> (5.75)

At this point we can cleverly guess (motivated by the fact that 1 + sinh? z = cosh? z)
that the solution is

y(z) = % coshb(x + d), (5.76)

where b = v/B, and d is a constant of integration. Or, we can separate variables to
obtain (again with b = v/B)

d
dr = ——— (5.77)
(by)* =1
and then use the fact that the integral of 1/v/22 — 1 is cosh™! 2, to obtain the same

result.

The answer to our problem, therefore, is that y(x) takes the form of eq. (5.76), with
b and d determined by the boundary conditions,

1 1
a=g coshb(aj + d), and =7 coshb(az + d). (5.78)

In the symmetrical case where ¢; = co, we know that the minimum occurs in the
middle, so we may choose d =0 and a; = —as.
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REMARK: Solutions for b and d exist only for certain ranges of the a’s and ¢’s. Basically, if
as — a1 is too large, then there is no solution. In this case, the minimal “surface” turns out
to be the two given circles, attached by a line (which isn’t a nice two-dimensional surface).
If you perform an experiment with soap bubbles (which want to minimize their area), and if
you pull the rings too far apart, then the surface will break and disappear as it tries to form
the two circles. Problem 24 deals with this issue. &

Second solution: Consider the curve that we rotate around the z-axis to be de-
scribed now by the function z(y). That is, let = be a function of y. The area is then

given by
as
A= / 2ryy/ 1+ 22 dy, (5.79)

where 2’ = dx/dy. Note that the function x(y) may be double-valued, so it may not
really be a function. But it looks like a function locally, and all of our formalism deals
with local variations.

Our “Lagrangian” is now L o« yv/1 + 2’2, and the E-L equation is

d (0L oL d yx'

el - — — | —=—= )] =0. 5.80

dy (89:’) oz dy <\/1+x/2) ( )
The nice thing about this solution is the “0” on the right-hand side, which arises from
the fact that L does not depend on x (that is, x is a cyclic coordinate). Therefore,

ya'/v/1 4 a2 is constant. If we define this constant to be 1/b, then we may solve for
7' and then separate variables to obtain

do= (5.81)
(by)? —1

in agreement with eq. (5.77). The solution proceeds as above.

Numerous other “extremum” problems are solvable with these general tech-
niques. A few are presented in the problems for this chapter.

Let us now prove the following lemma, which we invoked in the first solution
above. This lemma is very useful, because it is common to encounter problems
where the quantity to be extremized depends on the arclength, v/1 + 32, and takes
the form [ f(y)+/1+ y?dz.

We will give two proofs. The first proof uses the Euler-Lagrange equation. The
calculation gets a bit messy, so it’s a good idea to work through it once and for all,
and then just invoke the result whenever needed. The derivation isn’t something
you’d want to repeat too often. The second proof makes use of a conserved quantity.
And in contrast with the first proof, this method is exceedingly clean and simple.
It actually is something you’d want to repeat quite often. But we’ll still do it once
and for all.

Lemma 5.5 Let f(y) be a given function of y. Then the function y(x) that extrem-

izes the integral,
)
/ fyy1+y?dz, (5.82)

1
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satisfies the differential equation,

1+y” = Bf(y) (5.83)

where B is a constant of integration.

First Proof: Our goal is to find the function y(z) that extremizes the integral in
eq. (5.82). We therefore have exactly the same situation as in Section 5.2, except
with z in place of ¢, and y in place of . Our “Lagrangian” is thus L = f(y)v/1 + ¢'?,
and the Euler-Lagrange equation is

d (0L oL d , 1 ,
= - = — — |y — | = 1+y?2 5.84
where f' = df/dy. We must now perform some straightforward (albeit tedious)

differentiations. Using the product rule on the three factors on the left-hand side,
and making copious use of the chain rule, we obtain

f/y/2 fy// fy’2y” e -
V1+y? * V1+y? N (1+y2)32 ! \/H (5.85)

Multiplying through by (1 + y’2)3/ 2 and simplifying gives
' = a+y?). (5.86)

We have completed the first step of the proof, namely producing the Euler-Lagrange
differential equation. We must now integrate it. Eq. (5.86) happens to be integrable
for arbitrary functions f(y). If we multiply through by 3’ and rearrange, we obtain

y/y// _ f/y/
1+y2 f
Taking the dx integral of both sides gives (1/2)In(1 + y'?) = In(f) + C, where C is
a constant of integration. Exponentiation then gives (with B = €2¢)

1+y” = Bf(y), (5.88)

as we wanted to show. In an actual problem, we would solve this equation for 1/,
and then separate variables and integrate. But we would need to be given a specific
function f(y) to be able do this.

. (5.87)

Second Proof: Note that our “Lagrangian”, L = f(y)/1 + y2, is independent of
x. Therefore, in analogy with the conserved energy given in eq. (5.52), the quantity

_ oL ) (5.89)

E =
oy’ V14 y”?

is independent of z. Call it 1/4/B. Then we have easily reproduced eq. (5.88). m

IMPORTANT REMARK: As demonstrated by the brevity of this second proof, it is highly
advantageous to make use of a conserved quantity (for example, the FE here, which arose
from independence of x) whenever you can. &

12The constant B, and also one other constant of integration (arising when eq. (5.83) is integrated
to solve for y), is determined by the boundary conditions on y(z).
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5.9 Exercises

Section 5.1: The FEuler-Lagrange equations

1.

Three falling sticks sxx

Three massless sticks of length 2r, each with a mass m fixed at its middle,
are hinged at their ends, as shown in Fig. 5.8. The bottom end of the lower
stick is hinged at the ground. They are held such that the lower two sticks
are vertical, and the upper one is tilted at a small angle € with respect to
the vertical. They are then released. At this instant, what are the angular
accelerations of the three sticks? Work in the approximation where € is very
small. (You may want to look at Problem 3 first.)

. Coffee cup and mass **x

A coffee cup of mass M is connected to a mass m by a string. The coffee cup
hangs over a pulley (of negligible size), and the mass m is held horizontally,
as shown in Fig. 5.9. The mass m is released. Find the equations of motion
for r (the length of string between m and the pulley) and 6 (the angle that
the string to m makes with the horizontal). Assume that m somehow doesn’t
run into the string holding the cup up.

The coffee cup will of course initially fall, but it turns out that it will reach a
lowest point and then rise back up. Write a program (see Appendix D) that
numerically determines the ratio of the r at this point to the r at the start,
for a given value of m/M. (To check your program, a value of m/M = 1/10
yields a ratio of about 0.208.)

Section 5.2: The principle of stationary action

3.

Dropped ball *

Consider that action, from ¢t = 0 to ¢ = 1, of a ball dropped from rest.
From the E-L equation (or from F = ma), we know that y(t) = —gt?/2
yields a stationary value of the action. Show explicitly that the function
y(t) = —gt?/2 + et(t — 1) yields an action that has no first-order dependence
on e.

. Second-order change x*

Let z,(t) = zo(t) + af(t). Eq. (5.16) gives the first derivative of the action
with respect to a. Show that the second derivative is

d? t2 (O2L , 0*L . O°L .,
dGQS[ma(t)]—/tl (xﬁ +2 LGt (5.90)

. Explicit minimization x*

A ball is thrown upward. Let y(t) be the height as a function of time, and
assume y(0) = 0 and y(T') = 0. Guess a solution for y of the form y(t) =
ag + ait + ast?, and explicitly calculate the action between t = 0 and ¢t = 7.
Show that the action is minimized when ag = —g/2. (This gets slightly messy.)

Figure 5.8

M

Figure 5.9
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6. & dependence x*x

Let there be & dependence (in addition to x,%,t dependence) in the Lagrangian
in Theorem 5.1. There will then be the additional term (9L/di,)5 in eq.
(5.18). It is tempting to integrate this term by parts twice, and then arrive at
a modified form of eq. (5.21):

oL d /0L d> [ OL
N (R —_ (=) =0. 5.91
dro  di (ag'co) e (am) (5:50)
Is this a valid result? If not, where is the error in its derivation?

Section 5.3: Forces of constraint

7. Constraint on a circle
A bead slides with speed v around a horizontal loop of radius R. What force
does the loop apply to the bead? (Ignore gravity.)

8. Constraint on a curve *x

Let the horizontal plane be the x-y plane. A bead slides with speed v along
a curve described by the function y = f(x). What force does the curve apply
to the bead? (Ignore gravity.)

9. Cartesian coordinates sxx

In eq. (5.34), take two derivatives of the y/z? + y? — R = 0 equation to obtain
R*(wi + yj) — (v§ — yi)* =0, (5.92)

and then combine this with the other two equations to solve for F'. Show that
your result agrees with eq. (5.31).

Section 5.5: Conservation Laws

10. Bead on stick, using F' = ma *

After doing Problem 8, show again that the quantity F is conserved, but now
use F' = ma. Do this is two ways:

(a) Use the first of egs. (2.52). Hint: multiply through by 7.
(b) Use the second of egs. (2.52) to calculate the work done on the bead.

X 11. Atwood’s machine *x
Sm
Consider the Atwood’s machine shown in Fig. 5.10. The masses are 5m, 4m,
y and 2m. Let z and y be the heights of the left two masses, relative to their
4m 2m initial positions. Use Noether’s Theorem to find the conserved momentum.

Figure 5.10 (The solution to Problem 9 gives some other methods, too.)
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5.10 Problems

Section 5.1: The FEuler-Lagrange equations

1.

Moving plane *x

A block of mass m is held motionless on a frictionless plane of mass M and
angle of inclination 6 (see Fig. 5.11). The plane rests on a frictionless hori-
zontal surface. The block is released. What is the horizontal acceleration of
the plane? (This problem already showed up as Problem 2.2. If you haven’t
already done so, try solving it using F' = ma. You will then have a greater
appreciation for the Lagrangian method.)

. Two masses, one swinging xx

Two equal masses, m, connected by a string, hang over two pulleys (of negli-
gible size), as shown in Fig. 5.12. The left one moves in a vertical line, but
the right one is free to swing back and forth (in the plane of the masses and
pulleys). Find the equations of motion for r and 6, as shown.

Assume that the left mass starts at rest, and the right mass undergoes small
oscillations with angular amplitude e (with e < 1). What is the initial average
acceleration (averaged over a few periods) of the left mass? In which direction
does it move?

. Two falling sticks *x*

Two massless sticks of length 2r, each with a mass m fixed at its middle, are
hinged at an end. One stands on top of the other, as shown in Fig. 5.13. The
bottom end of the lower stick is hinged at the ground. They are held such
that the lower stick is vertical, and the upper one is tilted at a small angle e
with respect to the vertical. They are then released. At this instant, what are
the angular accelerations of the two sticks? Work in the approximation where
€ is very small.

. Pendulum with an oscillating support *x

A pendulum consists of a mass m and a massless stick of length £. The pendu-
lum support oscillates horizontally with a position given by z(t) = A cos(wt)
(see Fig. 5.14). Calculate the angle of the pendulum as a function of time.

. Inverted pendulum #xxx

A pendulum consists of a mass m at the end of a massless stick of length .
The other end of the stick is made to oscillate vertically with a position given
by y(t) = Acos(wt), where A < ¢. See Fig. 5.15. It turns out that if w is
large enough, and if the pendulum is initially nearly upside-down, then it will
surprisingly not fall over as time goes by. Instead, it will (sort of) oscillate
back and forth around the vertical position.

Figure 5.11

m

Figure 5.13

m

Figure 5.14

|

Figure 5.15




4dm

3m

Figure 5.16

Figure 5.17

V-30

CHAPTER 5. THE LAGRANGIAN METHOD

Find the equation of motion for the angle of the pendulum (measured relative
to its upside-down position). And explain why the pendulum doesn’t fall over,
and find the frequency of the back and forth motion.

Section 5.2: The principle of stationary action

6.

Minimum or saddle *x

(a) In eq. (5.25), let t; = 0 and to = T, for convenience. And let £(¢) be an
easy-to-deal-with “triangular” function, of the form

et/T, 0<t<T/2,
) = { e({ —t/T), T/2 <t g/T. (5.93)

Under what conditions is the harmonic-oscillator AS in eq. (5.25) nega-
tive?

(b) Answer the same question, but now with £(t) = esin(nt/T).

Section 5.3: Forces of constraint

7.

Normal force from a plane xx

A mass m slides down a frictionless plane that is inclined at angle 6. Show,
using the method in Section 5.3, that the normal force from the plane is the
familiar mg cos 6.

Section 5.5: Conservation Laws

8.

Bead on a stick *

A stick is pivoted at the origin and is arranged to swing around in a horizontal
plane at constant angular speed w. A bead of mass m slides frictionlessly along
the stick. Let r be the radial position of the bead. Find the conserved quantity
E given in eq. (5.52). Explain why this quantity is not the energy of the bead.

Section 5.6: Noether’s Theorem

9.

Atwood’s machine xx

Consider the Atwood’s machine shown in Fig. 5.16. The masses are 4m, 3m,
and m. Let x and y be the heights of the left and right masses, relative to
their initial positions. Find the conserved momentum.

Section 5.7: Small oscillations

10.

Hoop and pulley *x*

A mass M is attached to a massless hoop (of radius R) which lies in a vertical
plane. The hoop is free to rotate about its fixed center. M is tied to a string
which winds part way around the hoop, then rises vertically up and over a
massless pulley. A mass m hangs on the other end of the string (see Fig. 5.17).
Find the equation of motion for the angle of rotation of the hoop. What is
the frequency of small oscillations? Assume that m moves only vertically, and
assume M > m.
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11.

12.

13.

14.

15.

Bead on a rotating hoop *x

A bead is free to slide along a frictionless hoop of radius R. The hoop rotates
with constant angular speed w around a vertical diameter (see Fig. 5.18).
Find the equation of motion for the position of the bead. What are the
equilibrium positions? What is the frequency of small oscillations about the
stable equilibrium?

There is one value of w that is rather special. What is it, and why is it special?

Another bead on a rotating hoop *x

A bead is free to slide along a frictionless hoop of radius . The plane of the
hoop is horizontal, and the center of the hoop travels in a horizontal circle of
radius R, with constant angular speed w, about a given point (see Fig. 5.19).
Find the equation of motion for the position of the bead. Also, find the
frequency of small oscillations about the equilibrium point.

Rotating curve sxx

The curve y(z) = b(x/a)® is rotated around the y-axis with constant fre-
quency w (see Fig. 5.20). A bead moves frictionlessly along the curve. Find
the frequency of small oscillations about the equilibrium point. Under what
conditions do oscillations exist? (This problem gets a little messy.)

Mass on a wheel *x

A mass m is fixed to a given point on the edge of a wheel of radius R. The
wheel is massless, except for a mass M located at its center (see Fig. 5.21).
The wheel rolls without slipping on a horizontal table. Find the equation of
motion for the angle through which the wheel rolls. For the case where the
wheel undergoes small oscillations, find the frequency.

Double pendulum sk

Consider a double pendulum made of two masses, m; and mg, and two rods
of lengths ¢; and /5 (see Fig. 5.22). Find the equations of motion.

For small oscillations, find the normal modes and their frequencies for the
special case ¢1 = {2 (and consider the cases m; = mgo, m; > mg, and m; <
mz). Do the same for the special case m; = my (and consider the cases {1 = {3,
01> ly, and 01 < {3).

S

Figure 5.18

(top view)

Figure 5.19
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Figure 5.20

Figure 5.21
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Figure 5.22
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Pendulum with a free support xx

A mass M is free to slide along a frictionless rail. A pendulum of length ¢ and
mass m hangs from M (see Fig. 5.23). Find the equations of motion. For
small oscillations, find the normal modes and their frequencies.

Pendulum support on an inclined plane x*x

A mass M is free to slide down a frictionless plane inclined at angle 8. A
pendulum of length ¢ and mass m hangs from M (see Fig. 5.24). Find the
equations of motion. For small oscillations, find the normal modes and their
frequencies.

Tilting plane *¥x

A mass M is fixed at the right-angled vertex where a massless rod of length
¢ is connected to a very long massless rod (see Fig. 5.25). A mass m is free
to move frictionlessly along the long rod. The rod of length £ is hinged at a
support, and the whole system is free to rotate, in the plane of the rods, about
the support.

Let 6 be the angle of rotation of the system, and let x be the distance between
m and M. Find the equations of motion. Find the normal modes when 6 and
x are both very small.

Motion in a cone %

A particle slides on the inside surface of a frictionless cone. The cone is fixed
with its tip on the ground and its axis vertical. The half-angle at the tip is «
(see Fig. 5.26). Let r(t) be the distance from the particle to the axis, and let
0(t) be the angle around the cone. Find the equations of motion.

If the particle moves in a circle of radius rg, what is the frequency, w, of this
motion? If the particle is then perturbed slightly from this circular motion,
what is the frequency, €2, of the oscillations about the radius r9? Under what
conditions does 2 = w?

Section 5.8: Other applications

20.

21.

Shortest distance in a plane

In the spirit of Section 5.8, show that the shortest path between two points in
a plane is a straight line.

Index of refraction **

Assume that the speed of light in a given slab of material is proportional to
the height above the base of the slab.'® Show that light moves in circular arcs
in this material; see Fig. 5.27. You may assume that light takes the path of
least time between two points (Fermat’s principle of least time).

131n other words, the index of refraction of the material, n, as a function of the height, y, is given

by n(y

) = yo/y, where yo is some length that is larger than the height of the slab.



5.10. PROBLEMS V-33

22.

23.

24.

The brachistochrone *xx

A bead is released from rest at the origin and slides down a frictionless wire
that connects the origin to a given point, as shown in Fig. 5.28. You wish to
shape the wire so that the bead reaches the endpoint in the shortest possible
time. Let the desired curve be described by the function y(z), with downward
taken to be positive. Show that y(z) satisfies

C
1+y? = e (5.94)

where C is a constant. Show that x and y may be written as
r =a(f —sinb), y =a(l —cosb). (5.95)

This is the parametrization of a cycloid, which is the path taken by a point
on the edge of a rolling wheel.

Minimal surface *x*

Derive the shape of the minimal surface discussed in Section 5.8, by demanding
that a cross-sectional “ring” (that is, the region between the planes z = x;
and x = x9) is in equilibrium; see Fig. 5.29. Hint: The tension must be
constant throughout the surface.

Existence of a minimal surface

Consider the minimal surface from Section 5.8, and look at the special case
where the two rings have the same radius (see Fig. 5.30). Let 2¢ be the distance
between the rings. What is the largest value of ¢/r for which a minimal surface
exists? You will have to solve something numerically here.

Figure 5.28

p%)

Figure 5.29

Figure 5.30
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5.11 Solutions

— 1. Moving plane
x
: Let x1 be the horizontal coordinate of the plane (with positive x; to the left), and

0 let x2 be the horizontal coordinate of the block (with positive z3 to the right); see

Fig. 5.31. The relative horizontal distance between the plane and the block is x1 + 2,
Figure 5.31 so the height fallen by the block is (z1 + x2) tan 6. The Lagrangian is therefore

1 1
L= M+ 5m(j;g + (i1 + d2)? tan? 9) + mg(z1 + 22) tan 6. (5.96)

The equations of motion obtained from varying z; and xo are

Miy +m(&, + #2)tan?0 = mgtand,
mdo + m(E1 + I2) tan’?0 = mgtan6. (5.97)

Note that the difference of these two equations immediately yields conservation of
momentum, Miy —mis = 0= (d/dt)(Mi1 — mi2) = 0. Egs. (5.97) are two linear
equations in the two unknowns, #; and Zs, so we can solve for Z;. After a little

simplification, we arrive at
mg sin 6 cos 0
iy = JERTEOR (5.98)
M + msin“ 6
For some limiting cases, see the remark in the solution to Problem 2.2.

2. Two masses, one swinging

With r and 8 being the distance from the swinging mass to the pulley, and the angle
of the swinging mass, respectively, the Lagrangian is
Lo 1 o 24
L= Smr + im(r + r°0%) — mgr + mgr cos 6. (5.99)
The last two terms are the (negatives of the) potentials of each mass, relative to where
they would be if the right mass were located at the right pulley. The equations of
motion obtained from varying r and 6 are

2% = r0?— g(1 - cosb),
d .
—(r?0) = —grsiné. (5.100)
dt
The first equation deals with the forces and accelerations along the direction of the
string. The second equation equates the torque from gravity with the change in
angular momentum of the right mass.
If we do a (coarse) small-angle approximation and keep only terms up to first order
in @, we find that at ¢ = 0 (using the initial condition, 7 = 0), egs. (5.100) become

io= 0,
i+%9 = o. (5.101)
T

These say that the left mass stays still, and the right mass behaves just like a pendu-
lum.

If we want to find the leading term in the initial acceleration of the left mass (that
is, the leading term in 7), we need to be a little less coarse in our approximation. So
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let’s keep terms in eq. (5.100) up to second order in . We then have at ¢t = 0 (using
the initial condition, 7 = 0)

L1
% = 12— _gh?
T T 2g s

é)’+%9 - o (5.102)

The second equation still says that the right mass undergoes harmonic motion. We
are told that the amplitude is €, so we have

0(t) = ecos(wt + ¢), (5.103)

where w = 1/g/r. Plugging this into the first equation gives
. 2 .2 1 2
2F = e°g (sm (wt+ ¢) — 5 cos (wt + ¢)) . (5.104)

If we average this over a few periods, both sin? & and cos® @ average to 1/2, so we
find

2
Favg = —2. (5.105)
8
This is a small second-order effect. It is positive, so the left mass slowly begins to
climb.

Two falling sticks

Let 61(t) and 05(t) be defined as in Fig. 5.32. Then the position of the bottom
mass in cartesian coordinates is (rsin 6y, 7 cos 61), and the position of the top mass is
(2rsinfy — rsin by, 2r cos 01 + rcosfy). So the potential energy of the system is

V(61,02) = mgr(3cosfy + cosbs). (5.106)

The kinetic energy is somewhat more complicated. The kinetic energy of the bottom
mass is simply mr26? /2. Taking the derivative of the top mass’s position given above,
we find that the kinetic energy of the top mass is

%mr2 ((2 cos 0107 — cos 9292)2 + (—2sin 0,0, — sin 9292)2) . (5.107)
We can simplify this, using the small-angle approximations. The terms involving
sin @ will be fourth order in the small 6’s, so we may neglect them. Also, we may
approximate cosf by 1, because this entails dropping only terms of at least fourth
order. So the top mass’s kinetic energy becomes (1/2)mr?(20; —6)2. In retrospect, it
would have been easier to obtain the kinetic energies of the masses by first applying the
small-angle approximations to the positions, and then taking the derivatives to obtain
the velocities. This strategy will show that both masses move essentially horizontally
(initially). You will probably want to use this strategy when solving Exercise 1.

Using the small-angle approximation cos# ~ 1 — §2/2 to rewrite the potential energy
in eq. (5.106), we have

1 . . . 1
L~ smr (59% — 46165 + 93) — mgr (4 - ge% - 293) . (5.108)

Figure 5.32
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The equations of motion obtained from varying 6; and 6, are, respectively,

50, — 26, = Bﬁal
T
90, + 0y = gerz. (5.109)
At the instant the sticks are released, we have 6; = 0 and 6, = . Solving egs. (5.109)
x(?) for 6, and 60, gives
> .92 . 5
bi==5  ad b= (5.110)

4. Pendulum with an oscillating support
Let 6 be defined as in Fig. 5.33. With z(t) = A cos(wt), the position of the mass m
is given by
(X,Y)m = (z+ {sin6, —L cos0). (5.111)

The square of the speed is
Figure 5.33 V2 = 120% + i + 2020 cos 0. (5.112)

The Lagrangian is therefore

1 . .
L= 5m(€292 + 4% + 2026 cos 0) + mgl cos 6. (5.113)

The equation of motion obtained from varying 6 is

dt
—  lf+icos® = —gsinb. (5.114)

(ml?0 +mlicos) = —mlifsinh —mglsin b

Plugging in the explicit form of z(t), we have
06 — Aw? cos(wt) cos @ + gsin 6 = 0. (5.115)

This makes sense. Someone in the frame of the support (which has horizontal acceler-
ation & = — Aw? cos(wt)) may as well be living in a world where the acceleration from
gravity has a component g downward and a component Aw? cos(wt) to the right. Eq.
(5.122) is simply the F' = ma equation in the tangential direction in this accelerating
world.

A small-angle approximation in eq. (5.115) gives

0 + wib = aw?

cos(wt), (5.116)
where wyg = 1/g/f and a = A/¢. This equation is simply that of a driven oscillator,
which we solved in Chapter 3. The solution is

aw2

0(t) = —— cos(wt) + C cos(wot + ¢), (5.117)

— 2
wy —w

where C and ¢ are determined by the initial conditions.

If w happens to equal wy, then the amplitude becomes large. Eq. (5.117) would seem
to suggest that the amplitude actually goes to infinity in this case. But as soon as
the amplitude becomes large, our small-angle approximation breaks down, and egs.
(5.116) and (5.117) are no longer valid.
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Inverted pendulum

Let 0 be defined as in Fig. 5.34. With y(¢) = A cos(wt), the position of the mass m
is given by
(X,Y) = (Lsinb,y + L cosb). (5.118)

Taking the derivatives of these coordinates, we see that the square of the speed is
V2= X%+ Y?%=1%0% 4 % — 2090 sin 6. (5.119)
The Lagrangian is therefore
L= %m(€292 + 1% — 2050 sin 0) — mg(y + £ cosh). (5.120)

The equation of motion for 6 is

d (0L oL s :
T (86) =% = 00 — jjsin® = gsin 6. (5.121)

Plugging in the explicit form of y(t), we have
0 + sin 9<Aw2 cos(wt) — g) =0. (5.122)

In retrospect, this makes sense. Someone in the reference frame of the support,
which has acceleration §j = —Aw? cos(wt), may as well be living in a world where the
acceleration from gravity is ¢ — Aw? cos(wt) downward. Eq. (5.122) is simply the
F = ma equation in the tangential direction in this accelerated frame.

Assuming 6 is small, we may set sinf ~ 6, which gives
0+ 9(aw2 cos(wt) — w%) =0, (5.123)

where wy = /g/¢, and a = A/l. Eq. (5.123) cannot be solved exactly, but we can
still get a good idea of how 6 depends on time. We can do this both numerically and
(approximately) analytically.

The figures below show how 6 depends on time for parameters with values ¢ = 1m,
A =01m, and g = 10m/s? (so a = 0.1, and w? = 10s72). In the first plot,
w = 10s~!. And in the second plot, w = 100s~!. The stick falls over in first case,
but undergoes oscillatory motion in the second case. Apparently, if w is large enough
the stick will not fall over.

theta theta
1.75 01
1.5 0.05
1.25
|
0.75 02\ 04 06/08 1 12\ 14
0.5 0.05
0.25
0.1

02 04 06 08 1 12 14

I ()

Figure 5.34
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Let’s now explain this phenomenon analytically. At first glance, it’s rather surprising
that the stick stays up. It seems like the average (over a few periods of the w oscil-
lations) of the tangential acceleration in eq. (5.123), namely —6(aw? cos(wt) — wd),
equals the positive quantity fw3, because the cos(wt) term averages to zero (or so it
appears). So you might think that there is a net force making 6 increase, causing the
stick fall over.

The fallacy in this reasoning is that the average of the —aw?6 cos(wt) term is not zero,
because 6 undergoes tiny oscillations with frequency w, as seen below. Both of these
plots have a = 0.005, w3 = 10572, and w = 1000s~! (we’ll work with small a and
large w from now on; more on this below). The second plot is a zoomed-in version of
the first one near ¢t = 0.

theta theta
0.1
0.05 0.0995
t 0.099
2 4 6 8
0.05 0.0985
0.098
0.1

The important point here is that the tiny oscillations in € shown in the second plot
are correlated with cos(wt). It turns out that the 6 value at the ¢ where cos(wt) =1
is larger than the 6 value at the ¢ where cos(wt) = —1. So there is a net negative
contribution to the —aw? cos(wt) part of the acceleration. And it may indeed be
large enough to keep the pendulum up, as we will now show.

To get a handle on the —aw?@ cos(wt) term, let’s work in the approximation where w
is large and a = A/( is small. More precisely, we will assume a < 1 and aw? > w?,
for reasons we will explain below. Look at one of the little oscillations in the second of
the above plots. These oscillations have frequency w, because they are due simply to
the support moving up and down. When the support moves up, ¢ increases; and when
the support moves down, 6 decreases. Since the average position of the pendulum
doesn’t change much over one of these small periods, we can look for an approximate
solution to eq. (5.123) of the form

0(t) ~ C' + bceos(wt), (5.124)

where b < C. C will change over time, but on the scale of 1/w it is essentially
constant, if a = A/¢ is small enough.

Plugging this guess for 6 into eq. (5.123), and using a < 1 and aw? > w3, we find
that —bw? cos(wt) + Caw? cos(wt) = 0, to leading order.'* So we must have b = aC.

'4The reasons for the a < 1 and aw® > w? qualifications are the following. If aw? > wg, then
the aw? cos(wt) term dominates the wg term in eq. (5.123). The one exception to this is when
cos(wt) = 0, but this occurs for a negligibly small amount of time if aw?® > wi. If a < 1, then
we can legally ignore the €' term when eq. (5.124) is substituted into eq. (5.123). We will find
below, in eq. (5.126), that our assumptions lead to c being roughly proportional to a®w?. Since
the other terms in eq. (5.123) are proportional to aw?, we need a < 1 in order for the C term to be
negligible. In short, a < 1 is the condition under which C' varies slowly on the time scale of 1/w.
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Our approximate solution for @ is therefore
0~ C(l +a cos(wt)). (5.125)

Let’s now determine how C' gradually changes with time. From eq. (5.123), the
average acceleration of 6, over a period T = 27 /w, is

i = _9<aw2 cos(wt) — w%)

Q

_C(l + acos(wt)) (aw2 cos(wt) — wé)

= —C(a%ﬁﬁ(wt) — wg)

= —CO?% (5.126)

2,42
Q:\/a; - (5.127)

But if we take two derivatives of eq. (5.124), we see that 0 simply equals C'. Equating

where

this value of § with the one in eq. (5.126) gives

C(t) +Q*C(t) =~ 0. (5.128)

This equation describes nice simple-harmonic motion. Therefore, C' oscillates sinu-
soidally with the frequency Q given in eq. (5.127). This is the overall back and forth
motion seen in the first of the above plots. Note that we must have aw > 2wy if
this frequency is to be real so that the pendulum stays up. Since we have assumed
a < 1, we see that a?w? > 2w32 implies aw? > w3, which is consistent with our initial
assumption above.

If aw > wy, then eq. (5.127) gives Q ~ aw/v/2. Such is the case if we change the setup
and simply have the pendulum lie flat on a horizontal table where the acceleration
from gravity is zero. In this limit where g is irrelevant, dimensional analysis implies
that the frequency of the C' oscillations must be a multiple of w, because w is the only
quantity in the problem with units of frequency. It just so happens that the multiple

is a/v/2.
Minimum or saddle

(a) For the given £(t), the integrand in eq. (5.25) is symmetric around the midpoint,

S0 we obtain
as = [ (n(z) (G

me2 k2T
2T 24

(5.129)

This is negative if T > 1/12m/k = 2v/3/w. Since the period of the oscillation is
T = 27 /w, we see that T must be greater than (v/3/7)7 in order for AS to be
negative (provided that we are using our triangular function for ¢).
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(b) With £(t) = esin(nt/T), the integrand in eq. (5.25) becomes

AS = % /0 ! <m(€;cos(m/T))2 —k(esin(m/T))2> dt.

me2n?  ke*T

_— 1
AT 1 (5.130)
where we have used the fact that the average value of sin?6@ and cos? @ over
half of a period is 1/2 (or you can just do the integrals). This result for AS is
negative if T > m\/m/k = 7w /w = 7/2, where 7 is the period.

REMARK: It turns out that the £(¢) « sin(nt/T") function gives the best chance of
making AS negative. You can show this by invoking a theorem from Fourier analysis
that says that any function satisfying £(0) = &(T) = 0 can be written as the sum
&(t) = > cnsin(nnt/T), where the ¢, are numerical coefficients. When this sum is
plugged into eq. (5.25), you can show that all the cross terms (terms involving two
different values of n) integrate to zero. Using the fact that the average value of sin® @
and cos® 6 is 1/2, the rest of the integral yields

1 > 2 mm?n?
AS = ch ( 7 k:T) . (5.131)

In order to obtain the smallest value of T' that can make this sum negative, we want
only the n = 1 term to exist. We then have £(t) = cisin(nt/T), and eq. (5.131)
reduces to eq. (5.130), as it should.

As mentioned in Remark 4 in Section 5.2, it is always possible to make AS positive by

picking a £(t) function that is small but wiggles very fast. Therefore, we see that for a
harmonic oscillator, if T > 7/2, then the stationary value of S is a saddle point (some
&’s make AS positive, and some make it negative), but if ' < 7/2, then the stationary
value of S is a minimum (all ¢’s make AS positive). In the latter case, the point is
that T is small enough so that there is no way for £ to get large, without making &
large also. &

Normal force from a plane

First Solution: The most convenient coordinates in this problem are w and z,
where w is the distance upward along the plane, and z is the distance perpendicularly
away from it. The Lagrangian is then

%m(w2 + %) —mg(wsin @ + zcos 0) — V(2), (5.132)

where V(z) is the (very steep) constraining potential. The two equations of motion
are

mw = —mgsinb,

av
z = — 0——. 5.133
mz mg cos » ( )

At this point we invoke the constraint z = 0. So Z = 0, and the second equation gives
F,. = -V'(0) = mgcosb, (5.134)

as desired. We also obtain the usual result, & = —gsin6.
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Second Solution: We can also solve this problem by using the horizontal and
vertical components, z and y. We’ll choose (z,y) = (0,0) to be at the top of the
plane; see Fig. 5.35. The (very steep) constraining potential is V(z), where z =
xsinf + ycosf is the distance from the mass to the plane (as you can verify). The
Lagrangian is then
1

L= 5m(;ic? +92) —mgy — V(2) (5.135)
Keeping in mind that z = xsin 6 + y cos 6, the two equations of motion are (using the
chain rule)

dV 0z

o _ Ay Ye / .
mi = 72 o V'(z)sin 6,

. dV 0z ,
my = —mg— oy —mg — V'(z) cos . (5.136)

At this point we invoke the constraint condition x = —ycot 8 (that is, z = 0). This
condition, along with the two E-L equations, allows us to solve for the three unknowns,
Z, g, and V’'(0). Using & = —gcot 8 in egs. (5.136), we find

Z = gcosfsinb, ijj = —gsin? 6, F.=-V'(0) = mgcos¥. (5.137)

The first two results here are simply the horizontal and vertical components of the
acceleration along the plane.
Bead on a stick

There is no potential energy here, so the Lagrangian simply consists of the kinetic
energy, which comes from the radial and tangential motions:

1 1
L= 5m7'"2 + 5m7‘2w2. (5.138)
Eq. (5.52) therefore gives
1 1
E = 5m7’“2 - §mr2w2. (5.139)

Claim 5.3 says that this quantity is conserved, because dL/0t = 0. But it is not the
energy of the bead, due to the minus sign in the second term.

The point here is that in order to keep the stick rotating at a constant angular speed,
there must be an external force acting it. This force will cause work to be done on
the bead, thereby changing its kinetic energy. The kinetic energy, T', is therefore not
conserved. From the above equations, we see that E = T — mr2w? is the quantity
that is constant in time.

See Exercise 10 for some F' = ma ways to show that the quantity E is conserved.

Atwood’s machine

First solution: If the left mass goes up by x and the right mass goes up by y, then
conservation of string says that the middle mass must go down by x + y. Therefore,
the Lagrangian of the system is

1 . 1 L 1.
L= S(m)i®+ S 6m)(=i = §)* + 5mi® - ((4m)gm +(B3m)g(—z —y) + mgy)
7
= —mi® 4 3may + 2my® — mg(z — 2y). (5.140)

2

Figure 5.35
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This is invariant under the transformation x — x + 2¢ and y — y + €. Hence, we can
use Noether’s theorem, with K, = 2 and K, = 1. The conserved momentum is then

oL oL
P= ?Kx + FKU =m(7z + 39)(2) + m(32 + 49)(1) = m(172 + 10y). (5.141)
& U
This P is constant. In particular, if the system starts at rest, then & always equals
—(10/17)y.
Second solution: The Euler-Lagrange equations are, from eq. (5.140),

Tma + 3my = —mg,
3mi + 4my = 2myg. (5.142)

Adding the second equation to twice the first gives

d
Tmi+ 10mj=0 = = (17ma;~ + 10my) =0. (5.143)

Third solution: We can also solve this problem using F' = ma. Since the tension,
T, is the same throughout the rope, we see that the three F' = dP/dt equations are

dp4m dPSm de

oT — — o —mg = — ™. 144
pr 3mg pra mg = — (5.144)

2T — 4dmg =

The three forces depend on only two parameters, so there will be some combination
of them that adds up to zero. If we set a(2T — 4mg) + b(2T — 3mg) + ¢(2T —mg) = 0,
then we have a + b+ ¢ = 0 and 4a + 3b + ¢ = 0, which is satisfied by a = 2, b = —3,
and ¢ = 1. Therefore,

d
0 = —(2P4, — 3Pz, + Py,
dt( 4 3m + Prm)

%(2(4m)¢ —3(3m)(—d — ) + my')
= %(17m5£ + 10my). (5.145)

Hoop and pulley

Let the radius to M make an angle 6 with the vertical (see Fig. 5.36). Then the
coordinates of M are R(sin, — cos#). The height of m, relative to its position when
M is at the bottom of the hoop, is y = —Rf. The Lagrangian is therefore (and yes,
we’ve chosen a different y = 0 point for each mass, but such a definition only changes
the potential by a constant amount, which is irrelevant)

L= %(M +m)R%0% + MgRcos 6 + mgR0. (5.146)
The equation of motion is then
(M +m)R0 = g(m — M sin6). (5.147)

This is, of course, just F' = ma along the direction of the string (because Mgsin§ is
the tangential component of the gravitational force on M).
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Equilibrium occurs when 6 = 6 = 0. From eq. (5.147), we see that this happens at
sin g = m/M. Letting 0 = 0y + ¢, and expanding eq. (5.147) to first order in d, gives

- M g cos by
————— | §=0. 14
6+<(M+m)R>5 0 (5.148)

The frequency of small oscillations is therefore

McosOy |g M —m\* g
- = = 5.149
TN Mrm VR <M+m> VR’ (5.149)
where we have used cosfy = /1 — sin 62.

REMARKS: If M > m, then 6y ~ 0, and w ~ \/g/R. This makes sense, because m can be
ignored, and M essentially oscillates about the bottom of the hoop, just like a pendulum of
length R.

If M is only slightly greater than m, then 6y =~ 7/2, and w = 0. This also makes sense,
because if § ~ /2, the restoring force g(m — M sin @) does not change much as 6 changes
(the derivative of sinf is zero at 6 = 7/2), so it’s as if we have a pendulum in a weak
gravitational field.

We can actually derive the frequency in eq. (5.149) without doing any calculations. Look at
M at the equilibrium position. The tangential forces on it cancel, and the radially inward
force from the hoop must be Mgcosfy to balance the radial outward component of the
gravitational force. Therefore, for all the mass M knows, it is sitting at the bottom of a
hoop of radius R in a world where gravity has strength g’ = gcos . The general formula for
the frequency of a pendulum (as you can quickly show) is w = 1/ F’/M’R, where F’ is the
gravitational force (which is Mg’ here), and M’ is the total mass being accelerated (which
is M + m here). This gives the w in eq. (5.149). &

Bead on a rotating hoop

Let 6 be the angle that the radius to the bead makes with the vertical (see Fig. 5.37).
Breaking the velocity up into the component along the hoop plus the component
perpendicular to the hoop, we find

1 .
L= §m(w2R2 sin? 0 + R?0%) + mgR cos 6. (5.150)

The equation of motion is then
R = sin(w?Rcos b — g). (5.151)

The F' = ma interpretation of this is that the component of gravity pulling downward
along the hoop accounts for the acceleration along the hoop plus the component of
the centripetal acceleration along the hoop.

Equilibrium occurs when =6 =0. The right-hand side of eq. (5.151) equals zero
when either sinf = 0 (that is, § = 0 or § = 7) or cos = g/(w*R). Since cos § must
be less than or equal to 1, this second condition is possible only if w? > g/R. So we
have two cases:

o If w? < g/R, then § = 0 and 6 = 7 are the only equilibrium points.

The 6 = 7 case is unstable. This is fairly intuitive, but it can also be seen
mathematically by letting 8 = 7+, where 0 is small. Eq. (5.151) then becomes

§—6(w*+g/R)=0. (5.152)

e\

]
1
1
1
1
[N
1
1
1
1
1

Figure 5.37
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The coefficient of § is negative, so this does not admit oscillatory solutions.
The 6 = 0 case turns out to be stable. For small 6, eq. (5.151) becomes

6+6(g/R—w?) =0. (5.153)

The coefficient of 6 is positive, so we have sinusoidal solutions. The frequency
of small oscillations is y/g/R — w?. This goes to zero as w — 1/g/R.

o Ifw? >g/R, then® =0, 6 = 7, and cos fy = g/(w?R) are all equilibrium points.
The 6 = 7 case is again unstable, by looking at eq. (5.152). And the § = 0 case
is also unstable, because the coefficient of 6 in eq. (5.153) is now negative (or
zero, if w? = g/R).

Therefore, cos g = g/(w?R) is the only stable equilibrium. To find the frequency
of small oscillations, let @ = 0y + ¢ in eq. (5.151), and expand to first order in
d. Using cosfy = g/(w?R), we find

6 4 w?sin? 66 = 0. (5.154)
The frequency of small oscillations is therefore wsin 6y = y/w? — g2/ R?w?.

REMARK: This frequency goes to zero as w — +/g/R. And it approximately equals
w as w — oo. This second limit can be viewed in the following way. For very large
w, gravity is not very important, and the bead essentially feels a centripetal force of
mw?R as it moves near § = /2. So for all the bead knows, it is a pendulum of length
R in a world where “gravity” pulls sideways with a force mw?R = mg’. The frequency

of such a pendulum is \/¢’/R = \/w?R/R=w. &

The frequency w = 4/g/R is the critical frequency above which there is a stable
equilibrium at 6 # 0, that is, above which the mass will want to move away from the
bottom of the hoop.

Another bead on a rotating hoop

Let the angles wt and 6 be defined as in Fig. 5.38. Then the cartesian coordinates
for the bead are

(x,y) = (R coswt + rcos(wt + 0), Rsinwt + rsin(wt + 0)) (5.155)
The velocity is then
(x,y) = (—wR sinwt — (w4 6) sin(wt+6), wR cos wt+r(w+0) cos(wt+9)). (5.156)
The square of the speed is therefore
2 = R4 r%(w+60)?
+2Rrw(w + 6) ( sinwt sin(wt 4 0) 4 cos wt cos(wt + 0))
= R%?+r?(w+6)*+ 2Rrw(w + ) cosf (5.157)

There is no potential energy, so the Lagrangian is simply L = mwv?/2. The equation
of motion is then, as you can show,

76 + Rw?sin ) = 0. (5.158)

Equilibrium occurs when 6 =6=0, and so eq. (5.158) tells us that the equilibrium
is located at # = 0, which makes intuitive sense. (Another solution is § = 7, but
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that’s an unstable equilibrium.) A small-angle approximation in eq. (5.158) gives
0+ (R/r)w?0 = 0, so the frequency of small oscillations is = w+/R/r.

REMARKS: If R < r, then Q ~ 0. This makes sense, because the frictionless hoop is
essentially not moving. If R = r, then Q2 = w. If R > r, then Q is very large. In this case,
we can double-check the Q = wy/R/r result in the following way. In the accelerating frame
of the hoop, the bead feels a centrifugal force (discussed in Chapter 9) of m(R + r)w?. For
all the bead knows, it is in a gravitational field with strength ¢’ = (R + r)w?. So the bead
(which acts like a pendulum of length r), oscillates with a frequency equal to

\f \ [ (B r)w? \/> (5.159)

Note that if we try to use this “effective gravity” argument as a double check for smaller

for R>r.

values of R, we get the wrong answer. For example, if R = r, we obtain an oscillation
frequency of wy/2R/r, instead of the correct value w+/R/r. This is because in reality the
centrifugal force fans out near the equilibrium point, while our “effective gravity” argument
assumes that the field lines are parallel (and so it gives a frequency that is too large). &

Rotating curve

The speed along the curve is £41/1 + y'2, and the speed perpendicular to the curve is
wz. So the Lagrangian is

1
L= im(waQ + &2(1 + y’2)> — mgy, (5.160)
where y(z) = b(x/a)*. The equation of motion is then

d (0L oL

Bl B Rt w(1 / 200" = W2r — au. 161

t({?:’r) B = (1 +y?) 4+ %y =’z — gy (5.161)

Equilibrium occurs when & = & = 0, so eq. (5.161) implies that the equilibrium value

of x satisfies ,

g9y (o)
w2

(5.162)

o =

The F' = ma explanation for this is that the component of gravity along the curve
accounts for the component of the centripetal acceleration along the curve. Using
y(z) = b(x/a)*, eq. (5.162) yields

2 2\ 1/(A-2)
2o =a (“A;’b ) . (5.163)

As A\ — oo, we see that xy goes to a. This makes sense, because the curve essentially
equals zero up to a, and then it rises very steeply. You can check numerous other
limits.

Letting = 2o + ¢ in eq. (5.161), and expanding to first order in 4, gives
5(1 + y'(mo)z) = 5(w2 — gy”(wo)). (5.164)
The frequency of small oscillations is therefore

2 gy (z0) — w?
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Using the explicit form of y, along with eq. (5.163), we find
02— (A —2)w?

a?wt [ a2w? 2/(=2) "
1+ 55 (Agb)

(5.166)

We see that A must be greater than 2 in order for there to be oscillatory motion
around the equilibrium point. For A < 2, the equilibrium point is unstable, that is,
to the left the force is inward, and to the right the force is outward.

For the case A\ = 2, the equilibrium condition, eq. (5.162), gives zg = (2gb/a’w?)xo.
For this to be true for some g, we must have w? = 2gb/a®. But if this holds, then
eq. (5.162) is true for all . So in the special case of A = 2, the bead will happily
sit anywhere on the curve if w? = 2gb/a?. (In the rotating frame of the curve, the
tangential components of the centrifugal and gravitational forces exactly cancel at all
points.) If w? # 2gb/a?, then the particle feels a force either always inward or always
outward.

REMARKS: For w — 0, egs. (5.163) and (5.166) give zp — 0 and © — 0. And for w — oo,
they give xo — oo and 2 — 0. In both cases 2 — 0, because in both case the equilibrium
position is at a place where the curve is very flat (horizontally or vertically, respectively), so
the restoring force is very small.

For A — oo, we have 2o — a and 2 — oco. The frequency is large here because the equilibrium
position at a is where the curve has a sharp corner, so the restoring force changes quickly with
position. Or, you can think of it as a pendulum with a very small length (if you approximate
the “corner” by a tiny circle). &

14. Mass on a wheel

Let the angle 6 be defined as in Fig. 5.39, with the convention that 6 is positive if

M is to the right of m. Then the position of m in cartesian coordinates, relative to

. the point where m would be in contact with the ground, is
Figure 5.39

(,y)m = R(0 —sinf,1 — cos9). (5.167)

We have used the non-slipping condition to say that the present contact point is a dis-
tance R to the right of where m would be in contact with the ground. Differentiating
eq. (5.167), we find that the square of m’s speed is vZ, = 2R?6?(1 — cos9).

The position of M is (z,y)n = R(6,1), so the square of its speed is v3, = R202. The
Lagrangian is therefore

1 . .
L= 5MR?a? +mR*6*(1 — cos ) + mgR cos 6, (5.168)

where we have measured both potential energies relative to the height of M. The
equation of motion is

MR?6 4 2mR%6(1 — cos ) + mR262sin § + mgRsin 6 = 0. (5.169)

In the case of small oscillations, we may use cosf ~ 1 — 6?/2 and sinf ~ 6. The
second and third terms above are third order in # and may be neglected, so we find
mg

b+ (M—R) 6= 0. (5.170)
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The frequency of small oscillations is therefore

m /g
w=1/=—4/=. 5.171
MV R ( )
REMARKS: If M > m, then w — 0. This makes sense.

If m > M, then w — oo. This also makes sense, because the huge mg force makes the
situation similar to one where the wheel is bolted to the floor, in which case the wheel
vibrates with a high frequency.

Eq. (5.171) can actually be derived in a much quicker way, using torque (which will be
discussed in Chapter 7). For small oscillations, the gravitational force on m produces a
torque of —mgRA around the contact point on the ground. For small 8, m has essentially no
moment of inertia around the contact point, so the total moment of inertia is simply M R?.
Therefore, 7 = I gives —mgRH = M R?6, from which the result follows. &

Double pendulum

Relative to the pivot point, the cartesian coordinates of m, and ms are, respectively
(see Fig. 5.40),

(z,y)1 = (f1sinfy, —¢1cosb,),
(z,y)2 = (l1sinfy + lysinby, —£1 cosby — £ cos b). (5.172)

Taking the derivative to find the velocities, and then squaring, gives

2 242
vi = 401,

’U% = 6%0% +£%9% +2€1£2é192(€0891 C0892 +sin91 sinﬁg). (5173)
The Lagrangian is therefore
1 . 1 . . .
L= Smbid}+ Sms (@9% + 202 + 201026105 cos(6; — 92))
+my gl cos By + mag(ly cos by + £ cosbs). (5.174)

The equations of motion obtained from varying 6; and 6, are

0 = (m+ mg)@él + maly a6 cos(fy — 602) + mgﬁlﬁgég sin(fy — 605)
+(my + ma)gly sin by,
0 = m2£§(§2 + maly 06, cos(by — 02) — m2€1€29% sin(6, — 02)
+magls sin O5. (5.175)

This is a bit of a mess, but it simplifies greatly if we consider small oscillations. Using
the small-angle approximations and keeping only the leading-order terms, we obtain

0 = (mi+ m2)£1é1 + malafy + (m1 4+ ma)gbh,
0 laby + 16, + gby. (5.176)

Consider now the special case, {1 = {5 = £. We can find the frequencies of the normal
modes by using the determinant method, discussed in Section 3.5. You can show that

the result is
+ 2
N e e .
mi Y4

Figure 5.40
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The normal modes are found to be, after some simplification,

( ZLEQ )i - ( \/% )Cos(wit+¢ﬂ:)~ (5.178)

Some special cases are:

e m1 = msy: The frequencies are

i:\/2i\/§\/§. (5.179)

The normal modes are

( Z;Eg >i = < % )COS(wiHa&)- (5.180)

e my > my: With ma/m; = e, the frequencies are (to leading nontrivial order in

€)
wi = (1+ ﬁ/2)\/i (5.181)

The normal modes are
01(t) [ Fe ‘
( 9;@) )i a ( 1 ) cos(wt + ). (5.182)

In both modes, the upper (heavy) mass essentially stands still, and the lower
(light) mass oscillates like a pendulum of length £.

e my < my: With my/mgy = €, the frequencies are (to leading order in ¢)

wy = 1/ e (5.183)
20
The normal modes are

( 328 )i - ( qcll )COS(Wit+¢i)- (5.184)

In the first mode, the lower (heavy) mass essentially stands still, and the upper
(light) mass vibrates back and forth at a high frequency (because there is a very
large tension in the rods). In the second mode, the rods form a straight line,
and the system is essentially a pendulum of length 2.

Consider now the special case, m; = msy. Using the determinant method, you can
show that the frequencies of the normal modes are

Oy + by £ /03 + 03
wi:\/g\/ ! 2€1€2 1= 2 (5.185)

The normal modes are found to be, after some simplification,

(50). (g )omtetron i

Some special cases are:
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e (1 = ly: We already considered this case above. You show that eqs. (5.185)
and (5.186) agree with egs. (5.179) and (5.180), respectively.

o (1> ly: With £3/¢1 = ¢, the frequencies are (to leading order in ¢)

2
w+:~/7f, w,:,/% (5.187)

( _26 ) cos(wit + dy),

The normal modes are

N———
+
|

) _ <1>cos(w_t+¢_). (5.188)

In the first mode, the masses essentially move equal distances in opposite direc-
tions, at a very high frequency (because ¢ is so small). In the second mode,
the rods form a straight line, and the masses move just like a mass of 2m. The
system is essentially a pendulum of length £.

o (1 < ly: With ¢4/l = ¢, the frequencies are (to leading order in ¢)

wy = \/?, w_ = \/Z (5.189)
) = ( _16 ) cos(wit + ¢4),
+

(t)
(t)
( 328 ) = ( ; )COS(wt+¢)- (5.190)

In the first mode, the bottom mass essentially stands still, and the top mass
oscillates at a very high frequency (because ¢; is so small). The factor of 2 in
the frequency arises because the top mass essentially lives in a world where the
acceleration from gravity is ¢’ = 2g (because of the extra mg force downward
from the lower mass). In the second mode, the system is essentially a pendulum
of length ¢5. The factor of 2 in the angles is what is needed to make the
tangential force on the top mass roughly equal to zero (because otherwise it -
would oscillate at a high frequency, since ¢; is so small). |

The normal modes are

16. Pendulum with a free support |

Let 2 be the coordinate of M, and let 6 be the angle of the pendulum (see Fig. 5.41).
Then the position of the mass m in cartesian coordinates is (x + £sinf, —€cos6).
Taking the derivative to find the velocity, and then squaring to find the speed, gives
v2 = 32 4+ (262 + 2030 cos§. The Lagrangian is therefore

m

1 1 . . Figure 5.41
L= §Md32 + im(jsz + 0202 + 2030 cos 0) + mgl cos . (5.191)

The equations of motion from obtained varying = and 6 are

M +m)i +mbllcosd — meO2sind = 0,
(
0

00+ Fcosf + gsinf = (5.192)



V-50 CHAPTER 5. THE LAGRANGIAN METHOD
If 6 is small, we can use the small angle approximations, cos  ~ 1—6%/2 and sin 0 ~ 6.
Keeping only the terms that are first-order in 6, we obtain

(M +m)i+mtd = 0,
EP+l04+g0 = 0. (5.193)

The first equation expresses momentum conservation. Integrating it twice gives

ml
= — A B. .194
z <M+m>0+ t+ (5.194)

The second equation is F' = ma in the tangential direction. Eliminating Z from egs.

(5.193) gives
. /M
9+< +m> 99— (5.195)

M 1
The solution to this equation is §(t) = C cos(wt + ¢), where

_ m /9
w=\1+ 37" (5.196)

The general solutions for 6 and x are therefore

0(t) = C cos(wt + ¢), x(t) = — Cffn cos(wt + ¢) + At + B. (5.197)

The constant B is irrelevant, so we’ll ignore it. The two normal modes are:

o A =0: In this case, x = —6m{/(M + m). Both masses oscillate with the
frequency w given in eq. (5.196), always moving in opposite directions. The
center of mass does not move.

e C = 0: In this case, 8 = 0 and x = At. The pendulum hangs vertically,
with both masses moving horizontally at the same speed. The frequency of
oscillations is zero in this mode.

REMARKS: If M > m, then w = \/ﬁ, as expected, because the support essentially stays
still.

If m > M, then w — \/m/M\/gW — o0o. This makes sense, because the tension in the
rod is so large. We can actually be quantitative about this limit. For small oscillations and
for m > M, the tension of mg in the rod produces a sideways force of mgd on M. So the
horizontal F' = Ma equation for M is mgfd = Mz, But  ~ —£60 in this limit, so we have
mgl = —M 00, from which the result follows. &

17. Pendulum support on an inclined plane

Let z be the coordinate of M along the plane, and let € be the angle of the pendulum
(see Fig. 5.42). In cartesian coordinates, the positions of M and m are

Figure 5.42 (@ y)y = (zcosf,—= s.in B),
(,9)m = (zcosfB+lsinf, —zsin — Lcosh). (5.198)
Differentiating these positions, we find that the squares of the speeds are
v = 2
52 4 0207 4 2020(cos (3 cos § — sin Fsin 6). (5.199)
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The Lagrangian is therefore

1 . .
§M22 + %m(z'2 + 0262 42020 cos (0 —l—ﬂ)) + Mgzsin f+mg(zsin B+ £ cos ). (5.200)

The equations of motion obtained from varying z and 6 are

(M +m)Z+ mé(é cos(f + B) — % sin(0 + ﬂ)) = (M +m)gsin g,
00+ 3cos(0+pB) = —gsind. (5.201)

Let us now consider small oscillations about the equilibrium point (where 6=0= 0).
We must first determine where this point is. The first equation above gives Z = gsin 3.
The second equation then gives gsin 8 cos(6+3) = —gsinf. By expanding the cosine
term, we find tanf = —tan 3, so 8 = —(3. (0 = = — (3 is also a solution, but this is an
unstable equilibrium.) The equilibrium position of the pendulum is therefore where

the string is perpendicular to the plane.!®
To find the normal modes and frequencies of small oscillations, let § = —(3 + §, and
expand egs. (5.201) to first order in ¢. Letting 7j = Z — gsin 3 for convenience, we
have
(M +m)ij + més = 0,
i+ 05+ (geos )6 = 0. (5.202)

Using the determinant method (or using the method in the previous problem; either
way works), the frequencies of the normal modes are found to be

w =0, and w2:1/1+%,/9‘3(f‘5. (5.203)

These are the same as the frequencies in Problem 16 (where M moves horizontally),
but with gcos 3 in place of g.'® (Compare egs. (5.202) with eqs. (5.193).) Looking
at eq. (5.197), and recalling the definition of 7, we see that the general solutions for
f and z are

0(t) = =5 + Ccos(wt + ¢), z(t) = — C:—nfn cos(wt + ¢) + @tz + At + B.
(5.204)
The constant B is irrelevant, so we’ll ignore it. The basic difference between these
normal modes and the ones in Problem 16 is the acceleration down the plane. If you
go to a frame that accelerates down the plane at gsin 3, and if you tilt your head at
an angle 8 and accept the fact that ¢’ = g cos 8 in your world, then the setup becomes
identical to the one in Problem 16.

15This makes sense. Because the tension in the string is perpendicular to the plane, for all the
pendulum bob knows, it may as well simply be sliding down a plane parallel to the given one, a
distance ¢ away. Given the same initial speed, the two masses will slide down their two “planes”
with equal speeds at all times.

16This makes sense, because in a frame that accelerates down the plane at gsin/3, the only
external force on the masses is an effective gravity force of gcos 8 perpendicular to the plane. As
far as M and m are concerned, they live in a world where gravity pulls “downward” (perpendicular
to the plane) with strength g’ = g cos 3.
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Tilting plane
Relative to the support, the positions of the masses are

(x,y)m = (Usind,—lcosb),
(2,9)m = ({sinf+ xcosh,—Lcosh + xsindh). (5.205)

Differentiating these positions, we find that the squares of the speeds are
03, =020%, WP = (00 + &) + 2202 (5.206)

You can also obtain v2, by noting that (69 + &) is the speed along the long rod, and
x6 is the speed perpendicular to it. The Lagrangian is

L= %M€292 + 1m((ﬂé +i)% + m292) + Mglcosf +mg(Lcosf —xsinf). (5.207)

2
The equations of motion obtained from varying x and 6 are
+i = z0?— gsin, (5.208)
MO+ ml(lf + &) + ma?0 + 2maid = —(M +m)glsinf — mga cos 6.

Let us now consider the case where both = and 6 are small (or more precisely, § < 1
and /¢ < 1). Expanding eqs. (5.208) to first order in 6 and z/{ gives

(h+i)+g0 = 0,
MO(0G + gb) + ml(06 + &) + mgld + mgz = 0. (5.209)

We can simplify these a bit. Using the first equation to substitute —g6 for (£9 + ),
and also —Z for (£0 + g0), in the second equation gives

W+i+g0 = 0,
—Mli+mgx = 0. (5.210)

The normal modes can be found using the determinant method, or we can find
them just by inspection. The second equation says that either z(t) = 0, or z(t) =
Acosh(at + ), where a = \/mg/M{. So we have two cases:

e If 2(t) = 0, then the first equation in (5.210) says that the normal mode is

( 2 ) - B< (1) )COS(chb), (5.211)

where w = 1/¢g/¢. This mode is fairly clear. With the proper initial conditions,
m will stay right where M is. The normal force from the long rod will be exactly
what is needed in order for m to undergo the same oscillatory motion as M.

o If 2(t) = Acosh(at + ), then the first equation in (5.210) can be solved to give
the normal mode,

( Z ) - C( e(M_Tm) )cosh(at+ﬂ), (5.212)

where o = /mg/M¢. This mode is not as clear. And indeed, its range of
validity is rather limited. The exponential behavior will quickly make x and 6
large, and thus outside the validity of our small-variable approximations. You
can show that in this mode the center of mass remains fixed, directly below the
pivot. This can occur, for example, by having m move down to the right as the
rods rotate and swing M up to the left. There is no oscillation in this mode;
the positions keep growing.
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Motion in a cone

If the particle’s distance from the axis is r, then its height is r/ tan «, and it’s distance
up along the cone is r/ sin . Breaking the velocity into components up along the cone
and around the cone, we see that the square of the speed is v? = 7"2/sin2 o + r262.
The Lagrangian is therefore

tano

1 72 . mgr
L=gm (SmQ ~ 7’292> _ T (5.213)

The equations of motion obtained from varying 6 and r are

d 25
g(mr ) = 0

i = r6*sin®a — gcosasina. (5.214)

The first of these equations expresses conservation of angular momentum. The second
equation is more transparent if we divide through by sina. With z =r /sina being
the distance up along the cone, we have & = (r6?)sina — g cos . This is the F = ma

statement for the “z” direction.

Letting mr26 = L, we may eliminate 6 from the second equation to obtain

L?sin® o
= ———%— — gcosasina. 5.215
m2r3 g ( )
We will now calculate the two desired frequencies.

e Frequency of circular oscillations, w: For circular motion with r = rg, we have
7 =7 = 0, so the second of eqs. (5.214) gives

b=,]—2—. (5.216)
ro tan a

e Frequency of oscillations about a circle, Q: If the orbit were actually the circle
r =10, then eq. (5.215) would give (with # = 0)

w

L?sin?a

2.3
o

= gcosasina. (5.217)
m
This is equivalent to eq. (5.216), which can be seen by writing L as mr%é.

We will now use our standard procedure of letting r(t) = ro + (¢), where 6(¢) is
very small, and then plugging this into eq. (5.215) and expanding to first order

in §. Using
1 1 1 1 30
= = ~—=(1—— 5.218
(ro+6)3 3 +3r36  r3(1+35/ro) 1} < m) ’ ( )
we have -
M A 30
d= # <1 - ) — gcosasina. (5.219)
m2rg o

Recalling eq. (5.217), we obtain a bit of cancellation and are left with

. 2 a2
§=— (?’Lsma> s. (5.220)

2.4
mer,
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Using eq. (5.217) again to eliminate L we have

o+ <3g sin o cos a) 0=0. (5.221)
To

/3
Q= T—g sin v cos a. (5.222)
0

Having found the two desired frequencies in egs. (5.216) and (5.222), we see that
their ratio is

Therefore,

Q
— =V3sina. (5.223)
w

This ratio /w is independent of rg.

The two frequencies are equal if sin o« = 1/4/3, that is, if & ~ 35.3° = @. If & = &, then
after one revolution around the cone, r returns to the value it had at the beginning
of the revolution. So the particle undergoes periodic motion.

REMARKS: In the limit & — 0, eq. (5.223) says that Q/w — 0. In fact, egs. (5.216) and
(5.222) say that w — oo and © — 0. So the particle spirals around many times during one
complete r cycle. This seems intuitive.

In the limit o — 7/2 (that is, the cone is almost a flat plane) both w and Q go to zero, and
eq. (5.223) says that Q/w — /3. This result is not at all obvious (at least to me).

If Q/w = V/3sina is a rational number, then the particle will undergo periodic motion. For
example, if @ = 60°, then Q/w = 3/2, so it takes two complete circles for r to go through
three cycles. Or, if a = arcsin(1/2v/3) = 16.8°, then Q/w = 1/2, so it takes two complete
circles for r to go through one cycle.

20. Shortest distance in a plane

Let the two given points be (z1,y1) and (z2,y2), and let the path be described by the
function y(z). (Yes, we’ll assume it can be written as a function. Locally, we don’t
have to worry about any double-valued issues.) Then the length of the path is

Ez/ V1+y?de. (5.224)

The “Lagrangian” is L = y/1 + 9’2, so the Euler-Lagrange equation is
d(oLy _ oL
dx \ Oy’ Oy

d Y
— | —— = 0. .22

We see that y'/+/1+ y'? is constant. Therefore, y’ is also constant, so we have a
straight line y(z) = Ax + B, where A and B are determined from the endpoint
conditions.

21. Index of refraction

Let the path be described by y(x). The speed at height y is v < y. Therefore, the
time to go from (zq, yo) to (x1,y1) is

x1 d z1 1 /2
T :/ & o</ V2EY g (5.226)
xo v o y
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Our goal is to find the function y(z) that minimizes this integral, subject to the
boundary conditions above. We can therefore apply the results of the variational
technique, with a “Lagrangian” equal to

12
Lo YYD (5.227)

Y

At this point, we could apply the E-L equation to this L, but let’s simply use Lemma
5.5, with f(y) =1/y. Eq. (5.83) gives

B
14y = Bf(y)? = 1+y?=—. (5.228)
Y
We must now integrate this. Solving for %', and then separating variables and inte-
grating, gives

d

/dx:j: \/% — a4+ A=FV/B— 2. (5.229)
-y

Therefore, (z + A)? + y? = B, which is the equation for a circle. Note that the circle

is centered at y = 0, that is, at a point on the bottom of the slab. This is the point

where the perpendicular bisector of the line joining the two given points intersects

the bottom of the slab.

The Brachistochrone

First solution: In Fig. 5.43, the boundary conditions are y(0) = 0 and y(zo) = o,
with downward taken to be the positive y direction. From conservation of energy, the
speed as a function of y is v = v/2gy. The total time is therefore

xo xo 1 /2
T = / ds _ / VIV g (5.230)
o v 0 V2gy

Our goal is to find the function y(z) that minimizes this integral, subject to the
boundary conditions above. We can therefore apply the results of the variational
technique, with a “Lagrangian” equal to

V14 y?
Lo ¥———. 5.231
7 (5.231)

At this point, we could apply the E-L equation to this L, but let’s simply use Lemma
5.5, with f(y) =1/,/y. Eq. (5.83) gives

1+y?%=Cfly)? — 14972 = % , (5.232)

as desired. We must now integrate one more time. Solving for 3’ and separating
variables gives
d
VI (5.233)
B—y
A helpful change of variables to get rid of the square root in the denominator is
y = Bsin? ¢. Then dy = 2Bsin ¢ cos ¢ d¢, and eq. (5.233) simplifies to

2Bsin? ¢ do = + dx. (5.234)

y

(05 20)

Figure 5.43
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We can now make use of the relation sin? ¢ = (1 — cos2¢)/2 to integrate this. The
result is B(2¢ — sin2¢) = + 2z — C, where C is an integration constant.

Now note that we may rewrite our definition of ¢ (which was y = Bsin® ¢) as 2y =
B(1 — cos2¢). If we then define 6§ = 2¢, we have

x==xa(f —sinb) +d, y = a(l — cosb). (5.235)

where a = B/2, and d = C/2.

The particle starts at (z,y) = (0,0). Therefore, 6 starts at § = 0, since this corre-
sponds to y = 0. The starting condition & = 0 then implies that d = 0. Also, we are
assuming that the wire heads down to the right, so we choose the positive sign in the
expression for x. Therefore, we finally have

x = a(f —sinh), y = a(l — cosb), (5.236)

as desired. This is the parametrization of a cycloid, which is the path taken by a
point on the rim of a rolling wheel. The initial slope of the y(z) curve is infinite, as
you can check.

REMARK: The above method derived the parametric form in (5.236) from scratch. But
since eq. (5.236) was given in the statement of the problem, another route is to simply verify
that this parametrization satisfies eq. (5.232). To this end, assume that z = a(f —sin ) and
y = a(1 — cos @), which gives

,_dy _ dy/d) _  sind
Y=~ de/df 1 —cosf’

(5.237)

Therefore,

sin0 2 2
(1—cosf)2  1—cosh gy’
which agrees with eq. (5.232), with C' = 2a. &

1447 =1+ (5.238)

Second solution: Let’s use a variational argument again, but now with y as the
independent variable. That is, let the chain be described by the function z(y). The
arclength is now given by ds = /1 + 2’2 dy. Therefore, instead of the Lagrangian in

eq. (5.231), we now have
V14 2

L x
VY

(5.239)
The Euler-Lagrange equation is
d (0L oL d 1 x’
~ (=) === — | —=——=] =0. 5.240
dy (@w’> or Ty (\/17\/1+xf2) (5.240)

The zero on the right-hand side makes things nice and easy, because it means that
the quantity in parentheses is a constant. Call it D. We then have

1 a 1 dx/dy

ivizer U T i ey
1 1
NN CrEE D.  (5.241)

This is equivalent to eq. (5.232), and the solution proceeds as above.
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Third solution: Note that the “Lagrangian” in the first solution above, which is

given in eq. (5.231) as
1 /2
P (5.242)
VY
is independent of x. Therefore, in analogy with conservation of energy (which arises
from a Lagrangian that is independent of ¢), the quantity

Ezy’a—L—L: Ui S VYR ! (5.243)
oy’ \/g /1+ y? NG \/g /1+ ¢

is a constant (that is, independent of x). We have therefore again reproduced eq.
(5.232), and the solution proceeds as above.

Minimal surface

The tension throughout the surface is constant, because it is in equilibrium. (By
“tension” in a surface, we mean the force per unit length in the surface.) The ratio
of the circumferences of the circular boundaries of the ring is y2/y1. Therefore, the
condition that the horizontal forces on the ring cancel is y; cos 1 = ys cos 6, where
the 8’s are the angles of the surface, as shown in Fig. 5.44. In other words, y cos 8 is
constant throughout the surface. But cos§ = 1/4/1 + y'2, so we have

Y

—=C (5.244)
V1+y?
This is the same as eq. (5.75), and the solution proceeds as in Section 5.8.
Existence of a minimal surface
The general solution for y(x) is given in eq. (5.76) as
1
y(x) = 3 coshb(z + d). (5.245)

If we choose the origin to be midway between the rings, then d = 0. Both boundary
condition are thus

r= % cosh b/. (5.246)

Let us now determine the maximum value of £/r for which the minimal surface exists.
If ¢/r is too large, then we will see that there is no solution for b in eq. (5.246); in
short, the minimal “surface” turns out to be the two given circles, attached by a line,
which isn’t a nice two-dimensional surface. If you perform an experiment with soap
bubbles (which want to minimize their area), and if you pull the rings too far apart,
then the surface will break and disappear, as it tries to form the two circles.

Define the dimensionless quantities,

¢ , and z = br. (5.247)
,

n
Then eq. (5.246) becomes
z = coshnz. (5.248)

If we make a rough plot of the graphs of w = 2z and w = coshnz for a few values
of n (see Fig. 5.45), we see that there is no solution for z if n is too large. The
limiting value of n for which there exists a solution occurs when the curves w = z

Figure 5.44

o= cosh(nz)

)Y

\

0=z

Figure 5.45
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and w = coshnz are tangent; that is, when the slopes are equal in addition to the
functions being equal. Let 7y be the limiting value of 7, and let zy be the place where
the tangency occurs. Then equality of the values and the slopes gives

zo = cosh(nozo), and 1 = no sinh(nozo). (5.249)
Dividing the second of these equations by the first gives
1 = (nozo) tanh(nozo). (5.250)

This must be solved numerically. The solution is

1070 = 1.200. (5.251)
Plugging this into the second of egs. (5.249) gives
1
() = 1o ~ 0.663. (5.252)
r max

Note also that zp = 1.200/n = 1.810. We see that if £/r is larger than 0.663, then
there is no solution for y(x) that is consistent with the boundary conditions. Above
this value of ¢/r, the soap bubble minimizes its area by heading toward the shape of
just two disks, but it will pop well before it reaches that configuration.

REMARKS:

(a) We glossed over one issue above, namely that there may be more than one solution for

the constant b in eq. (5.246). In fact, Fig. 5.45 shows that for any n < 0.663, there are
two solutions for z in eq. (5.248), and hence two solutions for b in eq. (5.246). This
means that there are two possible surfaces that might solve our problem. Which one
do we want? It turns out that the surface corresponding to the smaller value of b is
the one that minimizes the area, while the surface corresponding to the larger value of
b is the one that (in some sense) maximizes the area.
We say “in some sense” because the large-b surface is actually a saddle point for the
area. It can’t be a maximum, after all, because we can always make the area larger
by adding little wiggles to it. It’s a saddle point because there does exist a class of
variations for which it has the maximum area, namely ones where the “dip” in the
curve is continuously made larger (just imagine lowering the midpoint in a smooth
manner). This surface arises because the Euler-Lagrange technique simply sets the
“derivative” equal to zero and doesn’t differentiate between maxima, minima, and
saddle points.

(b) How does the area of the limiting surface (with 79 = 0.663) compare with the area of
the two circles? The area of the two circles is

Ae =2, (5.253)
The area of the limiting surface is
’
As = 2ryy/1+ y? de. (5.254)
—¢
Using eq. (5.246), this becomes
‘
2
A = / =T cosh® b da
e b

¢
/ %(1 + cosh 2bz) dz
—e

2ml  msinh 2b¢

; = (5.255)
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But from the definitions of n and z, we have £ = nor and b = zo/r for the limiting
surface. Therefore, As can be written as

2 inh 2
A= (”0 ; ") | (5.256)
z0 ZO

Plugging in the numerical values (1o ~ 0.663 and zo ~ 1.810) gives
A =~ (6.28)r7, and A =~ (7.54)r°. (5.257)

The ratio of As to Ac is approximately 1.2 (it’s actually nozo, as you can show). The
limiting surface therefore has a larger area. This is expected, of course, because for
£/r > no the surface tries to run off to one with a smaller area, and there are no other
stable configurations besides the cosh solution we found.
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Chapter 6

Central Forces

Copyright 2004 by David Morin, morin@physics.harvard.edu

A central force is by definition a force that points radially and whose magnitude
depends only on the distance from the source (that is, not on the angle around
the source).! Equivalently, we may say that a central force is one whose potential
depends only on the distance from the source. That is, if the source is located at
the origin, then the potential energy is of the form V(r) = V(r). Such a potential
does indeed yield a central force, because

Ve (6.1)

F(r)=-VV(r) = — o

which points radially and depends only on r. Gravitational and electrostatic forces
are central forces, with V' (r) oc 1/r. The spring force is also central, with V(r)
(r — £)2, where / is the equilibrium length.

There are two important facts concerning central forces: (1) they are ubiquitous
in nature, so we had better learn how to deal with them, and (2) dealing with
them is much easier than you might think, because crucial simplifications occur in
the equations of motion when V' is a function of r only. These simplifications will
become evident in the following two sections.

6.1 Conservation of angular momentum

Angular momentum plays a key role in dealing with central forces because, as we
will show, it is constant in time. For a point mass, we define the angular momentum,
L, by

L=rxp. (6.2)
The vector L depends, of course, on where you pick the origin of your coordinate

system. Note that L is a vector, and that it is orthogonal to both r and p, by nature
of the cross product. You might wonder why we care enough about r x p to give it

!Taken literally, the term “central force” would imply only the radial nature of the force. But a
physicist’s definition also includes the dependence solely on the distance from the source.

VI-1
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a name. Why not look at 73p°r x (r x p), or something else? The answer is that
there are some very nice facts concerning L, one of which is the following.?

Theorem 6.1 If a particle is subject to a central force only, then its angular mo-
mentum is conserved. That is,

dL
If V(r)=V(r), then i 0. (6.3)
Proof: We have
@ = i(r X p)
a — atv P
= @ Xp+rxX d—p
-~ a P dt
= vx(mv)+rxF
= 0, (6.4)

because F o« r, and the cross product of two parallel vectors is zero. m

We will prove this theorem again in the next section, using the Lagrangian
method. Let’s now prove another theorem which is probably obvious, but good to
show anyway.

Theorem 6.2 If a particle is subject to a central force only, then its motion takes
place in a plane.

Proof: At a given instant, tg, consider the plane, P, containing the position vector
ro (with the source of the potential taken to be the origin) and the velocity vector
vg. We claim that r lies in P at all times.?

P is defined as the plane orthogonal to the vector ng = rg X vg. But in the proof
of Theorem 6.1, we showed that the vector r x v = (r X p)/m does not change with
time. Therefore, r x v = ng for all . Since r is certainly orthogonal to r x v, we
see that r is orthogonal to ng for all t. Hence, r must lie in P. m

An intuitive look at this theorem is the following. Since the position, speed,
and acceleration (which is proportional to F, which in turn is proportional to the
position vector, r) vectors initially all lie in P, there is a symmetry between the two
sides of P. Therefore, there is no reason for the particle to head out of P on one
side rather than the other. The particle therefore remains in P. We can then use
this same reasoning again a short time later, and so on.

This theorem shows that we need only two coordinates, instead of the usual
three, to describe the motion. But since we're on a roll, why stop there? We
will show below that we really only need one variable. Not bad, three coordinates
reduced down to one.

2This is a special case of the fact that torque equals the rate of change of angular momentum.
We’ll talk about this in great detail in Chapter 7.

3The plane P is not well-defined if vo = 0, or ro = 0, or v is parallel to ro. But in these cases,
you can easily show that the motion is always radial, which is even more restrictive than planar.
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6.2 The effective potential

The effective potential provides a sneaky and useful method for simplifying a 3-
dimensional central-force problem down to a 1-dimensional problem. Let’s see how
it works.

Consider a particle of mass m subject to a central force only, described by the
potential V(7). Let r and 6 be the polar coordinates in the plane of the motion. In
these polar coordinates, the Lagrangian (which we’ll label as “L”, to save “L” for
the angular momentum) is

1 .
L= 5m(ﬁ‘ +1r20%) =V (r). (6.5)
The equations of motion obtained from varying r and 6 are

mi = mrf® — V'(r),
%(mr%) = 0. (6.6)
The first equation is the force equation along the radial direction, complete with
the centripetal acceleration, in agreement with the first of eqs. (2.52). The second
equation is the statement of conservation of angular momentum, because mr2f =
r(mré) = rpg (where py is the magnitude of the momentum in the angular direction),
which is the magnitude of L = r x p. We therefore see that the magnitude of L is
constant. And since the direction of L is always perpendicular to the fixed plane of
the motion, the vector L is constant in time. We have therefore just given a second
proof of Theorem 6.1. In the present Lagrangian language, the conservation of L
follows from the fact that 6 is a cyclic coordinate, as we saw in Example 2 in Section
5.5.1.

Since mr20 does not change in time, let us denote its constant value by

L = mr?6. (6.7)

L is determined by the initial conditions; it could be specified, for example, by giving
the initial values of r and 6. Using § = L/(mr?), we may eliminate ¢ from the first
of egs. (6.6). The result is
LZ
mit = — — V'(r). (6.8)

mr3
Multiplying by 7 and integrating with respect to time yields

i 4 ( L vm) _ £, (6.9)

2 2mr?

where F is a constant of integration. F is simply the energy, which can be seen by
noting that this equation could also have been obtained by simply using eq. (6.7)
to eliminate 6 in the energy equation, (m/2)(#? + r262) +V(r) = E.



L
Vet (1) = -~ + Ar?

Figure 6.1
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Eq. (6.9) is rather interesting. It involves only the variable 7. And it looks a lot
like the equation for a particle moving in one dimension (labeled by the coordinate
r) under the influence of the potential

2

Ve (r) = 5 +V(r)| (6.10)

2mr

The subscript “eff” here stands for “effective”. Vig(r) is called the effective potential.
The “effective force” is easily read off from eq. (6.8) to be

Feg(r) = — = V'(r), (6.11)

which agrees with Fog = —V/;(r), as it should.

This “effective” potential concept is a marvelous result and should be duly ap-
preciated. It says that if we want to solve a two-dimensional problem (which could
have come from a three-dimensional problem) involving a central force, we can re-
cast the problem into a simple one-dimensional problem with a slightly modified
potential. We can forget that we ever had the variable 8, and we can solve this
one-dimensional problem (as we’ll demonstrate below) to obtain r(t). Having found
r(t), we can use 0(t) = L/mr? to solve for 8(t) (in theory, at least).

Note that this whole procedure works only because there is a quantity involv-
ing r and 6 that is independent of time. The variables r and 6 are therefore not
independent, so the problem is really one-dimensional instead of two-dimensional.

To get a general idea of how r behaves with time, we simply have to graph
Vest(r). Consider the example where V() = Ar?. This is the potential for a spring
with equilibrium length zero. Then

2

Vest (1) + Ar?. (6.12)

© 2mr?
To graph Veg(r), we must be given L and A. But the general shape looks like the
curve in Fig. 6.1. The energy E (which must be given, too) is also drawn. The
coordinate r will bounce back and forth between the turning points, r; and ro, which
satisfy Veg(r12) = E.4 If E equals the minimum of Veg(r), then rq = rq, so 7 is
stuck at this one value, which means that the motion is a circle. Note that it is
impossible for E to be less than the minimum of Vig.

REMARK: The L?/2mr? term in the effective potential is sometimes called the angular
momentum barrier. It has the effect of keeping the particle from getting too close to the
origin. Basically, the point is that L = mr20 is constant, so as r gets smaller, 0 gets bigger.
But 6 increases at a greater rate than r decreases, due to the square of the r in L = mr20.
So eventually we end up with a tangential kinetic energy, mr26?/2, that is greater than
what is allowed by conservation of energy.’

41t turns out that for our Ar? spring potential, the motion in space is an ellipse, with semi-axis
lengths 71 and r2 (see Problem 5). But for a general potential, the motion isn’t so nice.

PIf V(r) goes to —oo faster than —1/r?, then this argument doesn’t hold. You can see this by
drawing the graph of Veg(r), which heads to —oo instead of +oo as r — 0. V(r) decreases fast
enough to compensate for the increase in kinetic energy.
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As he walked past the beautiful belle,
The attraction was easy to tell.

But despite his persistence,

He was kept at a distance

By that darn conservation of L. &

Note that it is by no means necessary to introduce the concept of the effective
potential. You can simply solve the equations of motion, eqs. (6.6), as they are.
But introducing Veg makes it much easier to see what’s going on in a central-force
problem.

When using potentials, effective,
Remember the one main objective:

The goal is to shun

All dimensions but one,

And then view things with 1-D perspective.

6.3 Solving the equations of motion

If we want to be quantitative, we must solve the equations of motion, egs. (6.6).
Equivalently, we must solve their integrated forms, eqs. (6.7) and (6.9), which are
simply the conservation of L and F statements,

mr?f = L,
1 L?

J— .2
2" * 2mr?

+V(r) = E. (6.13)

The word “solve” is a little ambiguous here, because we should specify what
quantities we want to solve for in terms of what other quantities. There are essen-
tially two things we can do. We can solve for r and # in terms of ¢. Or, we can solve
for r in terms of #. The former has the advantage of immediately yielding velocities
and, of course, the information of where the particle is at time ¢. The latter has the
advantage of explicitly showing what the trajectory looks like in space, even though
we don’t know how quickly it is being traversed. We will deal mainly with this latter
case, particularly when we discuss the gravitational force and Kepler’s Laws below.
But let’s look at both procedures now.

6.3.1 Finding r(¢) and 6(t)

The value of 7 at any point is found from eq. (6.13) to be

dr /2 L?
— =4/ —\|EF - — . 14
dt m\/ 2mr? vir) (6.14)

To get an actual r(t) out of this, we must be supplied with £ and L (which may
be found using the initial values of r, 7, and 6), and also the function V' (r). To
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solve this differential equation, we “simply” have to separate variables and then (in
theory) integrate:

/\/E—ir—v(r) _i/\/zdt_i\/z(t‘“)- (6.15)

2mr?

We must perform this (rather unpleasant) integral on the left-hand side, to obtain
t as a function of r. Having found ¢(r), we may then (in theory) invert the result
to obtain r(t). Finally, substituting this 7(¢) into the relation § = L/mr? from eq.
(6.13), we have 6 as a function of ¢, which we can (in theory) integrate to obtain
0(t).

The bad news about this procedure is that for most V(r)’s the integral in eq.
(6.15) is not calculable in closed form. There are only a few “nice” potentials V' (r)
for which we can evaluate it. And even then, the procedure is a pain.® But the good
news is that these “nice” potentials are precisely the ones we are most interested
in. In particular, the gravitational potential, which goes like 1/r and which we will
spend most of our time with in the remainder of this chapter, leads to a calculable
integral (the spring potential ~ 72 does also). But never mind; we’re not going to
apply this procedure to gravity. It’s nice to know that the procedure exists, but we
won’t be doing anything else with it. Instead, we’ll use the following strategy.

6.3.2 Finding r(6)

We may eliminate the dt from eqs. (6.13) by getting the 72 term alone on the left
side of the second equation, and then dividing by the square of the first equation.
The dt? factors cancel, and we obtain

<1m>2_2mE 1 2mV(r)

5] =g (6.16)

At this point, we can (in theory) take a square root, separate variables, and then
integrate to obtain # as a function of . We can then (in theory) invert to obtain r
as a function of §. To do this, of course, we must be given the function V(r). So
let’s now finally give ourselves a V() and do a problem all the way through. We’ll
study the most important potential of all (or perhaps the second most important
one), gravity.”

6.4 Gravity, Kepler’s Laws

6.4.1 Calculation of r(0)

Our goal in this subsection will be to obtain r as a function of 8, for a gravitational
potential. Let’s assume that we’re dealing with the earth and the sun, with masses

5You can, of course, always evaluate the integral numerically. See Appendix D for a discussion
of this.

"The two most important potentials in physics are certainly the gravitational and harmonic-
oscillator ones. Interestingly, they both lead to doable integrals, and they both lead to elliptical
orbits.
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Mg, and m, respectively. The gravitational potential energy of the earth-sun system
is

Vi(r) = _a , where a = GMgm. (6.17)
r

In the present treatment, let us consider the sun to be bolted down at the origin of
our coordinate system. Since Mg > m, this is approximately true for the earth-sun
system.® Eq. (6.16) becomes

1 dr\? _2mE 1 2ma
(25) =Tr s+
As stated above, we could take a square root, separate variables, integrate to find
0(r), and then invert to find r(#). This method, although straightforward, is terribly
messy. Let’s solve for () in a slick way.
With all the 1/r terms floating around, it might be easier to solve for 1/r instead
of r. Using d(1/r)/df = —(dr/df)/r?, and letting y = 1/r for convenience, eq. (6.18)
becomes

(6.18)

(dy>2 _ 5 2ma  2mE (6.19)

d z YT
At this point, we could also use the separation-of-variables technique, but let’s
continue to be slick. Completing the square on the right-hand side, we obtain

dy\ 2 ma\? 2mE mac\ 2
(w) :—(y‘p) +L2+<L2) : (6.20)

Defining z = y — ma/L? for convenience, we have
dz\? B 9 ma 2 1 2EL?
de - L? * ma?

= —224+ B2 where B = (

2B
mo‘) 1+ . (6.21)

2
At this point, in the spirit of being slick, we can just look at this equation and
observe that

ma?

z = Bcos(8 — 6o) (6.22)
is the solution, because cos? z + sin® z = 1.
REMARK: Lest we feel guilty about not doing separation-of-variables at least once in

this problem, let’s solve eq. (6.21) that way, too. The integral is nice and doable, and we
have

z dz/ 0 ,
[ = [
zZ1 1

—1 ! i

=  cos (ZB) - 0 —6))
— oz = Bcos<(9—01)+cos_1 <2>)
= Bcos(0 — 0). & (6.23)

81f we want to do the problem exactly, we must use the reduced mass. This topic is discussed in
Section 6.4.5.
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It is customary to pick the axes so that 8y = 0, so we’ll drop the 6y from here
on. Recalling our definition z = 1/r — ma/L? and also the definition of B from eq.
(6.21), eq. (6.22) becomes

1 mao
; = ﬁ(l + € cos 9)7 (624)
where
2F 2
=4/14+ —— 6.25
€ + ol ( )

is the eccentricity of the particle’s motion. We will see shortly exactly what €
signifies.

This completes the derivation of 7(6) for the gravitational potential, V(r) oc 1/r.
It was a little messy, but not unbearably painful. At any rate, we just discovered the
basic motion of objects under the influence of gravity, which takes care of virtually
all of the gazillion tons of stuff in the universe. Not bad for one page of work.

Newton said as he gazed off afar,
“From here to the most distant star,
These wond’rous ellipses

And solar eclipses

All come from a 1 over r.”

What are the limits on 7 in eq. (6.24)7 The minimum value of 7 is obtained when
the right-hand side reaches its maximum value, which is (ma/L?)(1+¢€). Therefore,

L2

el T d" (6.26)

Tmin =

What is the maximum value of r? The answer depends on whether € is greater
than or less than 1. If € < 1 (which corresponds to circular or elliptical orbits, as
we will see below), then the minimum value of the right-hand side of eq. (6.24) is
(ma/L?)(1 — €). Therefore,

L2

e (fe<n. (6.27)

Tmax =

If ¢ > 1 (which corresponds to parabolic or hyperbolic orbits, as we will see be-
low), then the right-hand side of eq. (6.24) can become zero (when cosf = —1/¢).
Therefore,

Tmax = 0O (if e>1). (6.28)

6.4.2 The orbits

Let’s examine in detail the various cases for e.
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e Circle (e =0)

If ¢ = 0, then eq. (6.25) says that E = —ma?/2L%. The negative E simply
means that the potential energy is more negative than the kinetic energy is
positive. The particle is trapped in the potential well. Eqgs. (6.26) and (6.27)
give Tmin = Tmax = L? /ma. Therefore, the particle moves in a circular orbit Veer (1)
with radius L? /ma. Equivalently, eq. (6.24) says that r is independent of 6.

= L2 -
2mr2

~|RQ

Note that it isn’t necessary to do all the work of Section 6.4.1 if we just want to

Fmin = "max
look at circular motion. For a given L, the energy —ma?/2L? is the minimum /

value that the E given by eq. (6.13) can take. (To achieve the minimum, :

we certainly want 7 = 0. And you can show that minimizing the effective \/
potential, L?/2mr? — a/r, yields this value for E.) If we plot Veg(r), we have | = ="""-~ E
the situation shown in Fig. 6.2. The particle is trapped at the bottom of the Figure 6.2

potential well, so it has no motion in the r direction.

e Ellipse (0 <e< 1)

If 0 < € < 1, then eq. (6.25) says that —ma?/2L% < E < 0. Egs. (6.26) and Fer ()
(6.27) give Tmin and rmax. It is not obvious that the resulting motion is an
ellipse. We will demonstrate this below. o -
min max
If we plot Veg(r), we have the situation shown in Fig. 6.3. The particle ' : r
oscillates between 7y, and .. The energy is negative, so the particle is _¥_7/___ E
trapped in the potential well.
e Parabola (e =1) Figure 6.3
If e = 1, then eq. (6.25) says that E = 0. This value of E implies that the
particle barely makes it out to infinity (its speed approaches zero as r — o0). v
Eq. (6.26) gives mmin = L?/2ma, and eq. (6.28) gives rmax = 00. Again, it is et (1)
not obvious that the resulting motion is a parabola. We will demonstrate this
below. s Finin
If we plot Vg (r), we have the situation shown in Fig. 6.4. The particle does E
not oscillate back and forth in the r-direction. It moves inward (or possibly \/
not, if it was initially moving outward), turns around at ruy;, = L?/2ma, and
then heads out to infinity forever.
Figure 6.4
e Hyperbola (¢ > 1)
If € > 1, then eq. (6.25) says that E > 0. This value of E implies that the
particle makes it out to infinity with energy to spare. (The potential goes to Vegr ()
zero as r — 00, so the particle’s speed approaches the nonzero value \/2E/m || ____ £

as r — 00.) Eq. (6.26) gives ryin, and eq. (6.28) gives rmax = 0o. Again, it
is not obvious that the resulting motion is a hyperbola. We will demonstrate

this below. ) '
..
If we plot Veg(r), we have the situation shown in Fig. 6.5. As in the parabola o

case, the particle does not oscillate back and forth in the r-direction. It moves
inward (or possibly not, if it was initially moving outward), turns around at Figure 6.5
Tmin, and then heads out to infinity forever.
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6.4.3 Proof of conic orbits

Let’s now prove that eq. (6.24) does indeed describe the conic sections stated above.
We will also show that the origin (the source of the potential) is a focus of the conic
section. These proofs are straightforward, although the ellipse and hyperbola cases
get a bit messy.

In what follows, we will find it easier to work with cartesian coordinates. For

convenience, let
L2
k= — (6.29)

mao

Multiplying eq. (6.24) through by kr, and using cosf = z/r, gives
kE=r-+ex. (6.30)
Solving for r and squaring yields
2% +y? = k? — 2kex + 2%, (6.31)

Let’s look at the various cases for e. We will invoke without proof various facts
about conic sections (focal lengths, etc.).

e Circle (e =0)
In this case, eq. (6.31) becomes x? + y? = k2. So we have a circle of radius
k = L?/ma, with its center at the origin (see Fig. 6.6).

e Ellipse (0 <e< 1)

In this case, eq. (6.31) may be written as (after completing the square for the
x terms, and expending some effort)

ke 2
(v 1) vy here a = d b= 6.32
T—1—1)—2—, where a=_-—7, an = Aia (6.32)
This is the equation for an ellipse with its center located at (—ke/(1 — €2),0).
The semi-major and semi-minor axes a and b, respectively, and the focal length
is ¢ = Va2 — b2 = ke/(1 — €2). Therefore, one focus is located at the origin

(see Fig. 6.7). Note that ¢/a equals the eccentricity, e.

e Parabola (e =1)

In this case, eq. (6.31) becomes y?> = k* — 2kx. This may be written as
y? = —2k(x — %). This is the equation for a parabola with vertex at (k/2,0)
and focal length k/2. (The focal length of a parabola written in the form
y? = 4ax is a.) So we have a parabola with its focus located at the origin (see
Fig. 6.8).
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e Hyperbola (¢ > 1)

In this case, eq. (6.31) may be written (after completing the square for the x
terms)

2
ke
T— =37 2 k k
<21)—y:1, Where a:m, and b:ﬁ (633)
This is the equation for a hyperbola with its center (defined to be the in-
tersection of the asymptotes) located at (ke/ (62 —1),0). The focal length is
c=+Va%+b2 = ke/(e2 — 1). Therefore, the focus is located at the origin (see

Fig. 6.9). Note that ¢/a equals the eccentricity, e.

Figure 6.9

The impact parameter (usually denoted by the letter b) of a trajectory is
defined to be the closest distance to the origin the particle would achieve if it
moved in the straight line determined by its initial velocity (that is, along the
dotted line in the Fig. 6.9). You might think that choosing the letter b here
would cause a problem, because we already defined b in eq. (6.33). However,
it turns out that these two definitions are identical (see Exercise 6), so all is
well.

REMARK: Eq. (6.33) actually describes an entire hyperbola, that is, it also describes
a branch that opens up to the right. However, this right branch was introduced in
the squaring operation that produced eq. (6.31). It is not a solution to the original
equation we wanted to solve, eq. (6.30). What makes the left branch, and not the right
branch, the relevant one? The left-right symmetry was broken when we arbitrarily
chose a positive value for B in eq. (6.21), or equivalently, a positive value for € in
eq. (6.25). If we had chosen B and e to be negative, then the hyperbola would be
centered at a negative value of x and would open up to the right, as you can check.
The result would simply be Fig. 6.9, reflected across the y-axis.

It turns out that the right-opening branch (or its reflection in the y-axis, depending
on your choice of sign for €) is relevant in a certain physical situation; see Exercise 9.

&

6.4.4 Kepler’s Laws

We can now, with minimal extra work, write down Kepler’s Laws. Kepler (1571—
1630) lived prior to Newton (1642-1727). Kepler arrived at these laws via obser-
vational data, which was a rather impressive feat. It was known since the time of
Copernicus (1473-1543) that the planets move around the sun, but it was Kepler
and Newton who first gave a quantitative description of the orbits.

Kepler’s laws assume that the sun is massive enough so that its position is
essentially fixed in space. This is a very good approximation, but the following
section on reduced mass will show how to modify them and solve things exactly.

o First Law: The planets move in elliptical orbits with the sun at one focus.

We proved this in eq. (6.32). Of course, there are undoubtedly objects flying
past the sun in hyperbolic orbits. But we don’t call these things planets,
because we never see the same one twice.
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e Second Law: The radius vector to a planet sweeps out area at a rate that is
independent of its position in the orbit.

This law is nothing other than the statement of conservation of angular mo-
mentum. The area swept out by the radius vector during a short period of time
is dA = r(rdf)/2, because rdf is the base of the thin triangle in Fig. 6.10.
Therefore, we have (using L = mr26)

L

2= — | (6.34)

dA 1
2" T o

dt
which is constant, because L is constant for a central force.

e Third Law: The square of the period of an orbit, T, is proportional to the
cube of the semimagjor-axis length, a. More precisely,
_ 4m°ma®  4n’a®

T2 = o =G (6.35)

where Mg, is the mass of the sun. Note that the planet’s mass, m, does not
appear in this equation.

Proof: Integrating eq. (6.34) over the time of a whole orbit gives

T
om’

A (6.36)
But the area of an ellipse is A = mab, where a and b are the semi-major and
semi-minor axes, respectively. Squaring (6.36) and using eq. (6.32) to write

b=av1— 2 gives
L2 T2
2 4
wa_<u_@04. (6.37)

We have grouped the right-hand side in this way because we may now use the
L? = mak relation from eq. (6.29) to transform the term in parentheses into
ak/(1 — €%) = aa, where a is given in eq. (6.32). But aa = (GMgm)a, so we

obtain )
2at = (GMiZLM7 (6.38)

which gives eq. (6.35), as desired.

These three laws describe the motion of all the planets (and asteroids, comets,
and such) in the solar system. But our solar system is only the tip of the iceberg.
There’s a lot more stuff out there, and it’s all governed by gravity (although New-
ton’s inverse square law must be supplanted by Einstein’s General Relativity theory
of gravitation). There’s a whole universe around us, and with each generation we
can see and understand a little more of it, both experimentally and theoretically. In
recent years, we’ve even begun to look for friends we might have out there. Why?
Because we can. There’s nothing wrong with looking under the lamppost now and
then. It just happens to be a very big one in this case.



6.4. GRAVITY, KEPLER’S LAWS VI-13

As we grow up, we open an ear,
Exploring the cosmic frontier.
In this coming of age,

We turn in our cage,

All alone on a tiny blue sphere.

6.4.5 Reduced mass

We assumed in Section 6.4.1 that the sun is large enough so that it is only negligibly
affected by the presence of the planets. That is, it is essentially fixed at the origin.
But how do we solve a problem in which the masses of the two interacting bodies are
comparable in size? Equivalently, how do we solve the earth-sun problem exactly? It
turns out that the only modification required is a simple replacement of the earth’s
mass with the reduced mass, defined below. The following discussion actually holds
for any central force, not just gravity.
The Lagrangian of a general central-force system consisting of the interacting
masses mi and ms is
I, 1 5
L= 577111'1 + 577’L21'2 — V(|I‘1 - I'QD. (639)
We have written the potential in this form, dependent only on the distance |r; —rs|,
because we are assuming a central force. Let us define
miry + mor
R = mary o mary , and r=r;—ro. (6.40)
mi + ma
R and r are simply the position of the center of mass and the vector between the
masses, respectively. Invert these equations to obtain

ma mi
rr=R+ —r, and rrn=R-—

% Tk (6.41)

where M = mj + mo is the total mass of the system. In terms of R and r, the
Lagrangian becomes

. 1 . ma . 2 1 . mi . 2
1 . 1 mims .9
= MR?*>+ - —= —
2 +2(ml+mQ>r vir)
1 . 1
= 5MR2 + §“f2 —V(r), (6.42)
where the reduced mass, p, is defined by
1 1 1
-_—= — 4+ —. (6.43)
w m1p M2

We now note that the Lagrangian in eq. (6.42) depends on R, but not on R.
Therefore, the Euler-Lagrange equations say that R is constant. That is, the CM
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moves at constant velocity (this is just the statement that there are no external
forces). The CM motion is therefore trivial, so let’s ignore it. Our Lagrangian
therefore essentially becomes

L— %m«? —V(r). (6.44)

But this is simply the Lagrangian for a particle of mass u which moves around a
fixed origin under the influence of the potential V().
For gravity, we have
L .o « —

L= SHE + - (where a = GMgm). (6.45)
To solve the earth-sun system exactly, we therefore simply need to replace (in the
calculation in Section 6.4.1) the earth’s mass, m, with the reduced mass, p, given
by
1 1 1
ﬁ E —"_ M7® .
The resulting value of r in eq. (6.24) is the distance between the earth and sun. The
earth and sun are therefore distances of (Mg /M )r and (m/M)r, respectively, away
from the CM, from eq. (6.41). These distances are simply scaled-down versions of
the distance r, which represents and ellipse, so we see that the earth and sun move
in elliptical orbits (whose sizes are in the ratio Mg/m) with the CM as a focus.
Note that the m’s that are buried in the L and € in eq. (6.24) must be changed to
ws. But « is still defined to be GMgm, so the m in this definition does not get
replaced with pu.

For the earth-sun system, the p in eq. (6.46) is essentially equal to m, because
M, is so large. Using m = 5.98 - 10** kg, and My = 1.99 - 1030 kg, we find that p is
smaller than m by only one part in 3-10°. Our fixed-sun approximation is therefore
a very good one. You can show that the CM is 5-10° m from the center of the sun,
which is well within the sun (about a thousandth of the radius).

How are Kepler’s laws modified when we solve for the orbits exactly using the
reduced mass?

(6.46)

e First Law: The elliptical statement in the first law is still true, but with the
CM (not the sun) located at a focus. The sun also travels in an ellipse with
the CM at a focus.” Whatever is true for the earth must also be true for the
sun, because they come into eq. (6.42) symmetrically. The only difference is
in the size of various quantities.

e Second Law: In the second law, we need to consider the position vector from
the CM (not the sun) to the planet. This vector sweeps out equal areas in
equal times, because the angular momentum of the earth (and the sun, too)
relative to the CM is fixed. This is true because the gravitational force always

9Well, this statement is true only if there is just one planet. With many planets, the tiny motion
of the sun is very complicated. This is perhaps the best reason to work in the approximation where
it is essentially bolted down.
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points through the CM, so the force is a central force with the CM as the
origin.

Third Law: Eq. (6.45) describes a particle of mass y moving in a potential
of —a/r. The reasoning we used in obtaining eq. (6.35) still holds, provided
that we change all the m’s to u’s, except the one in @ = GMgm. In other
words, we still arrive at eq. (6.38), except with the bottom m (but not the
top one) replaced with p. Therefore, we obtain

_ 4mladp 42a’

= (6.47)

T? =
GMom  G(Mg +m)’

where we have used p = Mgm/(Mg + m). Eq. (6.47) reduces to eq. (6.35)
when 1 ~ m (that is, when Mg > m), as it should. Note the symmetry
between Mz and m.

The T in eq. (6.47) is the time for the hypothetical particle of mass p to
complete an orbit. But this is the same as the time for the earth (and the
sun) to complete an orbit. So it is indeed the time we are looking for. The a in
eq. (6.47) is the semi-major axis of the hypothetical particle’s orbit. In other
words, it is half of the maximum distance between the earth and the sun.
If you want to write the third law using the semi-major axis of the earth’s
elliptical orbit, which is a. = (Mg/M)a, then simply plug a = (M/Mg)ae
into eq. (6.47).
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6.5 Exercises

Section 6.1: Conservation of angular momentum

1. Wrapping around a pole *

A puck of mass m on frictionless ice is attached by a horizontal string of
length ¢ to a very thin vertical pole of radius R. The puck is given a kick
and circles around the pole with initial speed vy. The string wraps around the
pole, and the puck gets drawn in and eventually hits the pole. What quantity
is conserved during the motion? What is the puck’s speed right before it hits
the pole?

Section 6.2: The effective potential

2. Power-law spiral x

Given L, find the form of V(r) so that the path of a particle is given by the
spiral r = CH*, where C and k are constants. Hint: Obtain an expression for
7 that contains no €’s, and then use eq. (6.9).

Section 6.4: Gravity, Kepler’s Laws
3. Circular orbit =

For a circular orbit, derive Kepler’s third law from scratch, using F = ma.

4. Falling into the sun =*

Imagine that the earth is suddenly (and tragically) stopped in its orbit, and
then allowed to fall radially into the sun. How long will this take? Use data
from Appendix J. Hint: Consider the radially path to be half of a very thin
ellipse.

5. Closest approach x*x
A particle with speed vy and impact parameter b starts far away from a planet
of mass M.
(a) Starting from scratch (that is, without using any of the results from
Section 6.4), find the distance of closest approach to the planet.

(b) Use the results of the hyperbola discussion in Section 6.4.3 to show that
the distance of closest approach to the planet is k/(e+ 1), and then show
that this agrees with your answer to part (a).

6. Impact parameter x*x

Show that the distance b defined in eq. (6.33) and Fig. 6.9 is equal to the
impact parameter. Do this:

(a) Geometrically, by showing that b is the distance from the origin to the
dotted line in Fig. 6.9.
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10.

11.

(b) Analytically, by letting the particle come in from infinity at speed vy and
impact parameter b, and then showing that the b in eq. (6.33) equals b'.

Skimming a planet *x

A particle travels in a parabolic orbit in a planet’s gravitational field and skims
the surface at its closest approach. The planet has mass density p. Relative
to the center of the planet, what is the angular velocity of the particle as it
skims the surface?

. Parabola L x*x

Consider a parabolic orbit of the form y = x2/(4¢), which has focal length
£. Let the speed at closest approach be vy. The angular momentum is then
muol. Show explicitly (by finding the speed and the “lever arm”) that this is
also the angular momentum when the particle is very far from the origin (as
it must be, because L is conserved).

. Repulsive potential *x

Consider an “anti-gravitational” potential (or more mundanely, the electro-
static potential between two like charges),

V(r)= @ , where o > 0. (6.48)
r
What is the basic change in the analysis of Section 6.4.37 Draw the figure
analogous to Fig. 6.9 for the hyperbolic orbit. Show that circular, elliptical,
and parabolic orbits do not exist.

Ellipse axes *x

Taking it as given that eq. (6.24) describes as ellipse for 0 < € < 1, calculate
the lengths of the semi-major and semi-minor axes, and show that your results
agree with eq. (6.32).

Zero potential xx

A particle is subject to a constant potential, which we will take to be zero. Fol-
lowing the general strategy in Sections 6.4.1 and 6.4.3, show that the particle’s
path is a straight line.
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6.6 Problems

Section 6.2: The effective potential

1. Maximum L sxx

A particle moves in a potential V (r) = B A

(a) Given L, find the radius of the stable circular orbit. An implicit equation
is fine here.

(b) It turns out that if L is too large, then a circular orbit actually doesn’t
exist. What is the largest value of L for which a circular orbit does indeed
exist? What is the value of Vig(r) in this case?

2. Cross section *x

A particle moves in a potential V(r) = —C/(3r3).

(a) Given L, find the maximum value of the effective potential.

(b) Let the particle come in from infinity with speed vy and impact parameter
b. In terms of C, m, and vy, what is the largest value of b (call it byax)
for which the particle is captured by the potential? In other words, what

is the “cross section” for capture, wb2,,, for this potential?

3. Exponential spiral *x

Given L, find the form of V(r) so that the path of a particle is given by the
spiral r = Ae®, where A and a are constants. Hint: Obtain an expression for
7 that contains no €’s, and then use eq. (6.9).

Section 6.4: Gravity, Kepler’s Laws

4. r* potential *x*x
A particle of mass m moves in a potential given by V(r) = Br¥. Let the
angular momentum be L.
(a) Find the radius, rg, of a circular orbit.

(b) If the particle is given a tiny kick so that the radius oscillates around ro,
find the frequency, w;, of these small oscillations in 7.

(¢c) What is the ratio of the frequency w, to the frequency of the (nearly)
circular motion, wy = 0?7 Give a few values of k for which the ratio is
rational, that is, for which the path of the nearly circular motion closes
back on itself.

5. Spring ellipse #xx

A particle moves in a V(r) = 8r? potential. Following the general strategy in
Sections 6.4.1 and 6.4.3, show that the particle’s path is an ellipse.
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6. 3/r? potential sxsx

A particle is subject to a V(r) = 3/r? potential. Following the general strategy
in Section 6.4.1, find the shape of the particle’s path. You will need to consider
various cases for (3.

7. Rutherford scattering #x*x

A particle of mass m travels in a hyperbolic orbit past a mass M, whose
position is assumed to be fixed. The speed at infinity is vg, and the impact
parameter is b (see Exercise 6).

(a) Show that the angle through which the particle is deflected is

1 2
¢=r—2tan"'(yd) = b= 5 cot (2) ,  wherey = % . (6.49)

(b) Let do be the cross-sectional area (measured when the particle is initially
at infinity) that gets deflected into a solid angle of size d) at angle ¢.1°

Show that
do 1

aa 42 sin?(¢/2)
This quantity is called the differential cross section. The term Rutherford
scattering actually refers to the scattering of charged particles, but since

the electrostatic and gravitational forces are both inverse-square laws,
the scattering formulas look the same, except for a few constants.

(6.50)

0The solid angle of a patch on a sphere is the area of the patch divided by the square of the
sphere’s radius. So a whole sphere subtends a solid angle of 47 steradians (the name for one unit
of solid angle).
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6.7 Solutions

1. Maximum L

(a)

The effective potential is

L2 a2p2
‘/Cﬁ‘(r) = W — V()e . (651)

A circular orbit exists at the value(s) of r for which V/;(r) = 0. Setting the
derivative equal to zero and solving for L? gives, as you can show,

L? = 2mVoA2)rie 7" (6.52)

This implicitly determines r. Aslong as L isn’t too large, Veg (r) looks something
like the graph in Fig. 6.11 (although it doesn’t necessarily dip down to negative
values; see the remark below), so there are two solutions for r. The smaller
solution is the one with the stable orbit. However, if L is too large, then there
are no solutions to VJ;(r) = 0, because Veg(r) decreases monotonically to zero
(because L?/2mr? does so). We'll be quantitative about this in part (b).

The function r4e=*"* on the right-hand side of eq. (6.52) has a maximum
value, because it goes to zero for both r — 0, and » — oco. Therefore, there

is a maximum value of L for which a solution for r exists. The maximum of
4,—\%p2

re occurs when
(rte™N7Y = N 4t (—20%)) = 0 = r? = % =7r2. (6.53)
Plugging ro into eq. (6.52) gives
LA, = % : (6.54)
Plugging ro and L2, into (6.51) gives
Vir(ro) = 5 (for L= L), (6.55)

Note that this is greater than zero. For the L = L.« case, the graph of V g is
shown in Fig. 6.12. This is the cutoff case between having a dip in the graph,
and decreasing monotonically to zero.

REMARK: A common error in this problem is to say that the condition for a circular
orbit to exist is that Veg(r) < 0 at the point where Veg(r) is minimum. The logic here
is that the goal is to have a well in which the particle can be trapped, so it seems like
we just need V.g to achieve a value less than the value at r = oo, namely 0. However,
this gives the wrong answer (L2, = 2mVy/\%e, as you can show), because Veg (1) can
look like the graph in Fig. 6.13. This has a local minimum with Veg(r) > 0. &

2. Cross section

(a)

The effective potential is

B L? C
C 2mr? 33
Setting the derivative equal to zero gives 7 = mC/L?. Plugging this into Veg ()
gives

Vet (1) (6.56)

L6
max __
= Gson (6.57)
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(b)

If the energy of the particle, F, is less than V_3**, then the particle will reach
a minimum value of r, and then head back out to infinity (see Fig. 6.14).
If E is greater than V_ **, then the particle will head in to » = 0, never to
return. The condition for capture is therefore V 3** < E. Using L = muvgb and
E = Eo, = mv3 /2, this condition becomes

(mweb)© mvd
6m3C? 2
302 \ /6

- b < (777,21}61) = bmax~ (658)

The cross section for capture is therefore

302 1/3
=7b2 . = — . .5

o=mbZ .. W(m%}é‘) (6.59)

It makes sense that this should increase with C and decrease with m and vyg.

3. Exponential spiral

The given information r = Ae® yields (using 6 = L/mr?)

. L L
= aAe®d = ar (2) _— (6.60)
mr mr
Plugging this into eq. (6.9) gives
m [aL\’ L?
— | — =FE. .61
2 <mr> + 2mr?2 +Vi(r) (6.61)
Therefore,
(1+a?)L?
Viry=F — ———. 6.62
(r) 2 (6.62)

The total energy, E, may be arbitrarily chosen to equal zero, if desired.

4. r* potential

(a)

A circular orbit exists at the value of r for which the derivative of the effective
potential (which is the negative of the effective force) is zero. This is simply the
statement that the right-hand side of eq. (6.8) equals zero, so that #* = 0. Since
V'(r) = Bkr*=1 eq. (6.8) gives

L2
mr3

L2 1/(k+2)
> (6.63)

— Bk k—1 — —_
Bkr 0 - 0 <mﬁk

Note that if k is negative, then 8 must also be negative if there is to be a real
solution for rg.

The long method of finding the frequency is to set r(¢t) = ro + €(t), where €
represents the small deviation from the circular orbit, and to then plug this
expression for r into eq. (6.8). The result (after making some approximations)
is a harmonic-oscillator equation of the form ¢ = —w?2e. This general proce-
dure, which is described in detail in Section 5.7, will work fine here (as you are

encouraged to show), but let’s use an easier method.

Vet

max

Figure 6.14
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By introducing the effective potential, we have reduced the problem to a one-
dimensional problem in the variable r. Therefore, we can make use of the result
in Section 4.2, where we found in eq. (4.15) that to find the frequency of small
oscillations, we simply need to calculate the second derivative of the potential.
For the problem at hand, we must use the effective potential, because that is
what determines the motion of the variable r. We therefore have

1

oy = | Yerr(T0). (6.64)

m
If you work through the r = rg + ¢ method described above, you will find
that you are basically calculating the second derivative of Vg, but in a rather
cumbersome way.
Using the form of the effective potential, we have

" 3L2 k—2
wg(ro) = —5 + Pk(k—1)r
ff mré 0
1 (312
= 7‘7 (m + ﬁk(k - 1)T§+2> . (665)
0

Using the ro from eq. (6.63), this simplifies to

L2(k 12 V7 LVET2
tiry = B2, fYenlo) _LVEEZ g
mry m mrg

We could get rid of the rq here by using eq. (6.63), but this form of w, will be
more useful in part (c).

Note that we must have k > —2 for w, to be real. If k < —2, then V/;(ro) <0,
which means that we have a local maximum of Vg, instead of a local minimum.
In other words, the circular orbit is unstable. Small perturbations grow, instead
of oscillating around zero.

Since L = mr20 for the circular orbit, we have

L

=0=—. 6.67
o mré (6.67)
Combining this with eq. (6.66), we find
Y Ve (6.68)
wo

A few values of k that yield rational values for this ratio are (the plots of the
orbits are shown below):

e k=—1—=— w,/wy = 1. This is the gravitational potential. The variable r
makes one oscillation for each complete revolution of the (nearly) circular
orbit.

e k=2 = w,/wy = 2: This is the spring potential. The variable r makes
two oscillations for each complete revolution.

e k=7 = w,/wyg = 3: The variable r makes three oscillations for each
complete revolution.

o k=—7/4= w,/wyp =1/2: The variable r makes half of an oscillation for
each complete revolution. So we need to have two revolutions to get back
to the same value of r.
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Figure 6.15

There is an infinite number of k values that yield closed orbits. But note that
this statement applies only to orbits that are nearly circular. The “closed”
nature of the orbits is only approximate, because it is based on eq. (6.64) which
is an approximate result based on small oscillations. The only k values that
lead to exactly closed orbits for any initial conditions are k = —1 (gravity) and
k = 2 (spring), and in both cases the orbits are ellipses. This result is known as
Bertrand’s Theorem.

5. Spring ellipse
With V(r) = 8r?, eq. (6.16) becomes

1dr\> 2mE 1 2mpBr?
( T>:m mpBr (6.69)

r2 do L2 r2 L2
As stated in Section 6.4.1, we could take a square root, separate variables, integrate
to find O(r), and then invert to find r(6). But let’s solve for () in a slick way, as we
did for the gravitational case, where we made the change of variables, y = 1/r. Since
there are lots of 72 terms floating around in eq. (6.69), it is reasonable to try the
change of variables, y = r? or y = 1/r2. The latter turns out to be the better choice.
So, using y = 1/r% and dy/df = —2(dr/df)/r?, and multiplying eq. (6.69) through
by 1/r%, we obtain

1dy\®>  2mBy , 2mp
2d9) ~— 12 Y Tz
mE\? 2mp mE\?
_ _< _L2> S +<L2> . (6.70)

Defining z = y — mE/L? for convenience, we have

(5) - () (-35)
= 422 +4B% (6.71)
As in Section 6.4.1, we can just look at this equation and observe that
z = Bcos2(6 — 6y) (6.72)

is the solution. We can rotate the axes so that 8y = 0, so we’ll drop the 6y from here
on. Recalling our definition z = 1/7? — mE/L? and also the definition of B from eq.
(6.71), eq. (6.72) becomes

1 mE

— = F(l + e cos 20), (6.73)
r
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where

23L2
C mE?’
It turns out, as we will see below, that € is not the eccentricity of the ellipse, as it was
in the gravitational case.

(6.74)

€=

We will now use the procedure in Section 6.4.3 to show that eq. (6.74) represents an
ellipse. For convenience, let

L2
k= —. 6.75
—F (6.75)
Multiplying eq. (6.73) through by kr?, and using
y 2 2
cos 20 = cos® § — sin? 0 = % - 2—2 , (6.76)

and also 72 = 22 + y?, we obtain k = (22 + y?) + €(2? — 9?). This can be written as

X 22 y2 k k
- b—2:1, where a = e and b= < (6.77)

This is the equation for an ellipse with its center located at the origin (as opposed to
. its focus located at the origin, as it was in the gravitational case). The semi-major
Figure 6.16 and semi-minor axes are b and a, respectively, and the focal length is ¢ = Vb2 — a? =

2ke/(1 — €2) (see Fig. 6.16). The eccentricity is ¢/b = /2¢/(1 + €).

REMARK: If € =0, then a = b, which means that the ellipse is actually a circle. Let’s see if

this makes sense. Looking at eq. (6.74), we see that we want to show that circular motion
implies 23L% = mFE?. For circular motion, the radial F' = ma equation is mUQ/r =20r =
v? = 28r%/m. The energy is therefore F = mv?/2 4 Br? = 26r%. Also, the square of the
angular momentum is L? = m?v?r? = 2mgr*. Therefore, 26L* = 26(2mpBr*) = m(26r?)? =
mEz, as we wanted to show. &

6. 3/r? potential
With V(r) = 8/r?, eq. (6.16) becomes

(1dr>2 omE 1 2mp

r2 df L2 r2  r2[2
2mE 1 2mp
Letting y = 1/r, this becomes
dy\? 2mE 2
(dZ) +a?y? = 212 ; where a? =1+ Zzﬂ . (6.79)

We must now consider various possibilities for a?. These possibilities depend on how
3 compares to L? (which depends on the initial conditions of the motion). In what
follows, note that the effective potential equals

2 B a’L?

- (6.80)

Verr(r) = omr2 12 2mr2’
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e a2 > 0, or equivalently, 8 > —L?/2m: In this case, the effective potential looks
like the graph in Fig. 6.17. The solution for y in eq. (6.79) is a trig function,
which we will take to be a “sin” by appropriately rotating the axes. Using
y = 1/r, we obtain Pmin

1 1 /2mE i
; g % sin af. (681) Flgure 6.17
6 = 0 and 6 = 7/a make the right-hand side equal to zero, so they correspond to

r = oo. And 6 = 7/2a makes the right-hand side maximum, so it corresponds

to the minimum value of r, which is 7y, = ay/L?/2mE. This minimum r can

also be obtained in a much quicker manner by finding where Veg(r) = E.

If the particle comes in from infinity (at # = 0), we see that it eventually heads
back out to infinity (at 6 = w/a). The angle that the incoming path makes with
the outgoing path is therefore 7/a. So if a is large (that is, if § is large and
positive, or if L is small), then the particle bounces nearly straight backwards. If
a is small (that is, if 3 is negative, and if L? is only slightly larger than —2m}),
then the particle spirals around many times before popping back out to infinity.
A few special cases are: (1) f = 0 = a = 1, which means that the total angle is ,
that is, there is no net deflection. In fact, the particle’s path is a straight line, because
the potential is zero; see Exercise 11. (2) L? = —8m3/3 = a = 1/2, which means
that the total angle is 27, that is, the particle eventually comes back out along the
same line that it went in.

g E
e a = 0, or equivalently, 3 = —L?/2m: In this case, the effective potential is v ~0
identically zero, as shown in Fig. 6.18. Eq. (6.79) becomes / efr (1) =
;
dy > omE
<dt9> L2 (6.:82) Figure 6.18

The solution to this is y = 8/2mFE/L? 4+ C, which gives

1 L2
— 6.83

0V 2mE’ ( )

where we have set the integration constant, C', equal to zero by choosing § = 0

to be the angle that corresponds to r = co. Note that we can use 3 = —L?/2m T E

to write r as r = /—(/E/0.

Since the effective potential is flat, the rate of change of r is constant. If the

particle has 7 < 0, it will therefore reach the origin in finite time, even though

eq. (6.83) say that it will spiral around the origin an infinite number of times

(because 6§ — oo as r — 0).

e a? < 0, or equivalently, 3 < —L?/2m: In this case, the effective potential looks
like the graph in either Fig. 6.19 or Fig. 6.20, depending on the sign of E. For

Veﬁ‘(l") ~ -1/1"2

convenience, let b be the positive real number such that b> = —a?. Then eq. Figure 6.19
(6.79) becomes )
dy\ > 9 9 2mE
<d9> - b Y- = L2 . (684) rI.‘naX

The solution to this equation is a hyperbolic trig function. But we must consider
two cases:

Vegr (r) ~-1/r2

Figure 6.20
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(a) E > 0: Using the identity cosh? z — sinh? z = 1, and recalling y = 1/r, we
see that the solution to eq. (6.84) is!!

1 /[2mE
~ =2\ T sinhbe. (6.85)
Unlike the a? > 0 case above, the sinh function has no maximum value.
Therefore, the right-hand side can head to infinity, which means that r can
head to zero. Note that for large z, we have sinh z ~ ¢#/2. So r heads to
zero like e’ in other words, exponentially quickly.

(b) E < 0: In this case, eq. (6.84) can be rewritten as

dy\*> 2m|E|
20,2 — —_ =
b2y (d@) T (6.86)

The solution to this equation is'?

1 1 [2m[E|
=3 72 cosh b6. (6.87)

As in the sinh case, the cosh function has no maximum value. Therefore, the
right-hand side can head to infinity, which means that r can head to zero.
But in the present cosh case, the right-hand side does achieve a nonzero
minimum value, when 6 = 0. So r achieves a maximum value (this is clear
from Fig. 6.20) equal t0 ryax = by/L?/2m|E|. This maximum r can also
be obtained by simply finding where Vg (r) = E. After reaching rmax, the
particle heads back down to the origin.

7. Rutherford scattering

(a) From Exercise 6, we know that the impact parameter, b, equals the distance b

shown in Fig. 6.9. Therefore, Fig. 6.21 tells us that the angle of deflection (the
angle between the initial and final velocity vectors) is

(D
¢=m—2tan"! (a> ) (6.88)

But from egs. (6.33) and (6.25), we have

2F L2 muvg /2) mvb v2b
v [ [T

Substituting this into eq. (6.88), with v = v3/(GM), gives the first expression
in eq. (6.49). Dividing by 2 and taking the cotangent of both sides then gives

the second expression,
1 ¢
b=—cot|= ). .
5 co < 2) (6.90)

"'More generally, we should write sinh(6 — 6p) here. But we can eliminate the need for 6 by
picking 6 = 0 to be the angle that corresponds to r = oc.

12 Again, we should write cosh(# —6p) here. But we can eliminate the need for 6y by picking 6 = 0
to be the angle that corresponds to the maximum value of r.
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Note that it actually isn’t necessary to go through all the work of Section 6.4.3
to obtain this result, by determining a and b. We can simply use eq. (6.24),
which says that » — oo when cosf — —1/e. This then implies that the dotted
lines in Fig. 6.21 have slope tanf = v/sec20 — 1 = v/e2 — 1, which reproduces
eq. (6.89).

Imagine a wide beam of particles moving in the positive x-direction, toward
the mass M. Consider a thin cross-sectional ring in this beam, with radius b
and thickness db. Now consider a large sphere centered at M. Any particle
that passed through the cross-sectional ring of radius b will hit this sphere in a
ring located at an angle ¢ relative to the z-axis, with an angular spread of d¢.
The relation between db and d¢ is found from eq. (6.90). Using d(cot 8)/d8 =
—1/sin? 3, we have

‘ db . (6.91)

do| ~ 2ysin’(6/2)
The area of the incident cross-sectional ring is do = 27b|db|. What is the solid
angle subtended by a ring at angle ¢ with thickness d¢? Taking the radius of the
sphere to be R (which will cancel out), the radius of the ring is Rsin ¢, and the
linear thickness is R|d¢|. The area of the ring is therefore 27 (Rsin ¢)(R |d¢|),
and so the solid angle subtended by the ring is dQ2 = 27 sin ¢ |d¢| steradians.
Therefore, the differential cross section is
do 27h | db| ( b ) ‘ db

aa - 27 sin ¢ |d¢| sing ) |do
( (1/7) cot(/2) ) ( 1 >
2sin(¢/2) cos(¢/2) ) \ 2ysin?(4/2)
1
= i (6.92)

REMARKS: What does this “differential cross section” result tell us? It tells us that
if we want to find out how much cross-sectional area gets mapped into the solid angle
dQ) at the angle ¢, then we can simply use eq. (6.92) to say (recalling v = v3/(GM)),

G2 M2

do = 4vg sin?(¢/2)

Q. (6.93)

Let’s look at some special cases. If ¢ &~ 180° (that is, backward scattering), then the
amount of area that gets scattered into a nearly backward solid angle of d2 equals
do = (G®M?/4v3) dQ. If vy is small, then we see that do is large, that is, a large
area gets deflected nearly straight backwards. This makes sense, because with vy = 0,
the orbits are essentially parabolic, which means that the initial and final velocities
at infinity are (anti)parallel. (If you release a particle from rest far away from a
gravitational source, it will come back to you. Assuming it doesn’t bump into the
source, of course.) If vg is large, then we see that do is small, that is, only a small area
gets deflected backwards. This makes sense, because the particles are more likely to
fly past M without any deflection if they are moving fast, because the force has less
time to act.

Another special case is ¢ ~ 0° (that is, there is negligible deflection). In this case,
eq. (6.93) tells us that the amount of area that gets scattered into a nearly forward
solid angle of df2 equals do =~ co. This makes sense, because if the impact parameter
is large (and there is an infinite cross-sectional area for which this is true), then the
particle will hardly feel the mass M, and will therefore continue to move essentially in
a straight line.
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What if we consider the electrostatic force, instead of the gravitational force? What
is the differential cross section is that case? To answer this, note that we may rewrite
v as

_wg 2(mug/2) _ 2E
TTeM T T GMm T a
In the case of electrostatics, the force takes the form, Fe = kqig2/r>. This looks like the
gravitational force, Fy = Gmlmg/r2, except that the constant « is now kqi1 g2, instead
of Gmimz. Therefore, the v in eq. (6.94) becomes v. = 2E/(kq1q2). Substituting this
into eq. (6.92), we see that the differential cross section for electrostatic scattering is

(6.94)

do k*qiq3

dQ " 16E2sin?(4/2) (6.95)

This is the Rutherford scattering differential cross section formula. Around 1910,
Rutherford and his students bombarded metal foils with alpha particles. Their re-
sults for the distribution of scattering angles were consistent with the above formula.
In particular, they observed back-scattering of the alpha particles. Since the above
formula is based on the assumption of a point source for the potential, this led Ruther-
ford to his theory that atoms contained a dense positively-charged nucleus, as opposed
to being made of a spread-out “plum pudding” distribution of charge, which (as a
special case of not yielding the correct distribution of scattering angles) doesn’t yield
back-scattering. &
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Chapter 7

Angular Momentum, Part I
(Constant L)

Copyright 2004 by David Morin, morin@physics.harvard.edu

The angular momentum of a point mass, relative to a given origin, is
L=rxp. (7.1)

For a collection of particles, the total L is simply the sum of the L’s of each particle.

The quantity r x p is a useful thing to study because it has many nice properties.
One of these is the conservation law presented in Theorem 6.1, which allowed us to
introduce the “effective potential” in Section 6.2. And later in this chapter we will
introduce the concept of torque, 7, which appears in the bread-and-butter statement,
T = dL/dt (analogous to Newton’s F = dp/dt law).

There are two basic types of angular momentum problems in the world. Since
the solution to any rotational problem invariably comes down to using 7 = dL/dt,
we must determine how L changes in time. And since L is a vector, it can change
because (1) its length changes, or (2) its direction changes (or through some com-
bination of these effects). In other words, if we write L = Lf;, where L is the
unit vector in the L direction, then L can change because L changes, or because L
changes, or both.

The first of these cases, that of constant L, is the easily understood one. Consider
a spinning record. The vector L = Y r x p is perpendicular to the record. If we
give the record a tangential force in the proper direction, then it will speed up (in
a precise way which we will soon determine). There is nothing mysterious going on
here. If we push on the record, it goes faster. L points in the same direction as
before, but it now simply has a larger magnitude. In fact, in this type of problem,
we can completely forget that L is a vector. We can just deal with its magnitude
L, and everything will be fine. This first case is the subject of the present chapter.

The second case however, where L changes direction, can get rather confusing.
This is the subject of the following chapter, where we will talk about gyroscopes,
tops, and other such spinning objects that have a tendency to make one’s head spin
also. In these situations, the entire point is that L is actually a vector. And unlike
in the constant-L case, we really have to visualize things in three dimensions to see

VII-1
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what’s going on.!

The angular momentum of a point mass is given by the simple expression in
eq. (7.1). But in order to deal with setups in the real world, which invariably
consist of many particles, we must learn how to calculate the angular momentum
of an extended object. This is the task of the Section 7.1. We will deal only with
motion in the xz-y plane in this chapter. Any rotations we talk about will therefore
be around the z-axis (or an axis parallel to the z-axis). We’ll save the general 3-D
case for Chapter 8.

7.1 Pancake object in z-y plane

Consider a flat, rigid body undergoing arbitrary motion (both translating and spin-
ning) in the x-y plane; see Fig. 7.1. What is the angular momentum of this body,
relative to the origin of the coordinate system??

If we imagine the body to consist of particles of mass m;, then the angular
momentum of the entire body is the sum of the angular momenta of each m;, which
are L; = r; X p;. So the total angular momentum is

L=> 1 xpi. (7.2)

For a continuous distribution of mass, we would have an integral instead of a sum.
L depends on the locations and momenta of the masses. The momenta in turn
depend on how fast the body is translating and spinning. Our goal here is to find
the dependence of L on the distribution and motion of its constituent masses. The
result will involve the geometry of the body in a specific way, as we will show.

In this section, we will deal only with pancake-like objects that move in the z-y
plane (or simple extensions of these). We will find L relative to the origin, and we
will also derive an expression for the kinetic energy. We will deal with non-pancake
objects in Section 7.2.

Note that since both r and p for our pancake-like objects always lie in the z-y
plane, the vector L = r x p always points in the z direction. This fact is what makes
these pancake cases easy to deal with; L changes only because its length changes,
not its direction. So when we eventually get to the 7 = dL/dt equation, it will take
on a simple form.

Let’s first look at a special case, and then we’ll look at general motion in the z-y
plane.

!The difference between these two cases is essentially the same as the difference between the two
basic F = dp/dt cases. The vector p can change simply because its magnitude changes, in which
case we have F' = ma. Or, p can change because its direction changes, in which case we have the
centripetal-acceleration statement, F = muv? /7. (Or, there could be a combination of these effects.)
The former case seems a bit more intuitive than the latter.

2Remember, L is defined relative to a chosen origin (because it has the vector r in it), so it
makes no sense to ask what L is, without specifying what origin you’ve chosen.
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7.1.1 Rotation about the z-axis

The pancake in Fig. 7.2 rotates with angular speed w around the z-axis, in the
counterclockwise direction (as viewed from above). Consider a little piece of the
body, with mass dm and position (z,y). Let r = \/x2 + y2. This little piece travels
in a circle around the origin with speed v = wr. Therefore, the angular momentum
of this piece (relative to the origin) is equal to L = r x p = r(vdm)z = dmr’wz.
The z direction arises from the cross product of the (orthogonal) vectors r and p.
The angular momentum of the entire body is therefore

L = /r2wi dm
= / (2% + y*)wz dm, (7.3)

where the integration runs over the area of the body. If the density of the object is
constant, as is usually the case, then we have dm = pdz dy. If we define the moment
of inertia around the z-axis to be

I, = /7"2 dm = /(m2 +42) dm, (7.4)

then the z-component of L is
L,=1lLw, (7.5)

and L, and L, are both equal to zero. In the case where the rigid body is made
up of a collection of point masses m; in the z-y plane, the moment of inertia in eq.
(7.4) simply takes the discretized form,

I, = Z mgr?. (7.6)

Given any rigid body in the z-y plane, we can calculate I,. And given w, we
can then multiply it by I, to find L,. In Section 7.3.1, we will get some practice
calculating various moments of inertia.

What is the kinetic energy of our object? We need to add up the energies of
all the little pieces. A little piece has energy dmv?/2 = dm(rw)?/2. So the total
kinetic energy is

dm. (7.7)

(7.8)

This is easy to remember, because it looks a lot like the kinetic energy of a point
mass, mv? /2.

-
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Figure 7.2
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7.1.2 General motion in z-y plane

How do we deal with general motion in the z-y plane? For the motion in Fig. 7.3,
where the object is both translating and spinning, the various pieces of mass do not
travel in circles around the origin, so we cannot write v = wr as we did above.

It turns out to be highly advantageous to write the angular momentum, L, and
the kinetic energy, T', in terms of the center-of-mass (CM) coordinates and the
coordinates relative to the CM. The expressions for L and 7" take on very nice forms
when written this way, as we now show.

Let the coordinates of the CM be R = (X, Y), and let the coordinates of a given
point relative to the CM be v = (2/,9'). Then the given point has coordinates
r =R+ (see Fig. 7.4). Let the velocity of the CM be V, and let the velocity
relative to the CM be v/. Then v = V +v’. Let the body rotate with angular speed
w’ around the CM (around an instantaneous axis parallel to the z-axis, so that the
pancake remains in the -y plane at all times).? Then v’ = w'r’.

Let’s look at L first. The angular momentum relative to the origin is

L = /r X vdm
- /(R+r’)x(V+v’)dm
= MRXxV+ / v x v dm (cross terms vanish; see below)
= MRXV+(/7‘/2w’dm)2

MR x V + (IZCMw’) 2, (7.9)

where M is the mass of the pancake. In going from the second to the third line
above, the cross terms, [’ x V.dm and [ R x v/ dm, vanish by definition of the CM,
which says that [r'dm = 0 (see eq. (4.69)), and hence [ v'dm = d([ 1 dm)/dt = 0.
The quantity I ZCM is the moment of inertia around an axis through the CM, parallel
to the z-axis. Eq. (7.9) is a very nice result, and it is important enough to be called
a theorem. In words, it says:

Theorem 7.1 The angular momentum (relative to the origin) of a body can be
found by treating the body as a point mass located at the CM and finding the angular
momentum of this point mass relative to the origin, and by then adding on the
angular momentum of the body relative to the CM. *

3What we mean here is the following. Consider a coordinate system whose origin is the CM and
whose axes are parallel to the fixed z- and y-axes. Then the pancake rotates with angular speed w’
in this reference frame.

4This theorem only works if we use the CM as the location of the imagined point mass. True,
in the above analysis we could have chosen a point P other than the CM, and then written things
in terms of the coordinates of P and the coordinates relative to P (which could also be described
by a rotation). But then the cross terms in eq. (7.9) wouldn’t vanish, and we’d end up with an
unenlightening mess.
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Note that if we have the special case where the CM travels around the origin in
a circle, with angular speed Q (so that V' = QR), then eq. (7.9) becomes L =

(MR2Q + 1MW) 2.
Now let’s look at T'. The kinetic energy is
1
—v
2
1 /2

T = 2dm

1 1
= 3 MV?+ / 51}’2 dm (cross term vanishes; see below)

1 1
= GMVi+ / 7w dm
1 1
= -MVZ4 M2, (7.10)
2 2
In going from the second to third line above, the cross term [V - v/ dm vanishes by
definition of the CM, as in the above calculation of L. Again, eq. (7.10) is a very

nice result. In words, it says:

Theorem 7.2 The kinetic energy of a body can be found by treating the body as a
point mass located at the CM, and by then adding on the kinetic energy of the body
due to the motion relative to the CM.

To calculate E/, my dear class,

Just add up two things, and you’ll pass.
Take the CM point’s E,

And then add on with glee,

The F ’'round the center of mass.

7.1.3 The parallel-axis theorem

Consider the special case where the CM rotates around the origin at the same rate
as the body rotates around the CM. This may be achieved, for example, by gluing a
stick across the pancake and pivoting one end of the stick at the origin; see Fig. 7.5.
In this special case, we have the simplified situation where all points in the pancake
travel in circles around the origin. Let their angular speed be w.

In this situation, the speed of the CM is V' = wR, so eq. (7.9) says that the
angular momentum around the origin is

L.=(MR*+ 1"M)w. (7.11)

In other words, the moment of inertia around the origin is

I.=MR? + M| (7.12)

This is the parallel-axis theorem. It says that once you’ve calculated the moment of
inertia of an object around the axis passing through the CM (namely [ SM), then if

Figure 7.5
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you want to calculate the moment of inertia around a parallel axis passing through
an arbitrary point in the plane of the pancake, you simply have to add on M R?,
where R is the distance from the point to the CM, and M is the mass of the pancake.

Note that the parallel-axis theorem is simply a special case of the more general
result in eq. (7.9), so it is valid only with the CM, and not with any other point.

We can also look at the kinetic energy in this special case where the CM rotates
around the origin at the same rate as the body rotates around the CM. Using
V =wR in eq. (7.10), we find

1
T:§mﬂ8+émw? (7.13)

Example (A stick): Let’s verify the parallel-axis theorem for a stick of mass m
and length ¢, in the case where we want to compare the moment of inertia around
an axis through an end with the moment of inertia around an axis through the CM.
Both of the axes are perpendicular to the stick, and parallel to each other, of course.

For convenience, let p = m/¢ be the density. The moment of inertia around an axis
through an end is

¢ ¢ 1 1 1
rend = /0 x? dm = /0 x2pdr = §p€3 = g(p€)€2 = ngQ. (7.14)

The moment of inertia around an axis through the CM is

/2 /2 1 1
oM _ / 22 dm — / P2pdr = —pl® = —mi2. (7.15)
e s 12 12

This is consistent with the parallel-axis theorem, eq. (7.12), because
I\ 2
end =y (2> + 1M, (7.16)

Remember that this works only with the CM. If we instead want to compare "4
with the I around a point, say, £/6 from that end, then we cannot say that they differ
by m(£/6)2. But we can compare each of them to I°M and say that they differ by
(€/2)% — (¢/3)? = 502 /36.

pancake 7.1.4 The perpendicular-axis theorem
Q This theorem is valid only for pancake objects. Consider a pancake object in the
x-y plane (see Fig. 7.6). Then the perpendicular-azis theorem says that

X L=1I+1, (7.17)

Figure 7.6
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where I, and I, are defined analogously to the I, in eq. (7.4). That is, to find I,
imagine spinning the object around the x-axis at angular speed w, and then define
I, = L;/w. Likewise for I,,. In other words,

I, = /(y2 + 2%) dm, I, = /(22 + 22) dm, I, = /(ac2 + %) dm. (7.18)

To prove this theorem, we simply use the fact that z = 0 for our pancake object.
Eq. (7.18) then gives I, = I, + I,,.

In the limited number of situations where this theorem is applicable, it can save
you some trouble. A few examples are given in Section 7.3.1

7.2 Non-planar objects

In Section 7.1, we restricted the discussion to pancake objects in the x-y plane.
However, nearly all the results we derived carry over to non-planar objects, provided
that the axis of rotation is parallel to the z-axis, and provided that we are concerned
only with L., and not L, or L,. So let’s drop the pancake assumption and run
through the results we obtained above.

First, consider an object rotating around the z-axis. Let the object have exten-
sion in the z direction. If we imagine slicing the object into pancakes parallel to the
x-y plane, then egs. (7.4) and (7.5) correctly give L, for each pancake. And since
the L, of the whole object is simply the sum of the L,’s of all the pancakes, we see
that the I, of the whole object is simply the sum of the I,’s of all the pancakes. The
difference in the z values of the pancakes is irrelevant. Therefore, for any object, we
have

I = /(962 +y%) dm, and L, =lLuw, (7.19)

where the integration runs over the entire volume of the body. In Section 7.3.1 we
will calculate I, for many non-planar objects.

Even though eq. (7.19) gives the L, for an arbitrary object, the analysis in
this chapter is still not completely general because (1) we are restricting the axis
of rotation to be the (fixed) z-axis, and (2) even with this restriction, an object
outside the x-y plane might have nonzero x and y components of L; we found only
the z-component in eq. (7.19) This second fact is strange but true. Ponder it for
now; we’ll deal with it in Section 8.2.

As far as the kinetic energy goes, the T for a non-planar object rotating around
the z-axis is still given by eq. (7.8), because we can obtain the total 7' by simply
adding up the T”s of each of the pancake slices.

Also, egs. (7.9) and (7.10) continue to hold for a non-planar object in the case
where the CM is translating while the object is spinning around it (or more precisely,
spinning around an axis parallel to the z-axis and passing through the CM). The
velocity V of the CM can actually point in any direction, and these two equations
will still be valid. But we’ll assume in this chapter that all velocities are in the z-y
plane.
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Lastly, the parallel-axis theorem still holds for non-planar object. But as men-
tioned in Section 7.1.4, the perpendicular-axis theorem does not. This is the one
instance where we need the planar assumption.

Finding the CM

The center of mass has come up repeatedly in this Chapter. For example, when
we used the parallel-axis theorem, we needed to know where the CM was. In some
cases, such as with a stick or a disk, the location is obvious. But in other cases,
it isn’t so clear. So let’s get a little practice calculating the location of the CM.
Depending on whether the mass distribution is discrete or continuous, the position
of the CM is defined by (see eq. (4.69))

ijml , ot Rom= fl;wm,

Rceum = (7.20)
where M is the total mass.

Let’s do an example with a continuous mass distribution. As with many problems
involving an integral, the main step in the solution is deciding how you want to slice
up the object to do the integral.

Example (Hemispherical shell): Find the location of the CM of a hollow hemi-
spherical shell, with uniform mass density and radius R.

Solution: By symmetry, the CM is located on the line above the center of the base.
So our task reduces to finding the height, yon. Let the mass density be . We'll slice
the hemisphere up into horizontal rings, described by the angle # above the horizontal,
as shown in Fig. 7.7. If the angular thickness of a ring is df, then its mass is

dm = o dA = o(length)(width) = o(2r R cos §)(R d). (7.21)
All points on the ring have a y value of Rsinf. Therefore,

1

1 /2
= — — [E— 3 2 2
yom = 37 /ydm (27TR2)0/0 (Rsin @) (27 R0 cos 6 df)

/2
R/ sin 0 cos 0 d6
0

Rsin® 6 /2

2

0

(7.22)

SRy

The simple factor of 1/2 here is nice, but it’s not all that obvious. It comes from the
fact that each value of y is represented equally. If you solved the problem by doing a
dy integral instead of a df one, you would find that there is the same area (and hence
the same mass) in each ring of height dy. You are encouraged to work this out.
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The calculation of a CM is very similar to the calculation of a moment of inertia.
Both involve an integration over the mass of an object, but the former has one power
of a length in the integrand, whereas the latter has two powers.

7.3 Calculating moments of inertia

7.3.1 Lots of examples

Let’s now calculate the moments of inertia of various objects, around specified axes.
We will use p to denote mass density (per unit length, area, or volume, as appro-
priate). We will assume that this density is uniform throughout the object. For
the more complicated of the objects below, it is generally a good idea to slice the
object up into pieces for which I is already known. The problem then reduces to
integrating over these known I’s. There is usually more than one way to do this
slicing. For example, a sphere may be looked at as a series of concentric shells or
a collection of disks stacked on top of each other. In the examples below, you may
want to play around with slicings other than the ones given. Consider at least a few
of these examples to be problems and try to work them out for yourself.

1. A ring of mass M and radius R (axis through center, perpendicular to plane; Fig. 7.8):

2m
I= /r2 dm = / R%*pRdf = (2rRp)R: = | MR?], (7.23)
0

as it should be, because all of the mass is a distance R from the axis.

Figure 7.8

2. A ring of mass M and radius R (axis through center, in plane; Fig. 7.8):

The distance from the axis is (the absolute value of) Rsin. Therefore,

27 1
I= /r2 dm :/0 (Rsin6)?*pRdf = 5(szp)R2 =[iMR?|, (7.24)

where we have used sin?f = (1 — cos260)/2. You can also find I by using the
perpendicular-axis theorem. In the notation of section 7.1.4, we have I, = I, by

symmetry. Therefore, I, = 2I,. Using I, = MR? from Example 1 then gives
I, = MR2?)2.

3. A disk of mass M and radius R (axis through center, perpendicular to plane; Fig. 7.9):

Figure 7.9

2w rR
1
I= /’I“2 dm:/ / r2prdrdf = (R*/4)2rp = i(pﬂ'RQ)R2 =|iMR?*|. (7.25)
o Jo

You can save one (trivial) integration step by considering the disk to be made up of
many concentric rings, and invoking Example 1. The mass of each ring is p27rdr.
Integrating over the rings gives I = fOR(pQﬂ'T dr)r? = nR*p/2 = MR?/2, as above.
Slicing up the disk is fairly inconsequential in this example, but it will save you some
trouble in others.
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10.

A disk of mass M and radius R (axis through center, in plane; Fig. 7.9):

Slice the disk up into rings, and use Example 2.

R 1
I= A (1/2)(p27r dr)r? = (R?/4)pr = 1(pr?)R2 =|iMR%| (7.26)

Or, just use Example 3 and the perpendicular-axis theorem.

. A thin uniform rod of mass M and length L (axis through center, perpendicular to

rod; Fig. 7.10):

L/2 1
I= /x2dm :/ 2’pdr = —(pL)L* =| 5ML?|. (7.27)
L2 12

A thin uniform rod of mass M and length L (axis through end, perpendicular to rod;
Fig. 7.10):

L
1
I= /xzdm :/0 ?pdr = g(pL)L2 =|iML?*| (7.28)

A spherical shell of mass M and radius R (any axis through center; Fig. 7.11):

Let’s slice the sphere into horizontal ring-like strips. In spherical coordinates, the
radius of a ring is given by r = Rsin#, where 6 is the angle down from the north
pole. The area of a strip is then 27 (Rsin0) Rdf. Using [ sin® 6 = [sin (1 —cos? ) =
—cosf + cos® 0/3, we have

I:/r2 dm = / (Rsinf)? 27r,0(Rsin9)Rd9:27TpR4/ sin® 6
0 0

2
= 2mpR*(4/3) = g(47rR2p)R2 =|2MR?|. (7.29)

A solid sphere of mass M and radius R (any axis through center; Fig. 7.11):

A sphere is made up of concentric spherical shells. The volume of a shell is 47r2dr.
Using Example 7, we have

R
I= /0 (2/3)(4mprdr)r® = (R®/5)(87p/3) = %(4/37@3,))32: EMR?|. (7.30)

An infinitesimally thin triangle of mass M and length L (axis through tip, perpen-
dicular to plane; Fig. 7.12):

Let the base have length a, where a is infinitesimally small. Then a slice at a distance
x from the tip has length a(x/L). If the slice has thickness dz, then it is essentially
a point mass of mass dm = pax dx/L. Therefore,

L
1
I= /dem :/ z?pax/Ldr = 5(paL/Q)L2 =|iML?|, (7.31)
0

because aL /2 is the area of the triangle. This of course has the same form as the disk
in Example 3, because a disk is made up of many of these triangles.

An isosceles triangle of mass M, vertex angle 283, and common-side length L (axis
through tip, perpendicular to plane; Fig. 7.12):
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Let h be the altitude of the triangle (so h = Lcos ). Slice the triangle into thin strips
parallel to the base. Let x be the distance from the vertex to a thin strip. Then the
length of a strip is £ = 2z tan 3, and its mass is dm = p(2z tan §dx). Using Example
5 above, along with the parallel-axis theorem, we have

B h 2 2\ h (22 tan 3)? 9
I = /Odm<12+x)—/0(p2xtan,6dx)<12+x>

h 2 2 4
h
/ 2ptan 3 <1+ tax; ﬁ) 2% dz = 2ptan 8 <1+ tar; ﬂ) T (132)
0

But the area of the whole triangle is h% tan 3, so we have I = (Mh?/2)(1 + tan? 3/3).
In terms of L, this is

I = (ML?/2)(cos® B +sin® B/3) =| 1M L?(1 — Zsin® B) | (7.33)

11. A regular N-gon of mass M and “radius” R (axis through center, perpendicular to
plane; Fig. 7.13):
The N-gon is made up of N isosceles triangles, so we can use Example 10, with
8 = m/N. The masses of the triangles simply add, so if M is the mass of the whole
N-gon, we have

I=|IMR?*(1-2sin® %) |. (7.34)

Let’s list the values of I for a few N. We’ll use the shorthand notation (N, I/M R?).
Eq. 7.34 gives (3,7), (4,1), (6, %), (00, ). These values of I form a nice arithmetic
progression.

12. A rectangle of mass M and sides of length a and b (axis through center, perpendicular
to plane; Fig. 7.13):

Let the z-axis be perpendicular to the plane. We know that I, = Mb?/12 and
I, = Ma?/12, so the perpendicular-axis theorem tells us that

L=1+1I,=|5M(a®+0)| (7.35)

7.3.2 A neat trick

For some objects with certain symmetries, it is possible to calculate I without doing
any integrals. All that is needed is a scaling argument and the parallel-axis theorem.
We will illustrate this technique by finding I for a stick (Example 5 above). Other
applications can be found in the problems for this chapter.

In the present example, the basic trick is to compare [ for a stick of length L
with I for a stick of length 2L. A simple scaling argument shows the latter is eight
times the former. This is true because the integral [z?dm = [2?pdx has three
powers of x in it. So a change of variables, y = 2z, brings in a factor of 23 = 8.
Equivalently, if we imagine expanding the smaller stick into the larger one, then a
corresponding piece will be twice as far from the axis, and also twice as massive.
The integral [ 2% dm therefore increases by a factor of 22 -2 = 8.

° b

a

Figure 7.13
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The technique is most easily illustrated with pictures. If we denote the moment
of inertia of an object by a picture of the object, with a dot signifying the axis, then
we have:

L

8 —eo—o

2 o0———

gy

L L
———e
———e

The first line comes from the scaling argument, the second line comes from the
fact that moments of inertia simply add (the left-hand side is two copies of the right-
hand side, attached at the pivot), and the third line comes from the parallel-axis
theorem. Equating the right-hand sides of the first two equations gives

-4

Plugging this expression for e—— into the third equation gives the desired
result,

Note that sooner or later we must use real live numbers, which enter here through
the parallel-axis theorem. Using only scaling arguments isn’t sufficient, because they
provide only linear equations homogeneous in the I’s, and therefore give no means
of picking up the proper dimensions.

Once you’ve mastered this trick and applied it to the fractal objects in Problem
6, you can impress your friends by saying that you can “use scaling arguments,
along with the parallel-axis theorem, to calculate moments of inertia of objects with
fractal dimension.” And you never know when that might come in handy!

7.4 Torque

We will now show that (under certain conditions, stated below) the rate of change
of angular momentum is equal to a certain quantity, 7, which we call the torque.
That is, 7 = dL/dt. This is the rotational analog of our old friend F = dp/dt
involving linear momentum. The basic idea here is straightforward, but there are
two subtle issues. One deals with internal forces within a collection of particles.
The other deals with origins (the points relative to which the angular momentum
is calculated) that are not fixed. To keep things straight, we’ll prove the general
theorem by dealing with three increasingly complicated situations.

Our derivation of 7 = dL/dt here holds for completely general motion; we can
take the result and use it in the following chapter, too. If you wish, you can construct
a more specific proof of 7 = dL/dt for the special case where the axis of rotation is
parallel to the z-axis. But since the general proof is no more difficult, we’ll present
it here in this chapter and get it over with.
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7.4.1 Point mass, fixed origin

Consider a point mass at position r relative to a fixed origin (see Fig. 7.14). The
time derivative of the angular momentum, L = r X p, is

dL d
a ﬁ(rxp)
= @xp—l—rxd—p
dt dt
= vx(mv)+rxF
= 0+rxF, (7.36)

where F is the force acting on the particle. This is the same proof as in Theorem
6.1, except that here we are considering an arbitrary force instead of a central one.
If we define the torque on the particle as

T=rxF, (7.37)
then eq. (7.36) becomes
dL
T= (7.38)

7.4.2 Extended mass, fixed origin

In an extended object, there are internal forces acting on the various pieces of the
object, in addition to whatever external forces exist. For example, the external force
on a given atom in a body might come from gravity, while the internal forces come
from the adjacent atoms. How do we deal with these different types of forces?

In what follows, we will deal only with internal forces that are central forces, so
that the force between two objects is directed along the line between them. This is
a valid assumption for the pushing and pulling forces between molecules in a solid.
(It isn’t valid, for example, when dealing with magnetic forces. But we won’t be
interested in such things here.) We will invoke Newton’s third law, which says that
the force that particle 1 applies to particle 2 is equal and opposite to the force that
particle 2 applies to particle 1.

For concreteness, let us assume that we have a collection of N discrete particles
labeled by the index ¢ (see Fig. 7.15). In the continuous case, we would need
to replace the following sums with integrals. The total angular momentum of the

system is
N
L=) r xp. (7.39)
i=1
The force acting on each particle is F$** + Fint = dp; /dt. Therefore,
dL d
a = at Z r; X p;

o . dpi
- zi:dt Xpl+zi:rzx dt

Figure 7.14

I

Figure 7.15



r
I-r
-,
Iy 2710
r
Figure 7.16

X

VII-14 CHAPTER 7. ANGULAR MOMENTUM, PART I (CONSTANT ﬁ)

= Z vi X (mv;) + Z r; X (F& 4+ F;nt)
i
= 0+ r; xF{

= > (7.40)

The second-to-last line follows because v; x v; = 0, and also because >, r; x Fim =0,
as you can show in Problem 8. In other words, the internal forces provide no net
torque. This is quite reasonable. It basically says that a rigid object with no external
forces won’t spontaneously start rotating.

Note that the right-hand side involves the total external torque acting on the
body, which may come from forces acting at many different points. Note also that
nowhere did we assume that the particles were rigidly connected to each other. Eq.
(7.40) still holds even if there is relative motion among the particles.

7.4.3 Extended mass, non-fixed origin

Let the position of the origin be rg (see Fig. 7.16), and let the positions of the
particles be r;. The vectors rg and r; are measured with respect to a given fixed
coordinate system. The total angular momentum of the system, relative to the
(possibly moving) origin ry, is

L= Z i —rg) X my(i; — 1p). (7.41)

Therefore,

% — % <Z:(rZ — 1) X m;(t; — I"O))

%

= Z(i‘-—i‘g)xmz r; — Iy —I—Z —I‘O Xml(l‘l—l‘g)

= 0+ Z — I‘o Fext + Fmt mil‘o), (742)

because m;¥; is the net force (namely F$' + Fint) acting on the ith particle. But
a quick corollary of Problem 8 is that the term involving Fi" vanishes (show this).
And since )" m;r; = MR (where M = " m; is the total mass, and R is the position
of the center of mass), we have

dL
E = Z(rz - I'0) X F?(t — M(R — 1‘0) X 1. (7.43)

The first term is the external torque, relative to the origin rg. The second term is
something we wish would go away. And indeed, it usually does. It vanishes if any
of the following three conditions is satisfied.

1. R =rp. That is, the origin is the CM.
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2. ¥g = 0. That is, the origin is not accelerating.

3. (R —ry) is parallel to #y. This condition is rarely invoked.

If any of these conditions is satisfied, then we are free to write

dL
o= Z(rZ —1g) x F¢&' = ZT?Xt . (7.44)

In other words, we can equate the total torque with the rate of change of the total
angular momentum. An immediate corollary of this result is:

Corollary 7.3 If the total torque on a system is zero, then its angular momentum
is conserved. In particular, the angular momentum of an isolated system (one that
is subject to no external forces) is conserved.

Everything up to this point is valid for arbitrary motion. The particles can be
moving relative to each other, and the various L;’s can point in different directions,
etc. But let’s now restrict the motion. In the present chapter, we are dealing
only with cases where L is constant (taken to point in the z-direction). Therefore,
dL/dt = d(LL)/dt = (dL/dt)L. If in addition we consider only rigid objects (where
the relative distances among the particles is fixed) that undergo pure rotation around
a given point, then L = [w, which gives dL/dt = Iw = Ia. Taking the magnitude
of both sides of eq. (7.44) then gives

T=Ia. (7.45)

Invariably, we will calculate angular momentum and torque around either a fixed
point or the CM. These are “safe” origins, in the sense that eq. (7.44) holds. As
long as you vow to always use one of these safe origins, you can simply apply eq.
(7.44) and not worry much about its derivation.

REMARKS ON THE THIRD CONDITION: You'll probably never end up invoking the third
condition above, but it’s interesting to note that there is a simple way of understanding it
in terms of accelerating reference frames. This is the topic of Chapter 9, so we're getting
a little ahead of ourselves here, but the reasoning is as follows. Let ry be the origin of a
reference frame that is accelerating with acceleration 1. Then all objects in this accelerated
frame feel a mysterious fictitious force of —miy. For example, on a train accelerating to the
right with acceleration a, you feel a strange force to the left of ma. If you don’t counter this
with another force, you will fall over. The fictitious force acts just like a gravitational force.
Therefore, it effectively acts at the CM, producing a torque of (R —r¢) x (—M7ty). This is
the second term in eq. (7.43). This term will vanish if the CM is directly “above” (as far
as the fictitious gravitational force is concerned) the origin, in other words, if (R — rp) is
parallel to rg.

There is one common situation where the third condition can be invoked. Consider a
wheel rolling without slipping on the ground. Mark a point on the rim. At the instant this
point in in contact with the ground, it is a valid choice for the origin. This is true because
(R —ro) points vertically. And t( also points vertically. A point on a rolling wheel traces
out a cycloid. Right before the point hits the ground, it is moving straight downward; right
after it hits the ground, it is moving straight upward. But never mind, it’s still a good idea
to pick your origin to be the CM or a fixed point, even if the third condition holds. &
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For conditions that number but three,
We say, “Torque is dL by dt.”

But though they’re all true,

T'll stick to just two;

It’s CM’s and fixed points for me.

Example: A string wraps around a uniform cylinder of mass M, which rests on a
fixed plane. The string passes up over a massless pulley and is connected to a mass
m, as shown in Fig. 7.17. Assume that the cylinder rolls without slipping on the
plane, and that the string is parallel to the plane. What is the acceleration of the
mass m? What is the minimum value of M /m for which the cylinder accelerates down
the plane?

0

Solution: The friction, tension, and gravitational forces are shown in Fig. 7.18.
Define positive a1, az, and « as shown. These three accelerations, along with 7" and
F, are five unknowns. We therefore need to produce five equations. They are:

(1) F=maonm = T —mg= mas.

(2) F=maon M = Mgsin0 —T — F = Maj,.

(3) 7=Ia on M (around the CM) = FR—TR = (MR?/2)a.
(4)

()

4) Non-slipping condition = « = a;/R.

5) Conservation of string = ay = 2a;.

Figure 7.18

A few comments on these equations: The normal force and the gravitational force
perpendicular to the plane cancel, so we can ignore them. We have picked positive F'
to point up the plane, but if it happens to point down the plane and thereby turn out
to be negative, that’s fine (but it won’t); we don’t need to worry about which way it
really points. In (3), we are using the CM of the cylinder as our origin, but we can
also use a fixed point; see the remark below. In (5), we have used the fact that the
top of a rolling wheel moves twice as fast as the center. This is true because it has
the same speed relative to the center as the center had relative to the ground.

We can go about solving these five equations in various ways. Three of the equations

involve only two variables, so it’s not so bad. (3) and (4) give FF — T = May /2.

Adding this to (2) gives Mgsinf — 2T = 3Ma;/2. Using (1) to eliminate T', and

using (5) to write a1 in terms of as, then gives

3Mas . g = (Msinf — 2m)g
4 %M +2m

Mgsin€ — 2(mg + mag) = (7.46)
And a1 = ay/2. We see that a; is positive (that is, the cylinder rolls down the plane)
if M/m > 2/sin6.

REMARK: In using 7 = dL/dt, we can also pick a fixed point as our origin, instead of the
CM. The most sensible point is one located somewhere along the plane. The Mgsin 6 force
now provides a torque, but the friction does not. The angular momentum of the cylinder
with respect to a point on the plane is Iw + MvR, where the second term comes from the
L due to the object being treated like a point mass at the CM. So 7 = dL/dt becomes
(Mgsinf)R — T(2R) = Ia + Mai R. This is simply the sum of the third equation plus R
times the second equation above. We therefore obtain the same result. &
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7.5 Collisions

In Section 4.7, we looked at collisions involving point particles (or otherwise non-
rotating objects). The fundamental ingredients we used to solve a collision problem
were conservation of momentum and conservation of energy (if the collision was
elastic). With conservation of angular momentum now at our disposal, we can
extend our study of collisions to ones that contain rotating objects. The additional
fact of conservation of L will be compensated for by the new degree of freedom for
the rotation. Therefore, provided that the problem is set up properly, we will still
have the same number of equations as unknowns.

In an isolated system, conservation of energy can be used only if the collision is
elastic (by definition). But conservation of angular momentum is similar to conser-
vation of momentum, in that it can always be used. However, conservation of L is
a little different from conservation of p, because we have to pick an origin before we
can proceed. In view of the three conditions that are necessary for Corollary 7.3 to
hold, we must pick our origin to be either a fixed point or the CM of the system
(we’ll ignore the third condition, since it’s rarely used). If we choose some other
point, then 7 = dL/dt does not hold, so we have no right to claim that dL/dt equals
zero just because the torque is zero (as it is for an isolated system).

There is, of course, some freedom in choosing an origin from among the legal
possibilities of fixed points or the CM. And since it is generally the case that one
choice is better than the others (in that it makes the calculations easier), you should
take advantage of this freedom.

Let’s to two examples. First, and elastic collision, and then an inelastic one.

Example (Elastic collision): A mass m travels perpendicularly to a stick of mass
m and length ¢, which is initially at rest. At what location should the mass collide
elastically with the stick, so that the mass and the center of the stick move with equal
speeds after the collision?

Solution: Let the initial speed of the mass be vg. We have three unknowns in the
problem (see Fig. 7.19), namely the desired distance from the middle of the stick,
h; the final (equal) speeds of the stick and the mass, v; and the final angular speed
of the stick, w. We can solve for these three unknowns by using our three available
conservation laws:

e Conservation of p:

muvg = mv + muv = v= 1}2—0. (7.47)
e Conservation of E:
2 2 2 1 62
) 2 )
2 o\2) T [2 2) T3\ )¢
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e Conservation of L: Let’s pick our origin to be the fixed point in space that
coincides with the initial location of the center of the stick. Then conservation
of L gives

2

l

muoh = m(v—o)h—i- <m7>w—|—0 . (7.49)
2 12

The zero here comes from the fact that the CM of the stick moves directly away

from the origin, so there is no contribution to L from the first of the two parts

in Theorem 7.1. Plugging the w from eq. 7.48 into eq. 7.49 gives

(”ﬁ) (\/‘Z”O) = k= jg . (7.50)

1
— h —
2mv0 =

Let’s now do an inelastic problem, where one object sticks to another. We won’t
be able to use conservation of £ now. But conservation of p and L will be sufficient,
because there is one fewer degree of freedom in the final motion, due to the fact that
the objects do not move independently.

Example (Inelastic collision): A mass m travels at speed vy perpendicularly to a
stick of mass m and length ¢, which is initially at rest. The mass collides completely

\(’1 inelastically with the stick at one of its ends, and sticks to it. What is the resulting
angular velocity of the system?
- Solution: The first thing to note is that the CM of the system is £/4 from the end,

as shown in Fig. 7.20. The system will rotate about the CM as the CM moves in a
straight line. Conservation of momentum quickly tells us that the speed of the CM
is vg/2. Also, using the parallel-axis theorem, the moment of inertia of the system
about the CM is
. me? N2 N2 5
T, _ gstick Jmass _ (7) (7) _ 62. 51

cm = Ien +Iom [12 +m 1 +m 1 51" (7.51)
There are now many ways to proceed, depending on what point we choose as our
origin.

First method: Choose the origin to be the fixed point that coincides with the
location of the CM right when the collision happens (that is, the point £/4 from the
end of the stick). Conservation of L says that the initial L of the ball must equal the
final L of the system. This gives
E 5 61}0
—) = ——Zﬁ 0. = =—.
m”°<4) (24m v Y]
The zero here comes from the fact that the CM of the stick moves directly away from
the origin, so there is no contribution to L from the first of the two parts in Theorem
7.1. Note that we didn’t need to use conservation of p in this method.

(7.52)

Second method: Choose the origin to be the fixed point that coincides with the
initial center of the stick. Then conservation of L gives

mv()(g) = (%mﬁ)w + (2m) (%0) (g) = w= 65% . (7.53)
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The right-hand side is the angular momentum of the system relative to the CM, plus
the angular momentum (relative to the origin) of a point mass of mass 2m located at
the CM.

Third method: Choose the origin to be the CM of the system. This point moves
to the right with speed vy /2, along the line a distance £/4 below the top of the stick.
Relative to the CM, the mass m moves to the right, and the stick moves to the left,
both with speed vg/2. Conservation of L gives

Vo Y4 Vo Y4 o 3 2 - 6&
m(?)(4)+ [O+m(2)(4)} _(24”% )w = w=ge 08
The zero here comes from the fact that the stick initially has no L around its center.

A fourth reasonable choice for the origin is the fixed point that coincides with the
initial location of the top of the stick. You can work this one out for practice.

7.6 Angular impulse

In Section 4.5.1, we defined the impulse, Z, to be the time integral of the force
applied to an object, which is the net change in linear momentum. That is,

to
I= F(t)dt = Ap. (7.55)
t1
We now define the angular impulse, Zy, to be the time integral of the torque
applied to an object, which is the net change in angular momentum. That is,

¢
Ty = / ’ 7(t)dt = AL. (7.56)
t1

These are just definitions, devoid of any content. The place where the physics
comes in is the following. Consider a situation where F(t) is always applied at the
same position relative to the origin around which 7(¢) is calculated. Let this position
be R. Then we have 7(t) = R x F(¢). Plugging this into eq. (7.56), and taking the
constant R outside the integral, gives 79 = R x Z. That is,

AL =R x (Ap) (for F(t) applied at one position). (7.57)

This is a very useful result. It deals with the net changes in L and p, and not
with their changes at any particular instant. Even if F is changing in some arbitrary
manner as time goes by, so that we have no idea what Ap and AL are, we still know
that they are related by eq. (7.57). Also, note that the derivation of eq. (7.57) was
completely general, so we can apply it in the next chapter, too.

In many cases, we don’t have to worry about the cross product in eq. (7.57),
because the lever arm R is perpendicular to the change in momentum Ap. In such
cases, we have

IAL| = R|Ap|. (7.58)

Also, in many cases the object starts at rest, so we don’t have to bother with the A’s.
The following example is a classic application of angular impulse and eq. (7.58).
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Example (Striking a stick): A stick of mass m and length ¢, initially at rest, is
struck with a hammer. The blow is made perpendicular to the stick, at one end. Let
the blow occur quickly, so that the stick doesn’t move much while the hammer is in
contact. If the CM of the stick ends up moving at speed v, what are the velocities of
the ends, right after the blow?

Solution: We have no idea exactly what F(¢) looks like, or for how long it is applied,
but we do know from eq. (7.58) that AL = (£/2)Ap, where L is calculated relative to
the CM (so the lever arm is ¢/2). Therefore, (mf?/12)w = (¢/2)mv. Hence, the final
v and w are related by w = 6v/{.

The velocities of the ends are obtained by adding (or subtracting) the rotational
motion to the CM’s translational motion. The rotational velocities of the ends are
tw(l/2) = +£(6v/¢)(¢/2) = £3v. Therefore, the end that was hit moves with velocity
v+3v = 4v, and the other end moves with velocity v —3v = —2v (that is, backwards).

What L was, he just couldn’t tell.
And p? He was clueless as well.

But despite his distress,

He wrote down the right guess

For their quotient: the lever-arm’s /.

Impulse is also useful for “collisions” that occur over extended times (see, for
example, Problem 18).
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7.7 Exercises

Section 7.2: Non-planar objects

1.

Semicircle CM

A wire is bent into a semicircle of radius R. Find the location of the center of
mass.

. Triangle CM

Find the CM of an isosceles triangle.

. Hemisphere CM

Find the CM of a solid hemisphere.

Section 7.8: Calculating moments of inertia

4.

A cone x

Find the moment of inertia of a solid cone (mass M, base radius R) around
its symmetry axis.

. Triangle, the slick way x*

In the spirit of Section 7.3.2, find the moment of inertia of a uniform equilateral
triangle of mass m and side ¢, around a line joining a vertex to the opposite
side (see Fig. 7.21).

. Fractal triangle xx

Take an equilateral triangle of side ¢, and remove the “middle” triangle (1/4
of the area). Then remove the “middle” triangle from each of the remaining
three triangles, and so on, forever. Let the final fractal object have mass m.
In the spirit of Section 7.3.2, find the moment of inertia around a line joining
a vertex to the opposite side (see Fig. 7.22). Be careful how the mass scales.

Section 7.4: Torque

7.

Swinging your arms *

You are standing on the edge of a step on some stairs, facing up the stairs.
You feel yourself starting to fall backwards, so you start swinging your arms
around in vertical circles, like a windmill. This is what people tend to do in
such a situation, but does it actually help you not to fall, or does it simply
make you look silly? Explain your reasoning.

. Wrapping around the pole *

A hockey puck, sliding on frictionless ice, is attached by a piece of string
(lying along the surface) to a thin vertical pole. The puck is given a tangential
velocity, and as the string wraps around the pole, the puck gradually spirals in.
Is the following statement correct? “From conservation of angular momentum,
the speed of the puck will increase as the distance to the pole decreases.”

Figure 7.21

Figure 7.22



pivot m

Figure 7.23

m 2m

Figure 7.24

m m

Figure 7.25

VII-22 CHAPTER 7. ANGULAR MOMENTUM, PART I (CONSTANT ﬁ)

3

10.

11.

12.

13.

14.

15.

16.

Figure 7.26

9.

Falling quickly =

A massless stick of length L is pivoted at one end and has a mass m attached
to its other end. It is held in a horizontal position, as shown in Fig. 7.23.
Where should a second mass m be attached to the stick, so that the stick falls
as fast as possible when dropped?

Massive pulley *

Consider the Atwood’s machine shown in Fig. 7.24. The masses are m and
2m, and the pulley is a uniform disk of mass m and radius r. The string is
massless and does not slip with respect to the pulley. Find the acceleration of
the masses.

Atwood’s with a cylinder *x

A massless string of negligible thickness is wrapped around a uniform cylinder
of mass m and radius R. The string passes up over a massless pulley and is
tied to a block of mass m at its other end, as shown in Fig. 7.25. What are
the accelerations of the block and the cylinder? Assume that the string does
not slip with respect to the cylinder.

Maximum frequency *

A pendulum is made of a uniform stick of length £. A pivot is placed somewhere
along the stick, which is allowed to swing in a vertical plane. Where should
the pivot be placed on the stick so that the frequency of (small) oscillations is
maximum?

Rolling down the plane *
An circular object with moment of inertia Smr? rolls without slipping down
a plane inclined at angle . What is its linear acceleration?

Coin on a plane *

A coin rolls down a plane inclined at angle 0. If the coefficient of static friction
between the coin and the plane is p, what is the largest angle 8 for which the
coin doesn’t slip?

Bowling ball on paper

A bowling ball sits on a piece of paper on the floor. You grab the paper and pull
it horizontally along the floor, with acceleration a. What is the acceleration
of the center of the ball? Assume that the ball does not slip with respect to
the paper.

Spring and cylinder =*

The axle of a solid cylinder (mass M, radius R) is connected to a spring with
spring-constant k, as shown in Fig. 7.26. If the cylinder rolls without slipping,
what is the frequency of oscillations?



7.7.

17.

18.

19.

20.

21.

22.
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Another spring and cylinder xx

The top of a solid cylinder (mass M, radius R) is connected to a spring (at
its equilibrium length) with spring-constant k, as shown in Fig. 7.27. If the
cylinder rolls without slipping, what is the frequency of (small) oscillations?

The spool *x

A spool of mass m and moment of inertia I (around the center) is free to roll
without slipping on a table. It has an inner radius r, and an outer radius R.
If you pull on the string with tension 7" at an angle 6 (see Fig. 7.28), what is
the acceleration of the spool? Which way does it move?

Stopping the coin *x

A coin stands vertically on a table. It is projected forward (in the plane of
itself) with speed v and angular speed w, as shown in Fig. 7.29. The coefficient
of kinetic friction between the coin and the table is u. What should v and
w be so that the coin comes to rest (both translationally and rotationally) a
distance d from where it started?

Accelerating plane x

A ball with I = (2/5)M R? is placed on a plane inclined at angle §. The plane
is accelerated upwards (along its direction) with acceleration a; see Fig. 7.30.
For what value of a will the CM of the ball not move? Assume that there is
sufficient friction so that the ball doesn’t slip with respect to the plane.

Raising the hoop #*x*

A bead of mass m is positioned at the top of a frictionless hoop of mass M
and radius R, which stands vertically on the ground. A wall touches the hoop
on its left, and a short wall of height R touches the hoop on its right, as shown
in Fig. 7.31. All surfaces are frictionless. The bead is given a tiny kick, and it
slides down the hoop, as shown. What is the smallest value of m /M for which
the hoop will rise up off the ground at some time during the motion? (Note:
It is possible to solve this problem using only force, but solve it here by using
torque.)

Coin and plank *x*

A coin of mass M and radius R stands vertically on the right end of a horizontal
plank of mass M and length L, as shown in Fig. 7.32. The plank is pulled
to the right with a constant force F. Assume that the coin does not slip with
respect to the plank. What are the accelerations of the plank and coin? How
far to the right does the coin move by the time the left end of the plank reaches
it?

Figure 7.27

Figure 7.28

Figure 7.29

Figure 7.30

Figure 7.31

Figure 7.32



e

0

Figure 7.33

0

Figure 7.34

a
—

Figure 7.35

°
Figure 7.36

M
/r.

(top view)

Figure 7.37

VII-24 CHAPTER 7. ANGULAR MOMENTUM, PART I (CONSTANT ﬁ)

23.

24.

25.

Board and cylinders sxx

A board lies on top of two uniform cylinders which lie on a fixed plane inclined
at angle 0, as shown in Fig. 7.33. The board has mass m, and each of the
cylinders has mass m/2. If there is no slipping between any of the surfaces,
what is the acceleration of the board?

Moving plane #x*xx

A disk of mass m and moment of inertia I = Bms? is held motionless on a
plane of mass M and angle of inclination 6 (see Fig. 7.34). The plane rests
on a frictionless horizontal surface. The disk is released. Assuming that it
rolls without slipping on the plane, what is the horizontal acceleration of the
plane? Hint: You probably want to do Problem 2.2 first.

Tower of cylinders s#xxx

Consider the infinitely tall system of identical massive cylinders and massless
planks shown in Fig. 7.35. The moment of inertia of the cylinders is I =
MR?/2. There are two cylinders at each level, and the number of levels is
infinite. The cylinders do not slip with respect to the planks, but the bottom
plank is free to slide on a table. If you pull on the bottom plank so that it
accelerates horizontally with acceleration a, what is the horizontal acceleration
of the bottom row of cylinders?

Section 7.5: Collisions

26.

27.

Pendulum collision *

A stick of mass m and length ¢ is pivoted at an end. It is held horizontally and
then released. It swings down, and when it is vertical, the free end elastically
collides with a ball, as shown in Fig. 7.36. (Assume that the ball is initially
held, and then released a split second before the stick strikes it.) If the stick
loses half of its angular velocity during the collision, what is the mass of the
ball? What is the speed of the ball right after the collision?

Spinning stick *x

A stick of mass m and length ¢ spins around on a frictionless table, with its CM
stationary (but not fixed by a pivot). A mass M is placed on the plane, and
the end of the stick collides elastically with it, as shown in Fig. 7.37. What
should M be so that after the collision the stick has translational motion, but
no rotational motion?
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28.

29.

30.

Another spinning stick *x

A stick of mass m and length /¢ initially rotates with frequency w on a fric-
tionless table, with its CM at rest (but not fixed by a pivot). A ball of mass
m is placed on the table, and the end of the stick collides elastically with it,
as shown in Fig. 7.38. What is the resulting angular velocity of the stick?

Same final speeds

A stick slides (without rotating) across a frictionless table and collides elasti-
cally at one of its ends with a ball. Both the stick and the ball have mass m.
The mass of the stick is distributed in such a way that the moment of inertia
around the CM (which is at the center of the stick) equals I = Am¢?, where A
is some number. What should A be so that the ball moves at the same speed
as the center of the stick after the collision?

No final rotation x

A stick of mass m and length ¢ spins around on a frictionless table, with its
CM stationary (but not fixed by a pivot). It collides elastically with a mass
m, as shown in Fig. 7.39. At what location should the collision occur (specify
this by giving the distance from the center of the stick) so that the stick has
no rotational motion afterwards?

Section 7.6: Angular Impulse

31.

32.

33.

Center of percussion x

You hold one end of a uniform stick of length L. The stick is struck with
a hammer. Where should this blow occur so that the end you are holding
doesn’t move (immediately after the blow)? In other words, where should the
blow occur so that you don’t feel a “sting” in your hand? This point is called
the center of percussion.

Another center of percussion x

You hold the top vertex of a solid equilateral triangle of side length L. The
plane of the triangle is vertical. It is struck with a hammer, somewhere along
the vertical axis. Where should this blow occur so that the point you are
holding doesn’t move (immediately after the blow)? The moment of inertia
about any axis through the CM of an equilateral triangle is M L?/24.

Not hitting the pole x*

A (possibly non-uniform) stick of mass m and length ¢ lies on frictionless ice.
Its midpoint (which is also its CM) touches a thin pole sticking out of the ice.
One end of the stick is struck with a quick blow perpendicular to the stick, so
that the CM moves away from the pole. What is the minimum value of the
stick’s moment of inertia that allows the stick not to hit the pole?

\

(top view)

Figure 7.38

/ (top view)

Figure 7.39
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34. Up, down, and twisting x*x

A uniform stick is held horizontally and then released. At the same instant,
one end is struck with a quick upwards blow. If the stick ends up horizontal
when it returns to its original height, what are the possible values for the
maximum height to which the stick’s center rises?

35. Striking a pool ball *x

At what height should you horizontally strike a pool ball so that it immediately
rolls without slipping?

36. Doing work *

(a) A pencil of mass m and length ¢ lies at rest on a frictionless table. You
push on it at its midpoint (perpendicular to it), with a constant force F’
for a time ¢t. Find the final speed and the distance traveled. Verify that
the work you do equals the final kinetic energy.

(b) Assume that you apply the same F for the same ¢ as above, but that
you now apply it at one of the pencil’s ends (perpendicular to the pen-
cil). Assume that t is small, so that the pencil doesn’t have much time
to rotate.” Find the final CM speed, the final angular speed, and the
distance your hand moves. Verify that the work you do equals the final
kinetic energy.

37. Repetitive bouncing *

Using the result of Problem 19, what must the relation between v, and Rw
be so that the superball continually bounces back and forth between the same
two points of contact on the ground?

38. Bouncing under a table xx

You throw a superball so that it bounces off the floor, then off the underside
of a table, then off the floor again. What must the initial relation between v,
and Rw be so that the ball returns to your hand (with the return and outward
paths the same)? Use the result of Problem 19, and modifications thereof.®

39. Bouncing between walls *xx

A stick of length £ slides on frictionless ice. It bounces between two parallel
walls, a distance L apart, in such a way that the same end touches both walls,
and the stick hits the walls at an angle 6 each time. What is 0, in terms of L
and ¢?7 What does the situation look like in the limit L < ¢7

5This means that you can assume that your force is always essentially perpendicular to the
pencil, as far as the torque is concerned.

5You are strongly encouraged to bounce a ball in such a manner and have it magically come
back to your hand. It turns out that the required value of w is small, so a natural throw with w =~ 0
will essentially get the job done.
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What should 6 be, in terms of L and ¢, if the stick makes an additional n full

revolutions between the walls? What is the minimum value of L/¢ for which
this is possible?



—

Figure 7.40
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Figure 7.41

Figure 7.42
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7.8 Problems

Section 7.1: Pancake object in x-y plane

1.

Leaving the sphere x*x

A ball with moment of inertia nms? rests on top of a fixed sphere. There is
friction between the ball and the sphere. The ball is given an infinitesimal kick
and rolls down without slipping. Assuming that r is much smaller than the
radius of the sphere, at what point does the ball lose contact with the sphere?
How does your answer change if the size of the ball is comparable to, or larger
than, the size of the sphere? You may want to solve Problem 4.3 first, if you
haven’t already done so.

. Sliding ladder *xx

A ladder of length ¢ and uniform mass density stands on a frictionless floor and
leans against a frictionless wall. It is initially held motionless, with its bottom
end an infinitesimal distance from the wall. It is then released, whereupon the
bottom end slides away from the wall, and the top end slides down the wall
(see Fig. 7.40). When it loses contact with the wall, what is the horizontal
component of the velocity of the center of mass?

. Leaning rectangle **x

A rectangle of height 2a and width 2b rests on top of a fixed cylinder of radius
R (see Fig. 7.41). The moment of inertia of the rectangle around its center
is I. The rectangle is given an infinitesimal kick, and then “rolls” on the
cylinder without slipping. Find the equation of motion for the tilt angle of the
rectangle. Under what conditions will the rectangle fall off the cylinder, and
under what conditions will it oscillate back and forth? Find the frequency of
these small oscillations.

. Mass in a tube #xx

A tube of mass M and length ¢ is free to swing by a pivot at one end. A mass
m is positioned inside the tube at this end. The tube is held horizontal and
then released (see Fig. 7.42). Let 6 be the angle of the tube with respect to
the horizontal, and let  be the distance the mass has traveled along the tube.
Find the Euler-Lagrange equations for # and z, and then write them in terms
of @ and n = z// (the fraction of the distance along the tube).

These equations can only be solved numerically, and you must pick a numerical
value for the ratio r = m/M in order to do this. Write a program (see
Appendix D) that produces the value of  when the tube is vertical (6 = 7/2).
Give this value of n for a few values of r.
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Section 7.3: Calculating moments of inertia

5. Slick calculations of I *x

In the spirit of Section 7.3.2, find the moments of inertia of the following
objects (see Fig. 7.43).

(a) A uniform square of mass m and side ¢ (axis through center, perpendic-
ular to plane).

(b) A uniform equilateral triangle of mass m and side ¢ (axis through center,

perpendicular to plane).
Figure 7.43

6. Slick calculations of I for fractal objects *xx

In the spirit of Section 7.3.2, find the moments of inertia of the following fractal
objects. (Be careful how the mass scales.)

(a) Take a stick of length ¢, and remove the middle third. Then remove the | l
middle third from each of the remaining two pieces. Then remove the -- == & = -
middle third from each of the remaining four pieces, and so on, forever. Figure 7.44

Let the final object have mass m (axis through center, perpendicular to
stick; see Fig. 7.44).7

(b) Take a square of side ¢, and remove the “middle” square (1/9 of the
area). Then remove the “middle” square from each of the remaining
eight squares, and so on, forever. Let the final object have mass m (axis . /
through center, perpendicular to plane; see Fig. 7.45).

(c) Take an equilateral triangle of side ¢, and remove the “middle” triangle
(1/4 of the area). Then remove the “middle” triangle from each of the
remaining three triangles, and so on, forever. Let the final object have Figure 7.45
mass m (axis through center, perpendicular to plane; Fig. 7.46).

7. Minimum [

A moldable blob of matter of mass M is to be situated between the planes
z=0and z =1 (see Fig. 7.47) so that the moment of inertia around the
z-axis be as small as possible. What shape should the blob take? .

Figure 7.46

"This object is the Cantor set, for those who like such things. It has no length, so the density 0
of the remaining mass is infinite. If you suddenly develop an aversion to point masses with infinite = : —1 =
|

density, simply imagine the above iteration being carried out only, say, a million times.

Figure 7.47
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Section 7.4: Torque

8.

10.

11.

12.

Zero torque from internal forces xx

Given a collection of particles with positions r;, let the force on the ith particle,
due to all the others, be Fi"®, Assuming that the force between any two
particles is directed along the line between them, use Newton’s third law to
show that 3, r; x Fint = 0.

. Removing a support *

(a) A uniform rod of length ¢ and mass m rests on supports at its ends. The
right support is quickly removed (see Fig. 7.48). What is the force on
the left support immediately thereafter?

(b) A rod of length 2r and moment of inertia nmr? rests on top of two
supports, each of which is a distance d away from the center. The right
support is quickly removed (see Fig. 7.48). What is the force on the left
support immediately thereafter?

Oscillating ball *x

A small ball with radius r and uniform density rolls without slipping near the
bottom of a fixed cylinder of radius R (see Fig. 7.49). What is the frequency
of small oscillations? Assume r < R.

Oscillating cylinders x*x

A hollow cylinder of mass M; and radius R; rolls without slipping on the
inside surface of another hollow cylinder of mass M> and radius Ry. Assume
Ry < Rs. Both axes are horizontal, and the larger cylinder is free to rotate
about its axis. What is the frequency of small oscillations?

A triangle of cylinders *xx

Three identical cylinders with moments of inertia I = nM R? are situated in a
triangle as shown in Fig. 7.50. Find the initial downward acceleration of the
top cylinder for the following two cases. Which case has a larger acceleration?

(a) There is friction between the bottom two cylinders and the ground (so
they roll without slipping), but there is no friction between any of the
cylinders.

(b) There is no friction between the bottom two cylinders and the ground,
but there is friction between the cylinders (so they don’t slip with respect
to each other).
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13.

14.

15.

Falling stick =*

A massless stick of length b has one end attached to a pivot and the other end
glued perpendicularly to the middle of a stick of mass m and length £.

(a) If the two sticks are held in a horizontal plane (see Fig. 7.51) and then
released, what is the initial acceleration of the CM?

(b) If the two sticks are held in a vertical plane (see Fig. 7.51) and then
released, what is the initial acceleration of the CM?

Lengthening the string *x

A mass hangs from a massless string and swings around in a horizontal circle,
as shown in Fig. 7.52. The length of the string is very slowly increased (or
decreased). Let 6, ¢, r, and h be defined as shown.

(a) Assuming 6 is very small, how does r depend on ¢7

(b) Assuming 6 is very close to m/2, how does h depend on £?

Falling Chimney *#%x*x*

A chimney initially stands upright. It is given a tiny kick, and it topples over.
At what point along its length is it most likely to break?

In doing this problem, work with the following two-dimensional simplified
model of a chimney. Assume that the chimney consists of boards stacked on
top of each other, and that each board is attached to the two adjacent ones
with tiny rods at each end (see Fig. 7.53). The goal is to determine which
rod in the chimney has the maximum tension. (Work in the approximation
where the width of the chimney is very small compared to its height.)

Section 7.5: Collisions

16.

17.

Ball hitting stick x

A ball of mass M collides with a stick with moment of inertia I = nm#?
(relative to its center, which is its CM). The ball is initially traveling with
velocity Vy perpendicular to the stick. The ball strikes the stick at a distance
d from the center (see Fig. 7.54). The collision is elastic. Find the resulting
translational and rotational speeds of the stick, and also the resulting speed
of the ball.

A ball and stick theorem *x

Consider the setup in Problem 16. Show that the relative speed of the ball
and the point of contact on the stick is the same before and immediately after
the collision. (This result is analogous to the “relative speed” result for a 1-D
collision, Theorem 4.3.)

Figure 7.52

Figure 7.53

m

I:nmlz li
M }61
o

Figure 7.54
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Section 7.6: Angular Impulse

124
R —— 18.
Figure 7.55

19.

20.

21.

Sliding to rolling *x
A ball initially slides without rotating on a horizontal surface with friction

(see Fig. 7.55). The initial speed of the ball is Vj, and the moment of inertia
about its center is I = nmR2.

(a) Without knowing anything about the nature of the friction force, find
the speed of the ball when it begins to roll without slipping. Also, find
the kinetic energy lost while sliding.

(b) Now consider the special case where the coefficient of kinetic friction is
1, independent of position. At what time, and at what distance, does the
ball begin to roll without slipping? Verify that the work done by friction
equals the energy loss calculated in part (a). (Be careful on this.)

The superball xx

A ball with radius R and I = (2/5)mR? is thrown through the air. It spins
around the axis perpendicular to the plane of the motion (call this the z-
y plane). The ball bounces off a floor without slipping during the time of
contact. Assume that the collision is elastic, and that the magnitude of the
vertical v, is the same before and after the bounce. Show that v/, and w’ after
the bounce are related to v, and w before the bounce by

o} 1 3 —4 Uy
<Rw’>_7<—10 —3><Rw>’ (7.59)

where positive v, is to the right, and positive w is counterclockwise.

Many bounces *

Using the result of Problem 19, describe what happens over the course of many
superball bounces.

Rolling over a bump *x

A ball with radius R and I = (2/5)mR? rolls with speed V without slipping
on the ground. It encounters a step of height A and rolls up over it. Assume
that the ball sticks to the corner of the step briefly (until the center of the ball
is directly above the corner). Show that if the ball is to climb over the step,

then Vp must satisfy
10gh 5h\ !
Vo> /— (1- =] . 7.60
b2 (1= 2 (7.60)
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22. Lots of sticks x*x*

—
Consider a collection of rigid sticks of length 2r, masses m;, and moments of ! ‘
inertia nm;r?, with m1 > mo > ms3 > ---. The CM of each stick is located my . o
at the center. The sticks are placed on a horizontal frictionless surface, as

shown in Fig. 7.56. The ends overlap a negligible distance, and the ends are ms ‘

a negligible distance apart.

The first (heaviest) stick is given an instantaneous blow (as shown) which "4 .

causes it to translate and rotate. The first stick will strike the second stick,
which will then strike the third stick, and so on. Assume all the collisions are

elastic. Figure 7.56

Depending on the size of 1), the speed of the nth stick will either (1) approach
zero, (2) approach infinity, or (3) be independent of n, as n — oco. Show that
the special value of 1 corresponding to the third of these three scenarios is
1 = 1/3, which happens to correspond to a uniform stick.
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7.9 Solutions

1. Leaving the sphere

In this setup, as in Problem 4.3, the ball leaves the sphere when the normal force

becomes zero, that is, when

’ITLU2

R
The only change from the solution to Problem 4.3 comes in the calculation of v. The
ball now has rotational energy, so conservation of energy gives mgR(1 — cosf) =
mv?/2 + [w? /2 = mv? /2 + nmr?w? /2. But rw = v, so we have

1 2 1-—
5(1 +n)mv* = mgR(1 — cos 0) = v =4 gR(lJr;OSG) . (7.62)

Plugging this into eq. (7.61), we see that the ball leaves the sphere when

= mgcosf. (7.61)

cosfh = (7.63)

341"
REMARKS: For n = 0, this equals 2/3, as in Problem 4.3. For a uniform ball with n = 2/5,
we have cosf = 10/17, so 0 = 54°. For n — oo (for example, a spool with a very thin axle
rolling down the rim of a circle), we have cos§ — 0, so 6 ~ 90°. This makes sense because
v is always very small, because most of the energy takes the form of rotational energy. &

If the size of the ball is comparable to, or larger than, the size of the sphere, then we
must take into account the fact that the CM of the ball does not move along a circle
of radius R. Instead, it moves along a circle of radius R + r, so eq. (7.61) becomes

va

R+

= mgcos¥. (7.64)

Also, the conservation-of-energy equation takes the form, mg(R 4 r)(1 — cos6) =
mv?/2 + nmr?w?/2. But rw still equals v (prove this), so the kinetic energy still
equals (1 4+ n)mv?/2.8 We therefore have the same equations as above, except that
R is replaced everywhere by R + r. But R didn’t appear in the result for 6 in eq.
(7.63), so the answer is unchanged.

REMARK: Note that the method of the second solution to Problem 4.3 will not work in this
problem, because there is a force available to make v, decrease, namely the friction force.
And indeed, v, does decrease before the rolling ball leaves the sphere. The v in the present
problem is simply 1/4/1 + 7 times the v in Problem 4.3, so the maximum v, is still achieved
at cosf = 2/3. But the angle in eq. (7.63) is larger than this. (However, see Problem 2 for
a setup involving rotations where the max v, is relevant.) &

2. Sliding ladder
The important point to realize in this problem is that the ladder loses contact with
the wall before it hits the ground. Let’s find where this loss of contact occurs.

Let r = £/2, for convenience. While the ladder is in contact with the wall, its CM
moves in a circle of radius r. This follows from the fact that the median to the
hypotenuse of a right triangle has half the length of the hypotenuse. Let 6 be the

81n short, the ball can be considered to be instantaneously rotating around the contact point,
so the parallel-axis theorem leads to the factor of (1 + 1) in the rotational kinetic energy around
this point.
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angle between the wall and the radius from the corner to the CM; see Fig. 7.57. This
is also the angle between the ladder and the wall.

We’ll solve this problem by assuming that the CM always moves in a circle, and then
determining the position at which the horizontal CM speed starts to decrease, that
is, the point at which the normal force from the wall would have to become negative.
Since the normal force of course can’t be negative, this is the point where the ladder
loses contact with the wall.

By conservation of energy, the kinetic energy of the ladder equals the loss in potential
energy, which is mgr(1l — cos#). This kinetic energy may be broken up into the CM
translational energy plus the rotation energy. The CM translational energy is simply
mTQQQ /2, because the CM travels in a circle of radius r. The rotational energy is
16?/2. The same 6 applies here as in the CM translational motion, because 6 is the
angle between the ladder and the vertical, and thus is the angle of rotation of the
ladder.

Letting I = nmr? to be general (n = 1/3 for our ladder), the conservation of energy
statement is (1+n)mr?6? /2 = mgr(1—cos ). Therefore, the speed of the CM, which

is v = rf, equals
2gr(1 — 0
oo J29r(L—cost) (7.65)
1+n

The horizontal component of this is

Uy = 297 V(1 —cos ) cosb. (7.66)

147

Taking the derivative of /(1 — cos @) cos 8, we see that the horizontal speed is maxi-
mum when cos = 2/3. Therefore the ladder loses contact with the wall when

2
cosf) = g = 0 ~ 48.2°. (7.67)

Note that this is independent of 1. This means that, for example, a dumbbell (two
masses at the ends of a massless rod, with n = 1) will lose contact with the wall at
the same angle.

Plugging this value of 6 into eq. (7.66), and using n = 1/3, we obtain a final horizontal

speed of
297 _ Vgl
3 3
Note that this is 1/3 of the y/2gr horizontal speed that the ladder would have if it

were arranged (perhaps by having the top end slide down a curve) to eventually slide
horizontally along the ground.

(7.68)

Ve =

You are encouraged to compare various aspects of this problem with those in Problem
1 and Problem 4.3.

REMARK: The normal force from the wall is zero at the start and finish, so it must reach a
maximum at some intermediate value of 6. Let’s find this 6. Taking the derivative of v, in
eq. (7.66) to find the CM’s horizontal acceleration a,, and then using 6 o v/I — cosf from
eq. (7.65), we see that the force from the wall is proportional to

fsin (3 cos 6 — 2)
v1—cosf

Ay X

x sinf(3cosf — 2). (7.69)

Figure 7.57



Figure 7.58
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Taking the derivative of this, we find that the force from the wall is maximum when

1++19

0=
COS 6

0~2.7°. & (7.70)

3. Leaning rectangle

We must first find the position of the rectangle’s CM when it has rotated through an
angle 6. Using Fig. 7.58, we can obtain this position (relative to the center of the
cylinder) by adding up the distances along the three shaded triangles. Note that the
contact point has moved a distance Rf along the rectangle. We find that the position
of the CM is

(z,y) = R(sinf, cosd) + RO(— cos §,sin b)) + a(sin b, cos 9), (7.71)

We’ll now use the Lagrangian method to find the equation of motion and the frequency
of small oscillations. Using eq. (7.71), you can show that the square of the speed of
the CM is

v? =i 4 ? = (a® + R*0%)6%. (7.72)

REMARK: The simplicity of this result suggests that there is a quicker way to obtain it.
And indeed, the CM instantaneously rotates around the contact point with angular speed
6, and from Fig. 7.58 the distance to the contact point is v/a? + R262. Therefore, the speed
of the CM is wr = 0v/a® + R20%. &

The Lagrangian is
L=T-V= %m(a2 + R%*6?)0% + %Iég - mg((R + a)cos 6 + RO sin 9). (7.73)
The equation of motion is (as you can show)
(ma® + mR%0? + 1)0 + mR?*06% = mgasin — mgRO cos 6. (7.74)

Let us now consider small oscillations. Using the small-angle approximations, sin 6 ~ 6
and cosf ~ 1 — 62/2, and keeping terms only to first order in 6, we obtain

(ma® + I)0 + mg(R — a)f = 0. (7.75)

The coefficient of 0 is positive if a < R. Therefore, oscillatory motion occurs for a < R.
Note that this condition is independent of b. The frequency of small oscillations is

mg(R — a)

T (7.76)

REMARKS: Let’s look at some special cases. If I = 0 (that is, all of the rectangle’s mass is
located at the CM), we have w = 1/g(R — a)/a?. If in addition @ < R, then w ~ \/gR/a?.
You can also derive these results by considering the CM to be a point mass sliding in a
parabolic potential. If the rectangle is instead a uniform horizontal stick, so that a < R,
a < b, and I ~ mb?/3, then we have w =~ /3gR/b2. If the rectangle is a vertical stick

(satisfying a < R), so that b < a and I ~ ma?/3, then we have w ~ 1/3g(R — a)/4a2. If in

addition ¢ < R, then w &~ /3gR/4a?.

Without doing much work, there are two other ways we can determine the condition under
which there is oscillatory motion. The first is to look at the height of the CM. Using small-
angle approximations in eq. (7.71), the height of the CM is y ~ (R + a) + (R — a)6?/2.
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Therefore, if a < R, the potential energy increases with 6, so the rectangle wants to decrease
its 0 and fall back down to the middle. But if a > R, the potential energy decreases with 6,
so the rectangle wants to increase its 6 and fall off the cylinder.

The second way is to look at the horizontal positions of the CM and the contact point.
Small-angle approximations in eq. (7.71) show that the former equals af and the latter
equals RO. Therefore, if a < R then the CM is to the left of the contact point, so the torque
from gravity (relative to the contact point) makes 6 decrease, and the motion is stable. But
if a > R then the torque from gravity makes 6 increase, and the motion is unstable. &

. Mass in a tube

The Lagrangain is

L= % (;MEQ) 6% + <;mx292 + ;mx2) +mgxsinfd + Mg (5) sinf.  (7.77)

The Euler-Lagrange equations are then

d (0L\ 0L . 12 .

pn <8m) =5, = mi= mab” + mgsin b, (7.78)
d (0L 0L d /1. _.,. A Mgt ]
dt(aé)_89 = 7 <3M€ 0 + mx 0)—(mgx+ 5 cosf

1 .. . Mgt
— (3M€2 + mx2> 0 + 2maz = (mgw + 2g> cosf.
In term of n = z/¢, these equations become
i = 0%+ gsinf

(14 3rp*)0 = <3r§77 + 329) cos 6 — 6rnnd, (7.79)

where r = m/M and § = g/¢. Below is a Maple program that numerically finds the
value of 7 when 6 equals 7/2, in the case where r = 1. As mentioned in Problem 2
in Appendix B, this value of 1 does not depend on g or ¢, and hence not g. In the
program, we’ll denote g by g, which we’ll give the arbitrary value of 10. We’ll use
q for 0, and n for n. Also, we denote 6 by g1 and 6 by g2, etc. Even if you don’t
know Maple, this program should still be understandable. See Appendix D for more
discussion on solving differential equations numerically.

n:=0: # initial n value

nl:=0: # initial n speed

q:=0: # initial angle

ql:=0: # initial angular speed

e:=.0001: # small time interval

g:=10: # value of g/l

r:=1: # value of m/M

while g<1.57079 do # do this process until the angle is pi/2
n2:=n*ql~2+g*sin(q) : # the first E-L equation

q2:=((3*r*g*n+3*g/2) *cos (q) -6*r*n*nlxql)/(1+3*r*n"~2):
# the second E-L equation

n:=n+e*nl: # how n changes

nl:=nl+e*n2: # how nl changes



VII-38 CHAPTER 7. ANGULAR MOMENTUM, PART I (CONSTANT ﬁ)

q:=qt+e*ql: # how g changes
ql:=ql+ex*xq2: # how gl changes
end do: # stop the process
n; # print the value of n (eta)

The resulting value for n is 0.378. If you actually run this program on Maple with
different values of g, you will find that the result for n doesn’t depend on g, as we
stated above. A few results for i) for various values of r are, in (r,7) notation: (0,.349),
(1,.378), (2,.410), (10,.872), (20,3.290). It turns out that r ~ 11.25 yields n ~ 1.
That is, the mass m gets to the end of the tube right when the tube becomes vertical.

For n values larger than 1, we could imagine attaching a massless tubular extension
on the end of the given tube. It turns out that n — co as r — oo. In this case, the
mass m essentially drops straight down, causing the tube to quickly swing down to
a nearly vertical position. But m ends up slightly to one side, and then takes a very
long time to move over to become directly below the pivot.

5. Slick calculations of I

(a) We claim that the I for a square of side 2¢ is 16 times the I for a square of side ¢,
assuming that the axes pass through any two corresponding points. This is true
because dm goes like the area, which is proportional to length squared, so the
corresponding dm’s differ by a factor of 4. And then there are the two powers
of r in the integrand. Therefore, when changing variables from one square to
the other, there are four powers of 2 in the integral [r?dm = [r?pdzdy.

As is Section 7.3.2, we can express the relevant relations in terms of pictures:

21
/
. = 16| ®
. = 4
(=)
= ° + ml—
V2

The first line comes from the scaling argument, the second comes from the fact
that moments of inertia simply add, and the third comes from the parallel-axis
theorem. Equating the right-hand sides of the first two, and then using the third

to eliminate gives

° = %mlz

This agrees with the result of Example 12 in Section 7.3.1, with a = b = /.

(b) This is again a two-dimensional object, so the I for a triangle of side 2¢ is 16
times the I for a triangle of side ¢, assuming that the axes pass through any two
corresponding points. With pictures, we have:
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2/
- 16/

A 3([>)
)

The first line comes from the scaling argument, the second comes from the fact
that moments of inertia simply add, and the third comes from the parallel-axis
theorem. Equating the right-hand sides of the first two, and then using the third

to eliminate e gives

[N\ = 5
12

/

This agrees with the result of Example 11 in Section 7.3.1, with N = 3. The
“radius” R used in that example equals £/+/3 in the present notation.

6. Slick calculations of I for fractal objects

(a) The scaling argument here is a little trickier than that in Section 7.3.2. Our
object is self-similar to an object 3 times as big, so let’s increase the length by
a factor of 3 and see what happens to I. In the integral [ x?dm, the z’s pick
up a factor of 3, so this gives a factor of 9. But what happens to the dm? Well,
tripling the size of our object increases its mass by a factor of 2, because the
new object is simply made up of two of the smaller ones, plus some empty space
in the middle. So the dm picks up a factor of 2. Therefore, the I for an object
of length 3¢ is 18 times the I for an object of length ¢, assuming that the axes
pass through any two corresponding points.
With pictures, we have (the following symbols denote our fractal object):

3/ /
. = 18 —e—
12
. = 2(.'“_ _)
¢ - = = —e— | mlz

The first line comes from the scaling argument, the second comes from the fact
that moments of inertia simply add, and the third comes from the parallel-axis
theorem. Equating the right-hand sides of the first two, and then using the third
to eliminate ¢ — — gives
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This is larger than the I for a uniform stick, namely m¢? /12, because the mass
here is generally farther away from the center.

REMARK: When we increase the length of our object by a factor of 3 here, the factor
of 2 in the dm is larger than the factor of 1 relevant to a zero-dimensional object, but
smaller than the factor of 3 relevant to a one-dimensional object. So in some sense our
object has a dimension between 0 and 1. It is reasonable to define the dimension, d, of
an object as the number for which 7% is the increase in “volume” when the dimensions
are increased by a factor of r. In this problem, we have 3¢ = 2, so d = log, 2 ~ 0.63.

&

Again, the mass scales in a strange way. Let’s increase the dimensions of our
object by a factor of 3 and see what happens to I. In the integral [ z*dm, the
x’s pick up a factor of 3, so this gives a factor of 9. But what happens to the
dm? Tripling the size of our object increases its mass by a factor of 8, because
the new object is made up of eight of the smaller ones, plus an empty square
in the middle. So the dm picks up a factor of 8. Therefore, the I for an object
of side 3¢ is 72 times the I for an object of side ¢, assuming that the axes pass
through any two corresponding points.

With pictures, we have (the following symbols denote our fractal object):

3/

° = 72 e
L))
[ = B+ m?

= o + m(\/f])z

The first line comes from the scaling argument, the second comes from the fact
that moments of inertia simply add, and the third and fourth come from the
parallel-axis theorem. Equating the right-hand sides of the first two, and then

using the third and fourth to eliminate . and gives

= iml2

16

This is larger than the I for the uniform square in Problem 5, namely m¢?/6,
because the mass here is generally farther away from the center.

NOTE: Increasing the size of our object by a factor of 3 increases the “volume” by a
factor of 8. So the dimension is given by 3¢ =8 = d = log, 8 =~ 1.89.

Again, the mass scales in a strange way. Let’s increase the dimensions of our
object by a factor of 2 and see what happens to I. In the integral [ 22 dm, the
x’s pick up a factor of 2, so this gives a factor of 4. But what happens to the
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dm? Doubling the size of our object increases its mass by a factor of 3, because
the new object is simply made up of three of the smaller ones, plus an empty
triangle in the middle. So the dm picks up a factor of 3. Therefore, the I for
an object of side 2¢ is 12 times the I for an object of side ¢, assuming that the
axes pass through any two corresponding points.

With pictures, we have (the following symbols denote our fractal object):

2/

The first line comes from the scaling argument, the second comes from the fact
that moments of inertia simply add, and the third comes from the parallel-axis
theorem. Equating the right-hand sides of the first two, and then using the third

to eliminate e gives

1,2

This is larger than the I for the uniform triangle in Problem 5, namely m/¢? /12,
because the mass here is generally farther away from the center.

NoOTE: Note: Increasing the size of our object by a factor of 2 increases the “volume”
by a factor of 3. So the dimension is given by 2 =3 = d = log, 3 ~ 1.58.

7. Minimum [

The shape should be a cylinder with the z-axis as its symmetry axis. A quick proof
(by contradiction) is as follows. z

Assume that the optimal blob is not a cylinder, and consider the surface of the blob.
If the blob is not a cylinder, then there exist two points on the surface, P; and Ps,
that are located at different distances, r1 and 7o, from the z-axis. Assume 71 < ro
(see Fig. 7.59). If we move a small piece of the blob from P to Py, then we decrease
the moment of inertia, f r2pdV . Therefore, the proposed non-cylindrical blob cannot
be the one with the smallest I.

In order to avoid this contradiction, all points on the surface must be equidistant from
the z-axis. The only blob with this property is a cylinder.

8. Zero torque from internal forces
Let F;;‘t be the force that the ith particle feels from the jth particle (see Fig. 7.60).

Then ' .
Fi* = Fit (7.80)
J

Figure 7.60
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The total internal torque, relative to the chosen origin, is therefore
i Zri x Fint = Z Zri x Fjt. (7.81)
i i g
But if we interchange the indices (which were labeled arbitrarily), we have
=N T ) FR ==Y )y x (7.82)
i i

where we have used Newton’s third law, Fi** = —F*. Adding the two previous
equations gives
27 =) "N (1 — 1) x FIC (7.83)
i g

But F;‘;t is parallel to (r; —r;), by assumption. Therefore, each cross product in the
sum equals zero.

The above sums might make this solution look a bit involved. But the idea is simply

that the torques cancel in pairs. This is clear from Fig. 7.60, because the two forces
shown are equal and opposite, and they have the same lever arm relative to the origin.

9. Removing a support

(a) First Solution: Let the desired force on the left support be F, and let the
downward acceleration of the stick’s CM be a. Then the F' = ma and 7 = I«
(relative to the fixed support; see Fig. 7.61) equations, along with the circular-
motion relation between a and «, are

mg—F = ma,
met = (M),
92 - 3 9
a = g a. (7.84)

The second equation gives o = 3¢g/2¢. The third equation then gives a = 3g/4.
And the first equation then gives F' = mg/4. Note that the right end of the
stick accelerates at 2a = 3¢/2, which is larger than g.

Second Solution: Looking at torques around the CM, we have

4 me?
F-=(—]a. .
5 ( D ) e (7.85)
And looking at torques around the fixed support, we have
14 me?
mgy = (3) . (7.86)

Dividing the first of these equations by the second gives F' = mg/4.

(b) First Solution: As in the first solution above, we have (using the parallel-axis
theorem; see Fig. 7.62)

mg—F = ma,
mgd (nmr?* + md*)a
a = dao. (7.87)
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Solving for F gives F' = mg/(1 + d?/nr?). For d = r and n = 1/3, we obtain
the answer in part (a).

Second Solution: As in the second solution above, looking at torques around
the CM, we have

Fd = (nmr?)a. (7.88)

And looking at torques around the fixed support, we have
mgd = (nmr? + md?)a. (7.89)
Dividing the first of these equations by the second gives F' = mg/(1 + d?/nr?).

SOME LIMITS: For the special case d = r, we have the following: If n = 0 then F' = 0;

if n =1 then F = mg/2; and if n = oo (we could put masses at the ends of massless

extensions of the stick) then F' = mg; these all make intuitive sense. In the limit d = 0, '

we have F' = mg. And in the limit d = oo, we have F' = 0. Technically, we should be )

writing d < /nr or d > /nr here. 19\
1

10. Oscillating ball :
Let the angle from the bottom of the cylinder to the ball be 6 (see Fig. 7.63), and '

let Fr be the friction force. Then the tangential F' = ma equation is
w
F

Fy —mgsinf = ma, (7.90)
where we have chosen rightward to be the positive direction for a and Fy. Also, the Figure 7.63
T = Ia equation (relative to the CM) is

2
—rFy = ngQOz, (7.91)

where we have chosen clockwise to be the positive direction for a. Using ra = a, the
torque equation becomes Fy = —(2/5)ma. Plugging this into eq. (7.90), and using
sinf ~ 6, we obtain mgb + (7/5)ma = 0. Under the assumption r < R, we have

a~ Ré, so we arrive at
0 ——=10=0. 7.92
+(2) (7.9

This is the equation for simple harmonic motion with frequency

_ /59
w= \/; : (7.93)

This answer is slightly smaller than the 1/ g/ R answer for the case where the ball slides.
The rolling ball effectively has a larger inertial mass, but the same gravitational mass.

You can also solve this problem by using the contact point as the origin around which
7 and L are calculated.

REMARKS: If we omit the r < R assumption, you can show that ra = a still holds,
but a = R0 is replaced by a = (R — r)f. Therefore, the exact result for the frequency is

w = 4/5g/7(R — r). This goes to infinity as r — R.

In general, if the ball has a moment of inertia equal to nmr?, you can show that the frequency

of small oscillations equals 1/g/(1 +n)R. &
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11.
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Figure 7.65

Oscillating cylinders

The moments of inertia of the cylinders are simply I; = MlR% and I, = MgR%. Let
F be the force between the two cylinders. And let 6; and 03 be the angles of rotation
of the cylinders (with counterclockwise positive), relative to the position where the
small cylinder is at the bottom of the big cylinder. Then the torque equations are

FRy = M,R%0,,
FRy = —M,R20,. (7.94)

We are not so much concerned with 6, and 6, as we are with the angular position that
M; makes with the vertical. Call this angle 6 (see Fig. 7.64). In the approximation
R; < Ry, the non-slipping condition says that Raf =~ Refs — R160;. Eqgs. (7.94) then
give

1 1 ..
Fl—+— | =—Rs0. 7.95
(57 +15) = * (7.95)
The force equation on M is
F — Mygsinf = M;(R,6). (7.96)

Substituting the F from (7.95) into this gives (with sinf ~ 0)

1 . (M
w Ry

The frequency of small oscillations is therefore

My + M.
w= )L, [T (7.98)
Ry V My +2M,
REMARKS: In the limit My < M;, we obtain w & 1/g/R2. There is essentially no friction
force between the cylinders; only a normal force. So the small cylinder essentially acts like a
pendulum of length Rz. In the limit M7 < M2, we obtain w & 1/g/2R2. The large cylinder

is essentially fixed, so we simply have the setup mentioned in the remark in the solution to
Problem 10, withn=1. &

. A triangle of circles

(a) Let N be the normal force between the cylinders, and let F' be the friction force
from the ground (see Fig. 7.65). Let a, be the initial horizontal acceleration of
the right bottom cylinder (so a = a, /R is its angular acceleration), and let a,
be the initial vertical acceleration of the top cylinder (with downward taken to
be positive).
If we consider the torque around the center of one of the bottom cylinders, then
the only relevant force is F', because IV, gravity, and the normal force from the
ground all point through the center. The equations expressing F, = Ma, on
the bottom right cylinder, F,, = Ma, on the top cylinder, and 7 = I« on the
bottom right cylinder are, respectively,

Ncos60° — F = May,

Mg —2Nsin60° = Ma,,
FR = (nMR*)(a,/R). (7.99)
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We have four unknowns, N, F', a,, and a,. So we need one more equation.
Fortunately, a, and a, are related. The contact surface between the top and
bottom cylinders lies (initially) at an angle of 30° with the horizontal. Therefore,
if the bottom cylinders move a distance d to the side, then the top cylinder moves
a distance dtan 30° downward. Hence,

az = V3a,. (7.100)

We now have four equations in four unknowns. Solving for a,, by your method

of choice, gives
9

ay = - o

(b) Let N be the normal force between the cylinders, and let F' be the friction force Y
between the cylinders (see Fig. 7.66). Let a, be the initial horizontal acceleration
of the right bottom cylinder, and let a, be the initial vertical acceleration of

(7.101)

the top cylinder (with downward taken to be positive). Let « be the angular
acceleration of the right bottom cylinder (with counterclockwise taken to be
positive). Note that « is not equal to a,/R, because the bottom cylinders slip Figure 7.66
on the ground.

If we consider the torque around the center of one of the bottom cylinders, then

the only relevant force is F. And from the same reasoning as in part (a), we

have a, = \/gay. Therefore, the four equations analogous to eqs. (7.99) and

(7.100) are
N cos60° — F'sin60° = Ma,,
Mg —2Nsin60° — 2F cos60° = May,
FR = (nMR%)a,
ax = V3a,. (7.102)

We have five unknowns, N, F, a,, ay, and o. So we need one more equation.
The tricky part is relating « to a,;. One way to do this is to ignore the y motion
of the top cylinder and imagine the bottom right cylinder to be rotating up and
around the top cylinder, which is held fixed. If the bottom cylinder moves an
infinitesimal distance d to the right, then its center moves a distance d/ cos 30°
up and to the right. So the angle through which the bottom cylinder rotates
is (d/cos30°)/R = (2/+/3)(d/R). Bringing back in the vertical motion of the
cylinders does not change this result. Therefore,

2 a,
a=——.
V3 R
We now have five equations and five unknowns. Solving for a,, by your method
of choice, gives

(7.103)

(7.104)

REMARKS: If n = 0, that is, if all the mass is at the center of the cylinders,® then the
results in both parts (a) and (b) reduce to g/7. If n # 0, then the result in part (b) is
smaller than that in part (a). This isn’t so obvious, but the basic reason is that the
bottom cylinders in part (b) take up more energy because they have to rotate slightly
faster, because a = (2/v/3)(az/R) instead of o = a,/R. &

9The 1 = 0 case is also equivalent to all the surfaces simply being frictionless, because then
nothing rotates.
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13. Falling stick

(a) Let’s calculate 7 and L relative to the pivot point. The torque is due to gravity,
which effectively acts on the CM and has magnitude mgb. The moment of inertia
of the stick around the horizontal axis through the pivot (and perpendicular to
the massless stick) is simply mb?. So when the stick starts to fall, the 7 = dL/dt
equation is mgb = (mb?)a. Therefore, the initial acceleration of the CM, namely
bay, is

ba = g, (7.105)

which is independent of ¢ and b. This answer makes sense. The stick initially
falls straight down, and the pivot provides no force because it doesn’t know right
away that the stick is moving.

(b) The only change from part (a) is the moment of inertia of the stick around
the horizontal axis through the pivot (and perpendicular to the massless stick).
From the parallel-axis theorem, this moment is mb®+m¢?/12. So when the stick
starts to fall, the 7 = dL/dt equation is mgb = (mb? + ml?/12)a. Therefore,
the initial acceleration of the CM is

9

be = @iy

(7.106)

For ¢ < b, this goes to g, as it should. And for ¢ > b, it goes to zero, as it
should. In this case, a tiny movement of the CM corresponds to a very large
movement of the points far out along the stick. Therefore, by conservation of
energy, the CM must be moving very slowly.

14. Lengthening the string

Consider the angular momentum L relative to the support point P. The forces on the
mass are the tension in the string and gravity. The former provides no torque around
P, and the latter provides no torque in the z-direction. Therefore, L, is constant. If
we let wy be the frequency of the circular motion when the string has length ¢, then
we can say that

L. = mriw, (7.107)

is constant.

The frequency wy can be obtained by using F' = ma for the circular motion. The
tension in the string is mg/ cos # (to make the forces in the y-direction cancel), so the
horizontal radial force is mgtan . Therefore,

_ 2 _ : 2 _ 9 _ /9
mgtanf = mrw; = m(£sin 0)w; = wp = ”ECOSH = \/; (7.108)

Plugging this into eq. (7.107), we see that the constant value of L, is

L,=mr? /2. (7.109)

Let’s now look at the two cases.
(a) For 6 ~ 0, we have h ~ £, so eq. (7.109) says that r2/v// is constant. Therefore,
roc 414, (7.110)

which means that r grows very slowly with /.
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(b) For 6 ~ 7/2, we have r ~ ¢, so eq. (7.109) says that ¢2/v/h is constant.
Therefore,
hoc (7.111)

which means that h grows very quickly with £.

Note that eq. (7.109) says that h o« 7 for any value of §. So if you slowly
lengthen the string so that r doubles, then h increases by a factor of 16.

15. Falling Chimney

Before we start dealing with the forces in the rods, let’s first determine 6 as a function
of # (the angle through which the chimney has fallen). Let ¢ be the height of the
chimney. Then the moment of inertia around the pivot point on the ground is m¢?/3
(if we ignore the width), and the torque (around the pivot point) due to gravity is
7 =mg(/2) sin§. Therefore, T = dL/dt gives mg(¢/2)sin@ = (1/3)me?d, or

. 3gsinf
= . 112
o 20 (7.112)

Let’s now determine the forces in the rods. Our strategy will be to imagine that the
chimney consists of a chimney of height &, with another chimney of height ¢ — h placed
on top of it. We’ll find the forces in the rods connecting these two “sub-chimneys,”
and then we’ll maximize one of these forces (7%, defined below) as a function of h.

The forces on the top piece are gravity and also the forces from the two rods at
each end of the bottom board. Let’s break these latter forces up into transverse
and longitudinal forces along the chimney. Let T} and T, be the two longitudinal
components, and let F be the sum of the transverse components, as shown in Fig. 7.67.
We have picked the positive directions for 77 and 75 so that positive 717 corresponds
to a compression in the left rod, and positive T corresponds to a tension in the right
rod (which is what the forces will turn out to be, as we’ll see). It turns out that if the
width (which we’ll call 2r) is much less than the height, then T5 > F (as we will see
below), so the tension in the right rod is essentially equal to T,. We will therefore be
concerned with maximizing 7T5.

Figure 7.67

In writing down the force and torque equations for the top piece, we have three
equations (the radial and tangential F' = ma equations, and 7 = dL/dt around the
CM), and three unknowns (F', Ty, and T3). If we define the fraction f = h/¢, then
the top piece has length (1 — f)¢ and mass (1 — f)m, and its CM travels in a circle of
radius (1 + f)¢/2, Therefore, our three force and torque equations are, respectively,

To—Ty+(1— fmgcosf = (1—f)m (W) 62,

F+(1-f)mgsind = (1—f)m ((1—;f)£> 0,

(Ty + To)r — Fw = (1-f)m (W) 0. (7.113)

At this point, we could plow forward and solve this system of three equations in
three unknowns. But things simplify greatly in the limit where » < ¢. The third
equation says that 17 + T is of order 1/r, and the first equation says that To — 717 is
of order 1. These imply that T3 ~ Ts, to leading order in 1/r. Therefore, we may set
Ty + T3 ~ 2T5 in the third equation. Using this approximation, along with the value
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16.

of 6 from eq. (7.112), the second and third equations become
3

F+(1— f)mgsing = 1(1 — fA)mgsiné,
2rTy — F% = é(l — f)*mglsin 6. (7.114)
This first of these equations gives
P %M(fuzlffsf?), (7.115)
and then the second gives
T, ~ %m — )2 (7.116)

As stated above, this is much greater than F' (because £/r > 1), so the tension in the
right rod is essentially equal to T5. Taking the derivative of T3 with respect to f, we

see that it is maximum at B )
=_ == 7.117
f=7=3 (7.117)

Therefore, the chimney is most likely to break at a point one-third of the way up
(assuming that the width is much less than the height). Interestingly, f = 1/3 makes
the force F' in eq. (7.115) exactly equal to zero.

Ball hitting stick

Let V', v, and w be the speed of the ball, the speed of the stick’s CM, and the angular
speed of the stick, respectively, after the collision. Then conservation of momentum,
angular momentum (around the fixed point that coincides with the initial center of
the stick), and energy give

MVy = MV +mu,
MVod = MVd+nmbliw,
MVE = MV?+mo? +ngml?u?. (7.118)

We must solve these three equations for V, v, and w. The first two equations quickly
give vd = nf?w. Solving for V in the first equation and plugging the result into the
third, and then eliminating w through vd = nf?w gives

d
2V 2=V
S N = w=W—2 . (7.119)
1+ 52+ 5 1+ 5+ %
Having found v, the first equation above gives V as
11— + i
V= Vy— M (7.120)

m a2 -
You are encouraged to check various limits of these answers.
REMARK: Another solution to egs. (7.118) is of course V = Vp, v = 0, and w = 0. The
initial conditions certainly satisfy conservation of p, L, and E with the initial conditions. A

fine tautology, indeed. Nowhere in egs. (7.118) does it say that the ball actually hits the
stick. &
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A ball and stick theorem

As in the solution to Problem 16, we have

MVy = MV +mo,
MVod = MVd+ Iw,
MVE = MV?+mo?+ [w?. (7.121)

The speed of the contact point on the stick right after the collision equals the speed
of the CM plus the rotational speed relative to the CM. In other words, it equals
v + wd. The desired relative speed is therefore (v + wd) — V. We can determine the
value of this relative speed by solving the above three equations for V', v, and w. Or
equivalently, we can just use the results of Problem 16. There is, however, a much
more appealing method, which is as follows.

The first two equations quickly give mvd = Iw. The last equation may then be
written as, using Iw? = (Iw)w = (mvd)w,
MWVo-V)(Vo +V) =mu(v+wd). (7.122)
If we now write the first equation as
M(Vo—V)=muv, (7.123)
we can divide eq. (7.122) by eq. (7.123) to obtain Vp +V = v + wd, or
Vo = (v+wd) -V, (7.124)

as we wanted to show. In terms of velocities, the correct statement is that the final
relative velocity is the negative of the initial relative velocity. In other words, Vo —0 =
—(V = (v+wd)).

Sliding to rolling

(a) Define all linear quantities to be positive to the right, and all angular quantities
to be positive clockwise, as shown in Fig. 7.68. Then, for example, the friction
force F is negative. The friction force slows down the translational motion and
speeds up the rotational motion, according to

Fy = ma,
-IfR = o, (7.125)

where we have calculated the torque relative to the CM. Eliminating Fy, and
using I = nmR?, gives a = —nRa. Integrating this over time, up to the time
when the ball stops slipping, gives

AV = —pRAw. (7.126)

Note that we could have obtained this by simply using the impulse equation,
eq. (7.58). Using AV =V; — 1), and Aw = wy —wp = wy, and also wy = V¢ /R
(the non-slipping condition), eq. (7.126) gives

Vo

Ve = 7.127

\8

Figure 7.68
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independent of the nature of Fy. Fy can depend on position, time, speed, or
anything else. The relation « = —nRc, and hence also eq. (7.126), will still be
true at all times.

REMARK: We can also calculate 7 and L relative to a dot painted on the ground that
is the contact point at a given instant. There is zero torque relative to this point.
To find L, we must add the L of the CM and the L relative to the CM. Therefore,
T = dL/dt gives 0 = (d/dt)(mRv + nmR>w), and so a = —nRa, as above. &

Using eq. (7.127), and also the relation wy = V;/R, the loss in kinetic energy is

1 2 1 o 1.5
AKE = §mV0 - (vaf + Qwa>

1 1 n

= —mV%(1- _
2" ( (1+7)? (1+17)2)
1 2 n

= = — . 12
2mV0 (1+77> (7.128)

For n — 0, no energy is lost, which makes sense. And for 7 — oo, all the energy
is lost, which also makes sense. This case is essentially like a sliding block which
can’t rotate.

Let’s first find ¢. The friction force is Fy = —umg, so F' = ma gives —pug = a.
Therefore, AV = at = —pugt. But eq. (7.127) says that AV = Vy -V =
—Von/(1 +n). Therefore,

n_ %
(L+n)pg
For n — 0, we have ¢ — 0, which makes sense. And for n — oo, we have
t — Vo/(ug) which is exactly the time a sliding block would take to stop.

Let’s now find d. We have d = Vot + (1/2)at?. Using a = —pug, and plugging in
the ¢ from eq. (7.129), we obtain

(7.129)

2
FRICh By (7.130)
(1+m)?2ug
The two extreme cases for 1 check here.
To calculate the work done by friction, we might be tempted to write down
the product Fyd, with Fy = —umg and d given in eq. (7.130). But the result
doesn’t look much like the loss in kinetic energy calculated in eq. (7.128).
What’s wrong with this reasoning? The error is that the friction force does not
act over a distance d. To find the distance over which F); acts, we must find
how far the surface of the ball moves relative to the ground.
The speed of a dot on the ball that is instantaneously the contact point is
Vil = V(t) — Rw(t) = (Vo + at) — Rat. Using o = —a/nR and a = —pug, this
becomes

1
Vieel = Vo — %ugt. (7.131)
Integrating this from ¢ = 0 to the ¢ given in eq. (7.129) gives
V2
drel = /V;el dt = 0777 . (7132)
2ug(1 +n)

The work done by friction is Fydrel = —pmgdyel, which does indeed give the loss
in kinetic energy given in eq. (7.128).
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19. The superball
Since we are told that |v,| is unchanged by the bounce, we can ignore it when applying
conservation of energy. And since the vertical impulse from the floor provides no
torque around the ball’s CM, we can completely ignore the y motion in this problem.
The horizontal impulse from the floor is responsible for changing both v, and w. With
positive directions defined as in the statement of the problem, eq. (7.58) gives

AL = RAp
= I(W —w) = Rm(v), —vy). (7.133)
But conservation of energy gives
1 1 1 1
§mv;2 + §Iw’2 = §mvi + Ele
= I(Ww? —w?) = m@?—v.%). (7.134)
Dividing this equation by eq. (7.133) gives'®
R(W' +w) = —(v), + vs). (7.135)

We can now combine this equation with eq. (7.133), which can be rewritten as, using
I=(2/5)mR?,

2
BR(U/ —w) =, — v, (7.136)

Given v, and w, the previous two equations are two linear equations in the two
unknowns, v, and w’. Solving for v/, and w’, and then writing the result in matrix

notation, gives
vy 1 3 -4 Vg
<Rw’>7(—10 —3>(Rw>’ (7.137)

as desired. As an exercise, you can use this result to show that the relative velocity
of the ball’s contact point and the ground simply changes sign during the bounce.

20. Many bounces

Eq. (7.59) gives the result after one bounce, so the result after two bounces is
vl _ 3/7 =47 vl
Rw" B -10/7 -3/7 Rw'
B 37 —4/7T\° [ v,
o -10/7 -=3/7 Rw
1 0 Vg
0 1 Rw

= (;Z) ) (7.138)

The square of the matrix turns out to be the identity. Therefore, after two bounces,
both v, and w return to their original values. The ball then repeats the motion of

10We have divided out the trivial w’ = w and v}, = v, solution, which corresponds to slipping
motion on a frictionless plane. The nontrivial solution we will find shortly is the non-slipping one.
Basically, to conserve energy, there must be no work done by friction. And since work is force times
distance, this means that either the plane is frictionless, or that there is no relative motion between
ball’s contact point and the plane. The latter case is the one we are concerned with here.
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21.

the previous two bounces (and so on, after every two bounces). The only difference
between successive pairs of bounces is that the ball may shift horizontally. You are
strongly encouraged to experimentally verify this interesting periodic behavior.

Rolling over a bump

We will use the fact that the angular momentum of the ball with respect to the corner
of the step (call this point P) is unchanged by the collision. This is true because any
forces exerted at point P provide zero torque around P.!'' This fact will allow us to
find the energy of the ball right after the collision, which we will then require to be
greater than mgh.

Breaking the initial L into the contribution relative to the CM, plus the contribution
from the ball treated like a point mass located at the CM, we see that the initial
angular momentum is L = (2/5)mR%wy +mVy(R — h), where wy is the initial angular
speed. But the non-slipping condition tells us that wy = Vp/R. Therefore, L may be
written as

2
L= ZmRVy +mVo(R ~ ) = m¥p (75R - h) . (7.139)

Let w’ be the angular speed of the ball around point P immediately after the colli-
sion. The parallel-axis theorem says that the moment of inertia around P is equal
to (2/5)mR? + mR? = (7/5)mR?. Conservation of L (around point P) during the
collision then gives

TR\ T Vo, 5h
mV0(5 h>—5me = W=7 1 = (7.140)

The energy of the ball right after the collision is therefore

1 /7 1 (7 V2 5h\> 7 5h\*
E=(itmR2) 2= (tmr2) 20 (1-22) — Zovz(1-22) . (7141
5 (5mR )“’ 2 (5mR ) m\'" ) T\l ag) - (Y

The ball will climb up over the step if £ > mgh, which gives

10gh 5h\ !
Voz /== (1—7R> . (7.142)

REMARKS: Note that is possible for the ball to rise up over the step even if h > R, provided
that the ball sticks to the corner, without slipping. (If h > R, the step would have to be
“hollowed out” so that the ball doesn’t collide with the side of the step.) But note that
Vo — oo as h — TR/5. For h > TR/5, it is impossible for the ball to make it up over the
step, no matter how large Vp is. The ball will get pushed down into the ground, instead of
rising up, if h > TR/5.

For an object with a general moment of inertia I = nmR? (so m = 2/5 in our problem), you
can show that the minimum initial speed is

2gh h -
VO>’/1+77(1_(1+77)R> . (7.143)

This decreases as n increases. It is smallest when the “ball” is a wheel with all the mass on

its rim (so that n = 1), in which case it is possible for the wheel to climb up over the step
even if h is close to 2R. &

"The torque from gravity will be relevant once the ball rises up off the ground. But during the
(instantaneous) collision, L will not change.
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22. Lots of sticks

Consider the collision between two sticks. Let V be the speed of the contact point on
the heavy one. Since this stick is essentially infinitely heavy, we may consider it to
be an infinitely heavy ball, moving at speed V. The rotational degree of freedom of
the heavy stick is irrelevant, as far as the light stick is concerned.

We may therefore invoke the result of Problem 17 to say that the relative speed of
the contact points is the same before and after the collision. This implies that the
contact point on the light stick picks up a speed of 2V, because the heavy stick is
essentially unaffected by the collision and keeps moving at speed V.

Let us now find the speed of the other end of the light stick. This stick receives an
impulse from the heavy stick, so we can apply eq. (7.58) to the light stick to obtain

nmr?w = r(mucy) = rw = S (7.144)

n
The speed of the struck end is v, = 7w + vy, because the rotational speed adds to
the CM motion. The speed of the other end is votn, = rw —ven, because the rotational
speed subtracts from the CM motion.'? The ratio of these speeds is

v _ S o _ 19 i
Ustr_v%M+%M_1+77' ( )

In the problem at hand, we have vg, = 2V. Therefore,

v (20, 140

The same analysis holds for all the other collisions. Therefore, the bottom ends of the
sticks move with speeds that form a geometric progression with ratio 2(1—n)/(1+n).
If this ratio is less than 1 (that is, if n > 1/3), then the speeds go to zero as n — oc.
If it is greater than 1 (that is, if n < 1/3), then the speeds go to infinity as n — occ.
If it equals 1 (that is, if n = 1/3), then the speeds remain equal to V and are thus
independent of n, as we wanted to show. A uniform stick has n = 1/3 relative to its
center (which is usually written in the form I = m#¢?/12, where £ = 2r).

12Gince n < 1 for any real stick, we have rw = vem/n > vem. Therefore, rw — vow is greater than
or equal to zero.
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Chapter 8

Angular Momentum, Part 11
(General L)

Copyright 2004 by David Morin, morin@physics.harvard.edu

In the Chapter 7, we discussed situations where the direction of the vector L remains
constant, and only its magnitude changes. In this chapter, we will look at the more
complicated situations where the direction of L is allowed to change. The vector
nature of L will prove to be vital, and we will arrive at all sorts of strange results
for spinning tops and such things.

This chapter is rather long, alas. The first three sections consist of general
theory, and then in Section 8.4 we start solving some actual problems.

8.1 Preliminaries concerning rotations

8.1.1 The form of general motion

Before getting started, we should make sure we’re all on the same page concerning
a few important things about rotations. Because rotations generally involve three
dimensions, they can often be hard to visualize. A rough drawing on a piece of
paper might not do the trick. For this reason, this topic is one of the more difficult
ones in this book.

The next few pages consist of some definitions and helpful theorems. This first
theorem describes the form of general motion. You might consider it obvious, but
let’s prove it anyway.

Theorem 8.1 Consider a rigid body undergoing arbitrary motion. Pick any point
P in the body. Then at any instant (see Fig. 8.1), the motion of the body may be
written as the sum of the translational motion of P, plus a rotation around some
axis, w, through P (the azis w may change with time).!

Proof: The motion of the body may be written as the sum of the translational
motion of P, plus some other motion relative to P (this is true because relative

'In other words, what we mean here is that a person at rest with respect to a frame whose origin
is P, and whose axes are parallel to the fixed-frame axes, will see the body undergoing a rotation
around some axis through P.

VIII-1
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coordinates are additive quantities). We must show that this latter motion is simply
a rotation. This seems quite plausible, and it holds because the body is rigid; that
is, all points keep the same relative distances. (If the body weren’t rigid, then this
theorem wouldn’t be true.)

To be rigorous, consider a sphere fixed in the body, centered at P. The motion
of the body is completely determined by the motion of the points on this sphere, so
we need only examine what happens to the sphere. And because we are looking at
motion relative to P, we have reduced the problem to the following: In what manner
can a rigid sphere transform into itself? We claim that any such transformation
requires that two points end up where they started.

If this claim is true, then we are done, because for an infinitesimal transforma-
tion, a given point moves in only one direction (since there is no time to do any
bending). So a point that ends up where it started must have always been fixed.
Therefore, the diameter joining the two fixed points remains stationary (because
distances are preserved), and we are left with a rotation around this axis.

This claim is quite believable, but nevertheless tricky to prove. I can’t resist
making you think about it, so I've left it as a problem (Problem 1). Try to solve it
on your own. M

We will invoke this theorem repeatedly in this chapter (often without bothering
to say so). Note that it is required that P be a point in the body, since we used the
fact that P keeps the same distances from other points in the body.

REMARK: A situation where our theorem is not so obvious is the following. Consider
an object rotating around a fixed axis, the stick shown in Fig. 8.2. In this case, w simply
points along the stick. But now imagine grabbing the stick and rotating it around some
other axis (the dotted line shown). It is not immediately obvious that the resulting motion
is (instantaneously) a rotation around some new axis through A. But indeed it is. (We'll
be quantitative about this in the “Rotating Sphere” example near the end of this section.)

&

8.1.2 The angular velocity vector

It is extremely useful to introduce the angular velocity vector, w, which is defined
to point along the axis of rotation, with a magnitude equal to the angular speed.
The choice of the two possible directions is given by the right-hand rule. (Curl your
right-hand fingers in the direction of the spin, and your thumb will point in the
direction of w.) For example, a spinning record has w perpendicular to the record,
through its center (as shown in Fig. 8.3), with magnitude equal to the angular
speed, w.

REMARK: You could, of course, break the mold and use the left-hand rule, as long
as you use it consistently. The direction of & would be opposite, but that doesn’t matter,
because & isn’t really physical. Any physical result (for example, the velocity of a particle,

2This claim is actually true for any transformation of a rigid sphere into itself, but for the present
purposes we are concerned only with infinitesimal transformations (because we are only looking at
what happens at a given instant in time).
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or the force on it) will come out the same, independent of which hand you (consistently)
use.

When studying vectors in school,

You'll use your right hand as a tool.

But look in a mirror,

And then you’ll see clearer,

You can just use the left-handed rule. &

The points on the axis of rotation are the ones that (instantaneously) do not
move. Of, course, the direction of w may change over time, so the points that were
formerly on w may now be moving.

REMARK: The fact that we can specify a rotation by specifying a vector w is a peculiar-
ity to three dimensions. If we lived in one dimension, then there would be no such thing as
a rotation. If we lived in two dimensions, then all rotations would take place in that plane,
so we could label a rotation by simply giving its speed, w. In three dimensions, rotations
take place in (3) = 3 independent planes. And we choose to label these, for convenience,
by the directions orthogonal to these planes, and by the angular speed in each plane. If we
lived in four dimensions, then rotations could take place in (‘21) = 6 planes, so we would have
to label a rotation by giving 6 planes and 6 angular speeds. Note that a vector (which has
four components in four dimensions) would not do the trick here. &

In addition to specifying the points that are instantaneously motionless, w also
easily produces the velocity of any point in the rotating object. Consider the case
where the axis of rotation passes through the origin (which we will generally assume
to be the case in this chapter, unless otherwise stated). Then we have the following
theorem.

Theorem 8.2 Given an object rotating with angular velocity w, the velocity of any
point in the object is given by (with r being the position of the point)

v=wx] 1)

Proof: Drop a perpendicular from the point in question (call it P) to the axis w
(call the point there Q). Let r’ be the vector from @ to P (see Fig. 8.4). From the
properties of the cross product, v.= w x r is orthogonal to w, r, and also r’ (since
r’ is a linear combination of w and r). Therefore, the direction of v is correct (it
lies in a plane perpendicular to w, and is also perpendicular to r’, so it describes
circular motion around the axis w; also, by the right-hand rule, it points in the
proper orientation around w). And since

[v| = |w||r|sin @ = wr’, (8.2)

which is the speed of the circular motion around w, we see that v has the correct
magnitude. So v is indeed the correct velocity vector. m

Note that if we have the special case where P lies along w, then r is parallel to
w, and so the cross product gives a zero result for v, as it should.

Figure 8.4
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Eq. (8.1) is extremely useful and will be applied repeatedly in this chapter. Even
if it’s hard to visualize what’s going on with a given rotation, all you have to do to
find the speed of any given point is calculate the cross product w X r.

Conversely, if the speed of every point in a moving body is given by v =w x r,
then the body is undergoing a rotation with angular velocity w (because all points
on the axis w are motionless, and all other points move with the proper speed for
this rotation).

A very nice thing about angular velocities is that they simply add. Stated more
precisely, we have the following theorem.

Theorem 8.3 Let coordinate systems S1, S2, and S3 have the same origin. Let
S1 rotate with angular velocity wi o with respect to Se. Let So rotate with angular
velocity wa 3 with respect to S3. Then Sy rotates (instantaneously) with angular
velocity

w13z =wi2+ w23 (8.3)

with respect to Ss.

Proof: If w;o and wg 3 point in the same direction, then the theorem is clear;
the angular speeds just add. If, however, they don’t point in the same direction,
then things are a little harder to visualize. But we can prove the theorem by simply
making abundant use of the definition of w.

Pick a point P; at rest in S7. Let r be the vector from the origin to ;. The
velocity of P (relative to a very close point P, at rest in S2) due to the rotation
about w2 is Vp p, = wi 2 x r. The velocity of P (relative to a very close point
P3 at rest in S3) due to the rotation about wy 3 is Vp,p, = wa3 x r (because P is
also located essentially at position r). Therefore, the velocity of P; (relative to Ps3)
is Vpp, + Vp,p, = (w12 +w23) x r. This holds for any point P; at rest in Sj. So
the frame Sy rotates with angular velocity (w12 + w2 3) with respect to Ss. m

Note that if w2 is constant in S, then the vector wi 3 = w1 2 + w2 3 will change
with respect to S3 as time goes by (because wi 2, which is fixed in Sy, is changing
with respect to S3). But at any instant, w; 3 may be obtained by simply adding the
present values of wq 2 and wy 3. Consider the following example.

Example (Rotating sphere): A sphere rotates with angular speed w3 around a
stick that initially points in the z direction. You grab the stick and rotate it around
the y-axis with angular speed ws. What is the angular velocity of the sphere, with
respect to the lab frame, as time goes by?

Solution: In the language of Theorem 8.3, the sphere defines the S; frame; the stick
and the y-axis define the Sy frame; and the lab frame is the S3 frame. The instant
after you grab the stick, we are given that w; s = w32, and wy 3 = wyy. Therefore,
the angular velocity of the sphere with respect to the lab frame is w1 3 = w2 +wa 3 =
w3z + wyy. This is shown is Fig. 8.5. As time goes by, the stick (and hence wq 2)
rotates around the y axis, so wi 3 = wi 2 + wo 3 traces out a cone around the y axis,
as shown.
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REMARK: Note the different behavior of &; 3 for a slightly different statement of the problem:
Let the sphere initially rotate with angular velocity wey. Grab the axis (which points in
the y direction) and rotate it with angular velocity wsz. For this situation, &1, initially
points in the same direction as in the above statement of the problem (it is initially equal to
w3Z + w2y ), but as time goes by, it is the way vector that will change, so &1,3 = &1,2 + W23
traces out a cone around the z axis, as shown in Fig. 8.6. &

An important point concerning rotations in that they are defined with respect
to a coordinate system. It makes no sense to ask how fast an object is rotating
with respect to a certain point, or even a certain axis. Consider, for example, an
object rotating with angular velocity w = w3z, with respect to the lab frame. Saying
only, “The object has angular velocity w = wsz,” is not sufficient, because someone
standing in the frame of the object would measure w = 0, and would therefore be
very confused by your statement.

Throughout this chapter, we’ll try to remember to state the coordinate system
with respect to which w is measured. But if we forget, the default frame is the lab
frame.

If you want to strain some brain cells thinking about w vectors, you are encour-
aged to solve Problem 3, and then also to look at the three given solutions.

This section was a bit abstract, so don’t worry too much about it at the moment.
The best strategy is probably to read on, and then come back for a second pass after
digesting a few more sections. At any rate, we’ll be discussing many other aspects
of w in Section 8.7.2.

8.2 The inertia tensor

Given an object undergoing general motion, the inertia tensor is what relates the
angular momentum, L, to the angular velocity, w. This tensor® depends on the
geometry of the object, as we will see. In finding the L due to general motion, we
will (in the same spirit as in Section 7.1) first look at the special case of rotation
around an axis through the origin. Then we will look at the most general possible
motion.

8.2.1 Rotation about an axis through the origin

The three-dimensional object in Fig. 8.7 rotates with angular velocity w. Consider
a little piece of the body, with mass dm and position r. The velocity of this piece is
v = w X r. So the angular momentum (relative to the origin) of this piece is equal
tor x p = (dm)r x v.= (dm)r x (w x r). The angular momentum of the entire
body is therefore

L:/rx(wxr)dm, (8.4)

where the integration runs over the volume of the body.

3“Tensor” is just a fancy name for “matrix” here.

stick
Figure 8.6
z
)
Figure 8.7
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In the case where the rigid body is made up of a collection of point masses, m;,
the angular momentum is simply

L= Zmiri X (w X ;). (8.5)

This double cross-product looks a bit intimidating, but it’s actually not so bad.
First, we have

~ ~ ~

Xy z
wWwXr = w1 Wy w3
x oy oz
= (w2z —w3y)X + (w3 — wW12)¥ + (WY — Wax)Z. (8.6)
Therefore,
% § 5
rx (wxr) = x Yy z

(woz —w3y) (w3r —w12) (wW1y — waex)
= (wl (y2 + 22) — WXy — wgzx)fc
+(w2(22 +27) — wayz — w1l‘y)5’
+(w3(372 +y?) — w2z — wgyz)i. (8.7)

The angular momentum in eq. (8.4) may therefore be written in the nice, concise,
matrix form,

Ly [ +2%) —[axy — [ zx w1
Lo = —[zy  [(Z2+2?) - Jyz wo
Ls — [z — [yz [(2? + y?) w3
Iy Ixy Iy w1
= | Lo Iy L. || w
I Izy I, w3
= Iw (8.8)

For sake of clarity, we have not bothered to write the dm part of each integral. The
matrix I is called the inertia tensor. If the word “tensor” scares you, just ignore it.
I is simply a matrix. It acts on one vector (the angular velocity) to yield another
vector (the angular momentum).

REMARKS:

1. I is a rather formidable-looking object. Therefore, you will undoubtedly be very
pleased to hear that you will rarely have to use it. It’s nice to know that it’s there
if you do need it, but the concept of principal azes in Section 8.3 provides a much
better way of solving problems, which avoids the use of the inertia tensor.

2. I is a symmetric matrix. (This fact will be important in Section 8.3.) There are
therefore only six independent entries, instead of nine.
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3. In the case where the rigid body is made up of a collection of point masses, m;, the
entries in the matrix are just sums. For example, the upper left entry is > m; (y2+22).

4. T depends only on the geometry of the object, and not on w.

5. To construct an I, you not only need to specify the origin, you also need to specify
the x,y,z axes of your coordinate system. (These basis vectors must be orthogonal,
because the cross-product calculation above is valid only for an orthonormal basis.)
If someone else comes along and chooses a different orthonormal basis (but the same
origin), then her I will have different entries, as will her w, as will her L. But her
w and L will be exactly the same vectors as your w and L. They will only appear
different because they are written in a different coordinate system. (A vector is what
it is, independent of how you choose to look at it. If you each point your arm in the
direction of what you calculate L to be, then you will both be pointing in the same
direction.) &

All this is fine and dandy. Given any rigid body, we can calculate I (relative to
a given origin, using a given set of axes). And given w, we can then apply I to it
to find L (relative to the origin). But what do these entries in I really mean? How
do we interpret them? Note, for example, that the L3 in eq. (8.8) contains terms
involving w; and we. But w; and we have to do with rotations around the z and y
axes, so what in the world are they doing in L3? Consider the following examples.

Example 1 (Point-mass in z-y plane): Consider a point-mass m traveling in a
circle (centered at the origin) in the z-y plane, with frequency ws. Let the radius of
the circle be r (see Fig. 8.8).

Using w = (0,0,ws), 22+ y?> = 7%, and z = 0 in eq. (8.8) (with a discrete sum of
only one object, instead of the integrals), the angular momentum with respect to the
origin is

L = (0,0, mr?ws). (8.9) Figure 8.8

The z-component is mrv, as it should be. And the z- and y-components are 0, as
they should be. This case where w; = wy = 0 and z = 0 is simply the case we studied
in the Chapter 7.

—————

Example 2 (Point-mass in space): Consider a point-mass m traveling in a circle — Sy r--c»
of radius r, with frequency ws. But now let the circle be centered at the point (0, 0, zo), P
with the plane of the circle parallel to the z-y plane (see Fig. 8.9).

Using w = (0,0,w3), 22 + y? = r?, and z = 2o in eq. (8.8), the angular momentum — )
with respect to the origin is /
L = mws(—z20, —y20,7°). (8.10)
Figure 8.9
The z-component is mrv, as it should be. But, surprisingly, we have nonzero L; and
Lo, even though our mass is simply rotating around the z-axis. What’s going on?

Consider the instant when the mass is in the z-z plane. The velocity of the mass is
then in the y direction. Therefore, the particle most certainly has angular momentum
around the z-axis, as well as the z-axis. (Someone looking at a split-second movie
of the particle at this point could not tell whether the mass was rotating around the
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z-axis, the z-axis, or undergoing some complicated motion. But the past and future
motion is irrelevant; at any instant in time, as far as the angular momentum goes, we
are concerned only with what is happening at that instant.)

At this instant, the angular momentum around the z-axis is —mzov (since zq is the
distance from the z-axis; and the minus sign comes from the right-hand rule). Using
v = w3x, we have Ly = —mzzows, in agreement with eq. (8.10).

At this instant, Lo is zero, since the velocity is parallel to the y-axis. This agrees with
eq. (8.10), since y = 0. And you can check that eq. (8.10) is indeed correct when the
mass is at a general point (z,y, zo).

For a point mass, L is much more easily obtained by simply calculating L = r X p
(you should use this to check the results of this example). But for more complicated
objects, the tensor I must be used.

Example 3 (Two point-masses): Add another point-mass m to the previous
example. Let it travel in the same circle, at the diametrically opposite point (see
Fig. 8.10).

Using w = (0,0,ws3), 22 + 3% = 2, and 2z = 2¢ in eq. (8.8), you can show that the
angular momentum with respect to the origin is

L = 2mws3(0,0,72). (8.11)

The z-component is 2mrv, as it should be. And L and Lo are zero, unlike in the
previous example, because these components of the L’s of the two particles cancel.
This occurs because of the symmetry of the masses around the z-axis, which causes
the I, and I, entries in the inertia tensor to vanish (because they are each the sum
of two terms, with opposite = values, or opposite y values).

Let’s now look at the kinetic energy of our object (which is rotating about an
axis passing through the origin). To find this, we need to add up the kinetic energies
of all the little pieces. A little piece has energy (dm)v?/2 = dm |w x r|?/2. So, using
eq. (8.6), the total kinetic energy is

T = 5/ ((wgz - wgy)2 + (w3z — w12)2 + (w1y — wzx)Q) dm. (8.12)

Multiplying this out, we see (after a little work) that we may write T" as

1 J+2%)  —[ay — [z w
T = Slwnwsws): —Jxy [P Ha?) [y ws
— [z —Jyz  [(@®+y?) w3
1 1
= qw- Iw = oW L. (8.13)

If w = w32, then this reduces to the T' = I33w3/2 result in eq. (7.8) in Chapter 7
(with a slight change in notation).
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8.2.2 General motion

How do we deal with general motion in space? For the motion in Fig. 8.11, the
various pieces of mass are not traveling in circles about the origin, so we cannot
write v = w X r, as we did prior to eq. (8.4).

To determine L (relative to the origin), and also the kinetic energy T', we will
invoke Theorem 8.1. In applying this theorem, we may choose any point in the body
to be the point P in the theorem. However, only in the case that P is the object’s
CM can we extract anything useful. The theorem then says that the motion of the
body is the sum of the motion of the CM plus a rotation about the CM. So, let the
CM move with velocity V, and let the body instantaneously rotate with angular
velocity w’ around the CM. (That is, with respect to the frame whose origin is the
CM, and whose axes are parallel to the fixed-frame axes.)

Let the CM coordinates be R = (X,Y, Z), and let the coordinates relative to
the CM be r’ = (2/,4/,2'). Thenr = R+1’ (see Fig. 8.12). Let the velocity relative
to the CM be v/ (so v/ =w' x1r’). Then v=V + v’

Let’s look at L first. The angular momentum is

L = /rxvdm
— /(R+r’)x(V+(w’xr’))dm

= /(RxV)dm—i—/r'x(w’xr')dm
= M(RXV)—I—LCM. (8.14)

The cross terms vanish because the integrands are linear in r’ (and so the inte-
grals, which involve [r'dm, are zero by definition of the CM). Lcy is the angular
momentum relative to the CM.*

As in the pancake case Section 7.1.2, we see that the angular momentum (relative
to the origin) of a body can be found by treating the body as a point mass located
at the CM and finding the angular momentum of this point mass (relative to the
origin), and by then adding on the angular momentum of the body, relative to the
CM. Note that these two parts of the angular momentum need not point in the
same direction (as they did in the pancake case).

Now let’s look at 1. The kinetic energy is

1

2U
1 /|2

_ /§]V+v| dm

1 1
= /§V2dm+/§vl2dm

1 1
= §MV2+/§\w’><r']2dm

T = 2dm

4By this, we mean the angular momentum as measured in the coordinate system whose origin
is the CM, and whose axes are parallel to the fixed-frame axes.
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1 1
= 5Mv2 + iw' - Lo, (8.15)

where the last line follows from the steps leading to eq. (8.13). The cross term
JV-vdm= [V (w xr1')dm vanishes because the integrand is linear in r’ (and
thus yields a zero integral, by definition of the CM).

As in the pancake case Section 7.1.2, we see that the kinetic energy of a body
can be found by treating the body as a point mass located at the CM, and by then
adding on the kinetic energy of the body due to motion relative to the CM.

8.2.3 The parallel-axis theorem

Consider the special case where the CM rotates around the origin with the same
angular velocity at which the body rotates around the CM (see Fig. 8.13). That is,
V = w’ x R, (This may be achieved, for example, by having a rod stick out of the
body and pivoting one end of the rod at the origin.) This means that we have the
nice situation where all points in the body travel in fixed circles around the axis of
rotation (because v=V +v/ =w x R+ w’ xr' = w’ x r). Dropping the prime on
w, eq. (8.14) becomes

L:MRx(wa)+/r’><(w><r’)dm (8.16)

Expanding the double cross-products as in the steps leading to eq. (8.8), we
may write this as

L Y2472 XY -7ZX w1
Lo = M -XY Z?+X? -YZ wo
L3 -7ZX -YZ X?24Y? w3
f(y/2 + 212) —f:r’y’ . lex' w1
4 _ f:c’y’ I(ZIQ + .7}/2) _ fy’z’ wo
_ lex/ _ fy’z’ f(a:’2 4 y/2) ws
= (Ig +Icm)w. (8.17)

This is the generalized parallel-axis theorem. It says that once you’ve calculated
Icm for an axis through the CM, then if you want to calculate I around any parallel
axis, you simply have to add on the Iz matrix (obtained by treating the object like
a point-mass at the CM). So you have to compute six numbers (there are only six,
instead of nine, because the matrix is symmetric) instead of just the one M R? in
the parallel-axis theorem in Chapter 7, given in eq. (7.12).

Likewise, if V = w’ x R, then eq. (8.15) gives (dropping the prime on w) a
kinetic energy of

1 1
T = §w -(Ig + Iom)w = iw - L. (8.18)
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8.3 Principal axes

The cumbersome expressions in the previous section may seem a bit unsettling, but
it turns out that you will rarely have to invoke them. The strategy for avoiding all
the previous mess is to use the principal azes of a body, which we will define below.

In general, the inertia tensor I in eq. (8.8) has nine nonzero entries (six inde-
pendent ones). In addition to depending on the origin chosen, this inertia tensor
depends on the set of orthonormal basis vectors chosen for the coordinate system.
(The z,y,z variables in the integrals in I depend on the coordinate system with
respect to which they are measured, of course.)

Given a blob of material, and given an arbitrary origin,” any orthonormal set of
basis vectors is usable, but there is one special set that makes all our calculations
very nice. These special basis vectors are called the principal axes. They can be
defined in various equivalent ways.

e The principal axes are the orthonormal basis vectors for which I is diagonal,
that is, for which®

L 0 0
I=| 0 5, o |. (8.19)
0 0 Iy

Iy, Is, and I3 are called the principal moments.

For many objects, it is quite obvious what the principal axes are. For example,
consider a uniform rectangle in the z-y plane, and let the CM be the origin (and
let the sides be parallel to the coordinate axes). Then the principal axes are
clearly the x, y, and z axes, because all the off-diagonal elements of the inertia
tensor in eq. (8.8) vanish, by symmetry. For example I, = — [ 2y dm equals
zero, because for every point (x,y) in the rectangle, there is a corresponding
point (—z,y). So the contributions to [ xydm cancel in pairs. Also, the
integrals involving z are identically zero, because z = 0.

e The principal axes are the orthonormal set wy, we, w3 with the property that
1w, = L, Iws = hwo, Iws = Isws. (8.20)

(That is, they are the w’s for which L points in the same direction as w.)
These three statements are equivalent to eq. (8.19), because the vectors wy,
wq, and wsg are simply (1,0,0), (0,1,0), and (0,0,1) in the frame in which
they are the basis vectors.

e The principal axes are the axes around which the object can rotate with con-
stant speed, without the need for any torque. (So in some sense, the object is

5The CM is often chosen to be the origin, but it need not be. There are principal axes associated
with any origin.

STechnically, we should be writing I1; instead of I, etc., in this matrix, because we’re talking
about elements of a matrix. (The one-index object I looks like a component of a vector.) But the
two-index notation gets cumbersome, so we’ll be sloppy and just use I3, etc.
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“happy” to spin around a principal axis.) This is equivalent to the previous
definition for the following reason. Assume the object rotates around an axis
w1, for which L = 1w = 1wy, as in eq. (8.20). Then, since w; is assumed to
be fixed, we see that L is also fixed. Therefore, 7 = dL/dt = 0.

The lack of need for any torque, for rotation around a principal axis w, means
that if the object is pivoted at the origin, and if the origin is the only place where
any force is applied, then the object can undergo rotation with constant angular
velocity w. If you try to set up this scenario with a non-principal axis, it won’t
work.

Example (Square with origin at corner): Consider the uniform square in
Fig. 8.14. In Appendix G, we show that the principal axes are the dotted lines
shown (and also the z-axis perpendicular to the page). But there is no need to use
the techniques of the appendix to see this, because in this basis it is clear that the
integral f X129 is zero, by symmetry. (And z3 = z is identically zero, which makes
the other off-diagonal terms in I also equal to zero.)

Furthermore, it is intuitively clear that the square will be happy to rotate around
any one of these axes indefinitely. During such a rotation, the pivot will certainly be
supplying a force (if the axis is w; or z), to provide the centripetal acceleration for
the circular motion of the CM. But it will not be applying a torque relative to the
origin (because the r in r x F is 0). This is good, because for a rotation around one
of these principal axes, dL/dt = 0, and there is no need for any torque.

It is fairly clear that it is impossible to make the square rotate around, say, the z-axis,
assuming that its only contact with the world is through a free pivot at the origin.
The square simply doesn’t want to remain in that circular motion. There are various
ways to demonstrate this rigorously. One is to show that L (relative to the origin)
will not point along the z-axis, so it will therefore precess around the x-axis along
with the square, tracing out the surface of a cone. This means that L is changing.
But there is no torque available (relative to the origin) to provide for this change in
L. Hence, such a rotation cannot exist.

Note also that the integral [y is not equal to zero (every point gives a positive
contribution). So the inertia tensor is not diagonal in the z-y basis, which means that
2 and ¢ are not principal axes.

At the moment, it is not at all obvious that an orthonormal set of principal
axes exists for an arbitrary object. This is the task of Theorem 8.4 below. But
assuming that principal axes do exist, the L and T in eqgs. (8.8) and (8.13) take on
the particularly nice forms,

L = (Ilwl, Thwo, ISWS)a

1
T = i(Ilw%—l—IQw%—i—Igwg). (8.21)

in the basis of the principal axes. (The numbers w;, we, and w3 are the components
of a general vector w written in the principal-axis basis; that is, w = w1 W1 +wWows +
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wsws.) This is a vast simplification over the general formulas in eqs. (8.8) and
(8.13). We will therefore invariably work with principal axes in the remainder of
this chapter.

REMARK: Note that the directions of the principal axes (relative to the body) depend
only on the geometry of the body. They may therefore be considered to be painted onto the
object. Hence, they will generally move around in space as the body rotates. (For example,
in the special case where the object is rotating happily around a principal axis, then that
axis will stay fixed, and the other two principal axes will rotate around it in space.) In
equations like w = (w1, ws,ws3) and L = (lywy, [owe, I3ws), the components w; and I;w; are
measured along the instantaneous principal axes @;. Since these axes change with time, the
components w; and [w; will generally change with time (except in the case where we have
a nice rotation around a principal axis). &

Let us now prove that a set of principal axes does indeed exist, for any object,
and any origin. Actually, we’ll just state the theorem here. The proof involves a
rather slick and useful technique, but it’s slightly off the main line of thought, so
we’ll relegate it to Appendix F. Take a look at the proof if you wish, but if you want
to simply accept the fact that the principal axes exist, that’s fine.

Theorem 8.4 Given a real symmetric 3 x 3 matriz, 1, there exist three orthonormal
real vectors, Wy, and three real numbers, Iy, with the property that

1&g = [y (8.22)

Proof: See Appendix F. m

Since the inertia tensor in eq. (8.8) is indeed symmetric, for any body and any
origin, this theorem says that we can always find three orthogonal basis-vectors for
which I is a diagonal matrix. That is, principal axes always exist. Invariably, it
is best to work in a coordinate system that has this basis. (As mentioned above,
the CM is generally chosen to be the origin, but this is not necessary. There are
principal axes associated with any origin.)

Problem 5 gives another way to show the existence of principal axes in the special
case of a pancake object.

For an object with a fair amount of symmetry, the principal axes are usually the
obvious choices and can be written down by simply looking at the object (examples
are given below). If, however, you are given an unsymmetrical body, then the only
way to determine the principal axes is to pick an arbitrary basis, then find I in this
basis, then go through a diagonalization procedure. This diagonalization procedure
basically consists of the steps at the beginning of the proof of Theorem 8.4 (given in
Appendix F), with the addition of one more step to get the actual vectors, so we’ll
relegate it to Appendix G. You need not worry much about this method. Virtually
every problem we encounter will involve an object with sufficient symmetry to enable
you to simply write down the principal axes.

Let’s now prove two very useful (and very similar) theorems, and then we’ll give
some examples.
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Theorem 8.5 If two principal moments are equal (Iy = Iy = I), then any axis
(through the chosen origin) in the plane of the corresponding principal azes is a
principal axis (and its moment is also I).

Similarly, if all three principal moments are equal (I, = Iy = I3 = 1), then any

azis (through the chosen origin) in space is a principal azis (and its moment is also
I).
Proof: This first part was already proved at the end of the proof in Appendix F,
but we’ll do it again here. Let I = I = I. Then Iu; = Iuy, and Tus = Tuy. Hence,
I(au; + buy) = I(au; + bug). Therefore, any linear combination of u; and uy is a
solution to In = Ju and is thus a principal axis, by definition.

Similarly, let Iy = Is = I3 = I. Then Iu; = Iu;, Iuy = ITus, and Iug = lus.
Hence, I(au; + buy + cuz) = I(au; + buy + cusz). Therefore, any linear combination
of uy, ug, and ug (that is, any vector in space) is a solution to Iu = ITu and is thus
a principal axis, by definition.

Basically, if Iy = I = I, then I is (up to a multiple) the identity matrix in the
space spanned by w; and wy. And if Iy = [y = I3 = I, then I is (up to a multiple)
the identity matrix in the entire space. m

If two or three moments are equal, so that there is freedom in choosing the
principal axes, then it is possible to pick a non-orthogonal group of them. We will,
however, always choose ones that are orthogonal. So when we say “a set of principal
axes”, we mean an orthonormal set.

Theorem 8.6 If a pancake object is symmetric under a rotation through an angle
0 # 180° in the x-y plane (for example, a hexagon), then every azis in the -y plane
(with the origin chosen to be the center of the symmetry rotation) is a principal axis.

Proof: Let wy be a principal axis in the plane, and let wy be the axis obtained
by rotating wg through the angle 8. Then wy is also a principal axis with the same
principal moment (due to the symmetry of the object). Therefore, &g = Iwy, and
Iwy = Twy.

Now, any vector w in the z-y plane can be written as a linear combination of
wo and wy, provided that 6 # 180° (this is where we use that assumption). That
is, wp and wy span the z-y plane. Therefore, any vector w may be written as
w = awq + bwy, and so

Iw = I(awy + bwg) = alwy + blwy = lw. (8.23)

Hence, w is also a principal axis. (Problem 6 gives another proof of this theorem.)
|

Let’s now give some examples. We’ll state the principal axes for the following
objects (relative to the origin). Your exercise is to show that these are correct.
Usually, a quick symmetry argument shows that

J@+2%) oy [z
I= —Jxy  [(Z24+2?)  —[yz (8.24)
—Jzx = Jyz @+
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is diagonal. In all of these examples (see Fig. 8.15), the origin for the principal axes
is the origin of the given coordinate system (which is not necessarily the CM). In
describing the axes, they thus all pass through the origin, in addition to having the
other properties stated.

Example 1: Point mass at the origin.

principal axes: any axes.

Example 2: Point mass at the point (zo, yo, 20)-

principal azres: axis through point, any axes perpendicular to this.
Example 3: Rectangle centered at the origin, as shown.
principal axes: z-axis, axes parallel to sides.

Example 4: Cylinder with axis as z-axis.

principal axes: z-axis, any axes in z-y plane.

Example 5: Square with one corner at origin, as shown.

principal axes: z axis, axis through CM, axis perp to this.

8.4 Two basic types of problems

The previous three sections introduced many new, and somewhat abstract, concepts.
We will now (finally) get our hands dirty and solve some actual problems. The
concept of principal axes, in particular, gives us the ability to solve many kinds of
problems. Two types, however, come up again and again. There are variations on
these, of course, but they may be generally stated as follows.

e Strike a rigid object with an impulsive (that is, quick) blow. What is the
motion of the object immediately after the blow?

e An object rotates around a fixed axis. A given torque is applied. What is the
frequency of the rotation? (Or conversely, given the frequency, what is the
required torque?)

Let’s work through an example for each of these problems. In both cases, the
solution involves a few standard steps, so we’ll write them out explicitly.

8.4.1 Motion after an impulsive blow

Problem: Consider the rigid object in Fig. 8.16. Three masses are connected
by three massless rods, in the shape of an isosceles right triangle with hypotenuse
length 4a. The mass at the right angle is 2m, and the other two masses are m.
Label them A, B, C, as shown. Assume that the object is floating freely in space.
(Alternatively, let the object hang from a long thread attached to mass C.)

T

Figure 8.15

m

B

Figure 8.16

m

®F
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Mass B is struck with a quick blow, directed into the page. Let the imparted
impulse have magnitude [ F'dt = P. (See Section 7.6 for a discussion of impulse
and angular impulse.) What are the velocities of the three masses immediately after
the blow?

Solution: The strategy of the solution will be to find the angular momentum of the
system (relative to the CM) using the angular impulse, then calculate the principal
moments and find the angular velocity vector (which will give the velocities relative
to the CM), and then add on the CM motion.

The altitude from the right angle to the hypotenuse has length 2a, and the CM
is easily seen to be located at its midpoint (see Fig. 8.17). Picking the CM as our
origin, and letting the plane of the paper be the x-y plane, the positions of the three
masses are r4 = (—2a,—a,0), rg = (2a,—a,0), and r¢ = (0,a,0). There are now
five standard steps that we must perform.

e Find L: The positive z-axis is directed out of the page, so the impulse
vector is P = [Fdt = (0,0,—P). Therefore, the angular momentum of the
system (relative to the CM) is

L:/’Tdt = /(FBXF)dt:rBX/th
= (2a,—a,0) x (0,0, —P) = aP(1,2,0), (8.25)
as shown in Fig. 8.17. We have used the fact that rp is essentially constant

during the blow (because the blow is assumed to happen very quickly) in
taking rp outside the integral in the above equation.

e Calculate the principal moments: The principal axes are clearly the x,
y, and z axes. The moments (relative to the CM) are

I, = ma®+ma®+ (2m)a® = 4ma?,
I, = m(2a)® +m(2a)? + (2m)0? = 8ma?,
I, = I,+1,=12mad* (8.26)

We have used the perpendicular-axis theorem, eq. (7.17), to obtain I,. But
I, will not be needed to solve the problem.

e Find w: We now have two expressions for the angular momentum of the
system. One expression is in terms of the given impulse, eq. (8.25). The other
is in terms of the moments and the angular velocity components, eq. (8.21).

Therefore,
(wazalywyalzwz) = CLP(I,Q,O)
= (4ma’w,, 8ma’w,, 12ma*w,) = aP(1,2,0)
P
— ((,()3;,0.):,17(,02) = m(l,l,o)7 (827)

as shown in Fig. 8.17.
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e Calculate speeds relative to CM: Right after the blow, the object rotates
around the CM with the angular velocity found above. The speeds relative to
the CM are therefore u; = w x r;. That is,

Wi = wxra=——(1,1,0) x (—2a, —a,0) = (0,0, P/4m),
ma
P
up = wxrp = —(1,1,0)x (20, ~a,0) = (0,0, ~3P/4m),
Uo = WwWXrg= E(l, 1,0) X (O,CL,O) = (0,0,P/4m) (828)

e Add on speed of CM: The impulse (that is, the change in linear momen-
tum) supplied to the whole system is P = (0,0, —P). The total mass of the
system is M = 4m. Therefore, the velocity of the CM is

P
Vom = 77 = (0,0, =P/4m). (8.29)

The total velocities of the masses are therefore

va = ug+ Vou = (0,0,0),
vp = UupR +VCM = (anv _P/m)7
ve = uc+ Vo = (0,0,0). (8.30)

REMARKS:

1. We see that masses A and C are instantaneously at rest immediately after the blow,
and mass B acquires all of the imparted impulse. In retrospect, this is quite clear.
Basically, it is possible for both A and C' to remain at rest while B moves a tiny bit,
so this is what happens. (If B moves into the page by a small distance €, then A
and C' won’t know that B has moved, since their distances to B will change only by
a distance of order €2.) If we changed the problem and added a mass D at, say, the
midpoint of the hypotenuse, then this would not be the case; it would not be possible
for A, C, and D to remain at rest while B moved a tiny bit. So there would be some
other motion, in addition to B’s.

2. As time goes on, the system will undergo a rather complicated motion. What will
happen is that the CM will move with constant velocity, and the masses will rotate
around it in a messy (but understandable) manner. Since there are no torques acting
on the system (after the initial blow), we know that L will forever remain constant. It
turns out that w will move around L, and the body will rotate around this changing
w. These matters are the subject of Section 8.6. (Although in that discussion, we
restrict ourselves to symmetric tops; that is, ones with two equal moments.) But these
issues aside, it’s good to know that we can, without too much difficulty, determine
what’s going on immediately after the blow.

3. The body in the above problem was assumed to be floating freely in space. If we
instead have an object that is pivoted at a given (fixed) point, then we simply want
to use the pivot as our origin, and there is no need to perform the last step of adding
on the velocity of the origin (which was the CM, above), since this velocity is now
zero. Equivalently, just consider the pivot to be an infinite mass, which is therefore
the location of the (motionless) CM. &
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8.4.2 Frequency of motion due to a torque

Problem: Consider a stick of length ¢, mass m, and uniform mass density. The
stick is pivoted at its top end and swings around the vertical axis. Assume conditions
have been set up so that the stick always makes an angle 6 with the vertical, as shown
in Fig. 8.18. What is the frequency, w, of this motion?

Solution: The strategy of the solution will be to find the principal moments and
then the angular momentum of the system (in terms of w), then find the rate of
change of L, and then calculate the torque and equate it with dL/dt. We will
choose the pivot to be the origin.” Again, there are five standard steps that we
must perform.

e Calculate the principal moments: The principal axes are clearly the
axis along the stick, along with any two orthogonal axes perpendicular to the
stick. So let the x- and y-axes be as shown in Fig. 8.19, and let the z-axis
point out of the page. The moments (relative to the pivot) are I, = m¢?/3,
I, =0, and I, = m¢?/3. (I, won’t be needed in this solution.)

e Find L: The angular velocity vector points vertically,® so in the basis of the
principal axes, the angular velocity vector is w = (wsin,w cos6,0), where w
is yet to be determined. The angular momentum of the system (relative to
the pivot) is thus

L = (Iywy, Lwy, Lw,) = (m*wsin/3,0,0). (8.31)

e Find dL/dt: The vector L therefore points upwards to the right, along the
r-axis (at the instant shown in Fig. 8.19), with magnitude L = m/?wsin /3.
As the stick rotates around the vertical axis, L traces out the surface of a cone.
That is, the tip of L traces out a horizontal circle. The radius of this circle is
the horizontal component of L, which is L cosf. The speed of the tip (that is,
the magnitude of dL/dt) is therefore (L cos#)w, because L rotates around the
vertical axis with the same frequency as the stick. So, dL/dt has magnitude

L 1
Cth‘ = (LcosO)w = §m€2w2 sin 6 cos 0, (8.32)

and it points into the page.

REMARK: In more complicated problems (where I, # 0), L will point in some messy
direction (not along a principal axis), and the length of the horizontal component
(that is, the radius of the circle L traces out) won’t be immediately obvious. In this
case, you can either explicitly calculate the horizontal component (see the Gyroscope
example in Section 8.7.5), or you can simply do things the formal (and easier) way by

"This is a better choice than the CM, because this way we won’t have to worry about any messy
forces acting at the pivot, when computing the torque.
8However, see the third Remark, following this solution.
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finding the rate of change of L via the expression dL/dt = w x L (which holds for all
the same reasons that v = dr/dt = w X r holds). In the present problem, we obtain

dL/dt = (wsinf,w cos 0,0) x (mlwsind/3,0,0) = (0,0, —ml?w? sinf cos 6/3),
(8.33)
which agrees with eq. (8.32). And the direction is correct, since the negative z-axis
points into the page. Note that we calculated this cross-product in the principal-axis
basis. Although these axes are changing in time, they present a perfectly good set of
basis vectors at any instant. ¢

e Calculate the torque: The torque (relative to the pivot) is due to gravity,
which effectively acts on the CM of the stick. So 7 = r x F has magnitude

T=rFsinf = (¢/2)(mg)siné, (8.34)
and it points into the page.
e Equate 7 with dL/dt: The vectors dL/dt and T both point into the page
(they had better point in the same direction). Equating their magnitudes gives
ml%w? sin 6 cos 6 _ mglsinf
3 2

_ )39
— Y7 V2rcoso (8.35)

1. This frequency is slightly larger than the frequency obtained if we instead have a mass
at the end of a massless stick of length . From Problem 12, the frequency in that
case is y/g/Lcos 6. So, in some sense, a uniform stick of length ¢ behaves like a mass
at the end of a massless stick of length 2¢/3, as far as these rotations are concerned.

REMARKS:

2. As 0 — 7/2, the frequency w goes to oo, which makes sense. And as § — 0, w
approaches 4/3¢/2¢, which isn’t so obvious.

3. As explained in Problem 2, the instantaneous w is not uniquely defined in some
situations. At the instant shown in Fig. 8.18, the stick is moving directly into the
page. So let’s say someone else wants to think of the stick as (instantaneously) rotating
around the axis w’ perpendicular to the stick (the z-axis, from above), instead of the
vertical axis, as shown in Fig. 8.20. What is the angular speed w’?

Well, if w is the angular speed of the stick around the vertical axis, then we may view
the tip of the stick as instantaneously moving in a circle of radius ¢sin 6 around the
vertical axis w. So w(¢sin#) is the speed of the tip of the stick. But we may also
view the tip of the stick as instantaneously moving in a circle of radius £ around w’.
The speed of the tip is still w(¢sin @), so the angular speed about this axis is given by Figure 8.20
W'l = w(lsinf). Hence v’ = wsinf, which is simply the z-component of w that we

found above, right before eq. (8.31). The moment of inertia around w’ is m¢?/3, so

the angular momentum has magnitude (m¢?/3)(wsin 6), in agreement with eq. (8.31).

And the direction is along the z-axis, as it should be.

Note that although w is not uniquely defined at any instant, L = [(rxp) dm certainly
is.” Choosing w to point vertically, as we did in the above solution, is in some sense
the natural choice, because this w does not change with time. &

9The non-uniqueness of & arises from the fact that I, = 0 here. If all the moments are nonzero,
then (L, Ly, L.) = (Izwq, [ywy, I-w.) uniquely determines &, for a given L.
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8.5 Euler’s equations

Consider a rigid body instantaneously rotating around an axis w. (w may change
as time goes on, but all we care about for now is what it is at a given instant.) The
angular momentum, L, is given by eq. (8.8) as

L = Iw, (8.36)

where I is the inertial tensor, calculated with respect to a given set of axes (and w
is written in the same basis, of course).

As usual, things are much nicer if we use the principal axes (relative to the
chosen origin) as the basis vectors of our coordinate system. Since these axes are
fixed with respect to the rotating object, they will of course rotate with respect to
the fixed reference frame. In this basis, L takes the nice form,

L = (hw, Iows, I3ws), (8.37)

where wy, wo, and ws are the components of w along the principal axes. In other
words, if you take the vector L in space and project it onto the instantaneous
principal axes, then you get these components.

On one hand, writing L in terms of the rotating principal axes allows us to write
it in the nice form of (8.37). But on the other hand, writing L in this way makes it
nontrivial to determine how it changes in time (since the principal axes themselves
are changing). The benefits outweigh the detriments, however, so we will invariably
use the principal axes as our basis vectors.

The goal of this section is to find an expression for dL/dt, and to then equate
this with the torque. The result will be Euler’s equations, eqs. (8.43).

Derivation of Euler’s equations

If we write L in terms of the body frame, then we see that L can change (relative
to the lab frame) due to two effects. L can change because its coordinates in the
body frame may change, and L can also change because of the rotation of the body
frame.

To be precise, let Ly be the vector L at a given instant. At this instant, imagine
painting the vector Ly onto the body frame (so that Lo will then rotate with the
body frame). The rate of change of L with respect to the lab frame may be written
in the (identically true) way,

@_d(L—L0)+dL0
dt dt dt

(8.38)

The second term here is simply the rate of change of a body-fixed vector, which we
know is w x Lg (which equals w x L at this instant). The first term is the rate of
change of L with respect to the body frame, which we will denote by 0L/dt. So we

end up with
dL  JL
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This is actually a general statement, true for any vector in any rotating frame.!?

There is nothing particular to L that we used in the above derivation. Also, there
was no need to restrict ourselves to principal axes.

In words, what we’ve shown is that the total change equals the change relative
to the rotating frame, plus the change of the rotating frame relative to the fixed
frame. Simply addition of changes.

Let us now be specific and choose our body-axes to be the principal-axes. This
will put eq. (8.39) in a very usable form. Using eq. (8.37), we have

% = %(Ilwl, Thwo, Ig(dg) + (Ldl, w9y, w;g) X (Ilwl, Towo, Igu)g). (840)

This equation equates two vectors. As is true for any vector, these (equal)
vectors have an existence that is independent of what coordinate system we choose
to describe them with (eq. (8.39) makes no reference to a coordinate system). But
since we’ve chosen an explicit frame on the right-hand side of eq. (8.40), we should
choose the same frame for the left-hand side; we can then equate the components on
the left with the components on the right. Projecting dL/dt onto the instantaneous
principal axes, we have

dL dL dL 1)
((dt) , (dt) , (dt) ) = &(Ilw1’12w2713w3)+(W1>W2;W3) X (Liwr, Tawa, I3ws).
1 2 3
(8.41)

REMARK: The left-hand side looks nastier than it really is. At the risk of belaboring
the point, consider the following (this is a remark that has to be read very slowly): We could
have written the left-hand side as (d/dt)(L1, L2, L3), but this might cause confusion as to
whether the L; refer to the components with respect to the rotating axes, or the components
with respect to the fixed set of axes that coincide with the rotating principal axes at this
instant. That is, do we project L onto the principal axes, and then take the derivative; or
do we take the derivative and then project? The latter is what we mean in eq. (8.41). (The
former is 0L/dt, by definition.) The way we’ve written the left-hand side of eq. (8.41), it’s
clear that we’re taking the derivative first. We are, after all, simply projecting eq. (8.39)
onto the principal axes. &

The time derivatives on the right-hand side of eq. (8.41) are d([jwy)/0t =
Iiwy (because I; is constant), etc. Performing the cross product and equating the
corresponding components on each side yields the three equations,

dL .
(d) = Lw + (13 — IQ)(.L)g(.UQ,
t/1

dL )
(d ) = DLuwy+ (1 — I3)wiws,
t/2

dL
(dt) = Isws+ (12 — Il)Wle. (842)
3

OWe will prove eq. (8.39) in another more mathematical way in Chapter 9.



S

\>

Figure 8.21

VIII-22 CHAPTER 8. ANGULAR MOMENTUM, PART II (GENERAL ﬁ)

If we have chosen the origin of our rotating frame to be either a fixed point or the
CM (which we will always do), then the results of Section 7.4 tell us that we may
equate dL/dt with the torque, 7. We therefore have

= Luw + (I3 — I2)wsws,
Ty = Iwo+ (I1 — I3)wiws,
3 = Iswz+ (IQ — Il)Wle. (843)

These are Fuler’s equations. You need only remember one of them, because the
other two can be obtained by cyclic permutation of the indices.

REMARKS:

1. We repeat that the left- and right-hand sides of eq. (8.43) are components that are
measured with respect to the instantaneous principal axes. Let’s say we do a problem,
for example, where at all times 71 = 79 = 0, and 73 equals some nonzero number.
This doesn’t mean, of course, that 7 is a constant vector. On the contrary, T always
points along the X3 vector in the rotating frame, but this vector is changing in the
fixed frame (unless X3 points along w).

The two types of terms on the right-hand sides of eqs. (8.42) are the two types of
changes that L can undergo. L can change because its components with respect to
the rotating frame change, and L can also change because the body is rotating around
w.

2. Section 8.6.1 on the free symmetric top (viewed from the body frame) provides a good
example of the use of Euler’s equations. Another interesting application is the famed
“tennis racket theorem” (Problem 14).

3. It should be noted that you never have to use Euler’s equations. You can simply start
from scratch and use eq. (8.39) each time you solve a problem. The point is that
we’ve done the calculation of dL/dt once and for all, so you can just invoke the result
in eqs. (8.43). &

8.6 Free symmetric top

The free symmetric top is the classic example of an application of the Euler equa-
tions. Consider an object which has two of its principal moments equal (with the CM
as the origin). Let the object be in outer space, far from any external forces.!! We
will choose our object to have cylindrical symmetry around some axis (see Fig. 8.21),
although this is not necessary (a square cross-section, for example, would yield two
equal moments). The principal axes are then the symmetry axis and any two or-
thogonal axes in the cross-section plane through the CM. Let the symmetry axis be
chosen as the x3 axis. Then our moments are I = I, = I, and I3.

8.6.1 View from body frame

Plugging I} = Is = I into Euler’s equations, eqs. (8.43), with the 7; equal to zero
(since there are no torques, because the top is “free”), gives

0 = Idjl + (13 — I)W3WQ,

"Equivalently, the object is thrown up in the air, and we are traveling along on the CM.
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Twy + (I — Ig)wlw;),,
0 = Iws. (8.44)

The last equation says that ws is a constant. If we then define

Q= (I?’ —_ I) ws, (8.45)

I

the first two equations become
w1 + Qws =0, and wy — Qw1 = 0. (846)

Taking the derivative of the first of these, and then using the second one to eliminate
wa, gives
W01+ Q2w =0, (8.47)

and likewise for wy. This is a nice simple-harmonic equation. The solutions for wy (t)
and (by using eq. (8.46)) ws(t) are

wi(t) = Acos(Qt + ¢), wa(t) = Asin(Q + ¢). (8.48)

Therefore, wi(t) and we(t) are the components of a circle in the body frame. Hence,
the w vector traces out a cone around X3 (see Fig. 8.22), with frequency (2, as
viewed by someone standing on the body. The angular momentum is

L = (Lwi, lows, Isws) = (IA cos(Qt + ¢), [Asin(Qt + ¢), 13w3), (8.49)

so L also traces out a cone around x3 (see Fig. 8.22), with frequency (2, as viewed
by someone standing on the body.

The frequency, 2, in eq. (8.45) depends on the value of w3 and on the geometry
of the object. But the amplitude, A, of the w cone is determined by the initial
values of wy and ws.

Note that £ may be negative (if I > I3). In this case, w traces out its cone in
the opposite direction compared to the 2 > 0 case.

Example (The earth):  Let’s consider the earth to be our object. Then ws =
2m/(1 day).'? The bulge at the equator (caused by the spinning of the earth) makes
I5 slightly larger than I, and it turns out that (I3 — I)/I =~ 1/300. Therefore, eq.
(8.45) gives 2 ~ (1/300) 27/(1 day). So the w vector should precess around its cone
once every 300 days, as viewed by someone on the earth. The true value is more like
400 days. The difference has to do with various things, including the non-rigidity of
the earth. But at least we got an answer in the right ballpark.

How do you determine the direction of w? Simply make an extended-time photograph
exposure at night. The stars will form arcs of circles. At the center of all these circles
is a point that doesn’t move. This is the direction of w.

12This isn’t quite correct, since the earth rotates 366 times for every 365 days (due to the motion
around the sun), but it’s close enough for the purposes here.

-—

view from
body frame
X1 (for I3>1)

Figure 8.22

X2
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view from
fixed frame,
Q>0 (L>1)

Figure 8.23

view from
fixed frame,
Q<0 (<)

Figure 8.24
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How big is the w cone, for the earth? Equivalently, what is the value of A in eq.
(8.48)7 Observation has shown that w pierces the earth at a point on the order of
10m from the north pole. Hence, A/ws =~ (10m)/Ry. The half-angle of the w cone
is therefore found to be only on the order of 10™* degrees. So if you use an extended-
time photograph exposure one night to see which point in the sky stands still, and
then if you do the same thing 200 nights later, you probably won’t be able to tell that
they're really two different points.

8.6.2 View from fixed frame

Now let’s see what our symmetric top looks like from a fixed frame. In terms of the
principal axes, X;,X9,X3, we have

w = (wlfcl + WQ}ACQ) + w3X3, and
L = I(wlfq + wgfig) + I3wsXs. (850)

Eliminating the (w1X; + weX2) term from these equations gives (in terms of the Q
defined in eq. (8.45))

L = I(w+ Qx3), or w = —L — Qx3, (8.51)

where L = |L|, and L is the unit vector in the L direction. The linear relationship
between L, w, and X3, implies that these three vectors lie in a plane. Since there are
no torques on the system, L remains constant. Therefore, w and x3 precess (as we
will see below) around L, with the three vectors always coplanar. See Fig. 8.23 for
the case I3 > I (an oblate top, such as a coin), and Fig. 8.24 for the case I3 < I (a
prolate top, such as a carrot).

What is the frequency of this precession, as viewed from the fixed frame? The
rate of change of X3 is w x X3 (because X3 is fixed in the body frame, so its change
comes only from rotation around w). Therefore, eq. (8.51) gives

dx L. . R L. .
dit?) — (IL — ng) X X3 = <IL> X X3. (852)

But this is simply the expression for the rate of change of a vector rotating around
the fixed vector @ = (L/I)L. The frequency of this rotation is |@| = L/I. Therefore,
X3 precesses around the fixed vector L with frequency

L

0= — 8.53
b="1, (5.53)

in the fixed frame (and therefore w does also, since it is coplanar with x3 and L).
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REMARKS:

1. We just said that w precesses around L with frequency L/I. What, then, is wrong
with the following reasoning: “Just as the rate of change of X3 equals w x X3, the rate
of change of w should equal w X w, which is zero. Hence, w should remain constant.”
The error is that the vector w is not fixed in the body frame. A vector A must be
fixed in the body frame in order for its rate of change to be given by w x A.

2. We found in egs. (8.49) and (8.45) that a person standing on the rotating body sees
L (and w) precess with frequency = ws(Is — I)/I around X3. But we found in
eq. (8.53) that a person standing in the fixed frame sees X3 (and w) precess with
frequency L/I around L. Are these two facts compatible? Should we have obtained
the same frequency from either point of view? (Answers: yes, no).

These two frequencies are indeed consistent, as can be seen from the following rea-
soning. Consider the plane (call it S) containing the three vectors L, w, and %x3. We
know from eq. (8.49) that S rotates with frequency Q%3 with respect to the body.
Therefore, the body rotates with frequency —Qx3 with respect to S. And from eq.
(8.53), S rotates with frequency (L/I)L with respect to the fixed frame. Therefore,
the total angular velocity of the body with respect to the fixed frame (using the frame
S as an intermediate step) is

L
Wiotal = 7L — Qx3. (8.54)

But from eq. (8.51), this is simply w, as it should be. So the two frequencies in egs.
(8.45) and (8.53) are indeed consistent.

For the earth, = ws(I3 — I)/I and L/I are much different. L/I is roughly equal
to L/I3, which is essentially equal to ws. 2, on the other hand is about (1/300)ws.
Basically, an external observer sees w precess around its cone at roughly the rate at
which the earth spins. But it’s not exactly the same rate, and this difference is what
causes the earth-based observer to see w precess with a nonzero . &

X3

8.7 Heavy symmetric top

Consider now a heavy symmetrical top; that is, one that spins on a table, under the
influence of gravity (see Fig. 8.25). Assume that the tip of the top is fixed on the
table by a free pivot. We will solve for the motion of the top in two different ways.
The first will use 7 = dL/dt. The second will use the Lagrangian method. 4

8.7.1 Euler angles Figure 8.25

For both of these methods, it is very convenient to use the Fuler angles, 6,¢,1, which

are shown in Fig. 8.26 and are defined as follows.
fixed point

e 0: Let x3 be the symmetry axis of the top. Define 6 to be the angle that X3 z inbody
makes with the vertical axis z of the fixed frame.

e ¢: Draw the plane orthogonal to x3. Let X1 be the intersection of this plane
with the horizontal z-y plane. Define ¢ to be the angle X7 makes with the x
axis of the fixed frame.

Figure 8.26
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e : Let X9 be orthogonal to X3 and X1, as shown. Let frame S be the frame
whose axes are X1, X2, and X3. Define ¥ to be the angle of rotation of the
body around the x3 axis in frame S. (That is, 1,[)5(3 is the angular velocity of
the body with respect to S.) Note that the angular velocity of frame S with
respect to the fixed frame is gi)i + 0%;.

The angular velocity of the body with respect to the fixed frame is equal to the
angular velocity of the body with respect to frame S, plus the angular velocity of
frame S with respect to the fixed frame. In other words, it is

w = X3 + (¢pz + 0%1). (8.55)

Note that the vector z is not orthogonal to X; and x3. It is often more convenient
to rewrite w entirely in terms of the orthogonal Xi,X2,%X3 basis vectors. Since z =
cos X3 + sin %2, eq. (8.55) gives

w = (1) + ¢ cos 0)X3 + Psin Oxy + 0%, . (8.56)

This form of w is often more useful, because X7, X9, and X3 are principal axes of
the body. (We are assuming that we are working with a symmetrical top, with
I = I = I. Hence, any axes in the X;-X3 plane are principal axes.) Although %,
and X9 are not fixed in the object, they are still good principal axes at any instant.

8.7.2 Digression on the components of &

The previous expressions for w look rather formidable, but there is a very helpful
diagram we can draw (see Fig. 8.27) which makes it easier to see what is going on.
Let’s talk a bit about this before returning to the original problem of the spinning
top. The diagram is rather pithy, so we’ll go through it nice and slowly.

In the following discussion, we will simplify things by setting 6 = 0. All the
interesting features of w remain. The 6%; component of w in egs. (8.55) and (8.56)
simply arises from the easily-visualizable rising and falling of the top. We will
therefore concentrate here on the more complicated issues, namely the components
of w in the plane of X3, z, and Xs.

With 6 = 0, Fig. 8.27 shows the vector w in the X3-2-Xo plane (the way we've
drawn it, X points into the page, in contrast with Fig. 8.26). This is an extremely
useful diagram, and we will refer to it many times in the problems for this chapter.
There are numerous comments to be made on it, so let’s just list them out.

1. If someone asks you to “decompose” w into pieces along z and X3, what would
you do? Would you draw the lines perpendicular to these axes to obtain the
lengths shown (which we will label as w, and ws), or would you draw the lines
parallel to these axes to obtain the lengths shown (which we will label as 2
and w')? There is no “correct” answer to this question. The four quantities,
ws, ws, Q, w' simply represent different things. We will interpret each of these
below, along with ws (the projection of w along x3). It turns out that Q and
w' are the frequencies that your eye can see the easiest, while wy and w3 are
what you want to use when you're doing calculations involving the angular
momentum. (And as far as I can see, w, is not of much use.)
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X2

X3

symmetry
axis

Figure 8.27

2. Note that it is true that
w = w'x3 + Oz, (8.57)

but it is not true that w = w,z + wsx3. Another true statement is

w = w3X3 + woXs. (858)

3. In terms of the Euler angles, we see (by comparing eq. (8.57) with eq. (8.55),
with 6 = 0) that

w/ = 1/‘}7
QO = ¢. (8.59)

And we also have (by comparing eq. (8.58) with eq. (8.56), with 6 = 0)

ws = P+ ¢pcoshd = w +Qcosh,
wy = ¢sinfd = Qsind. (8.60)

These are also clear from Fig. 8.27.

There is therefore technically no need to introduce the new ws, ws, Q, W/
definitions in Fig. 8.27, since the Euler angles are quite sufficient. But we will
be referring to this figure many times, and it is a little easier to refer to these
omega’s than to the various combinations of Euler angles.

4. Q) is the easiest of these frequencies to visualize. It is simply the frequency
of precession of the top around the vertical z axis.!> In other words, the

13 Although we're using the same letter, this Q doesn’t have anything to do with the Q defined
in eq. (8.45), except for the fact that they both represent a precession frequency.
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symmetry axis X3 traces out a cone around the z axis with frequency 2. (Note
that this precession frequency is not w,.) Let’s prove this.

The vector w is the vector which gives the speed of any point (at position r)
fixed in the top as w x r. Therefore, since the vector X3 is fixed in the top, we
may write

— —Ww X X3 = (w/fig + Qi) X X3 = (Qi) X X3. (8.61)

But this is precisely the expression for the rate of change of a vector rotating
around the z axis, with frequency Q. (This was exactly the same type of proof
as the one leading to eq. (8.52).)

REMARK: In the derivation of eq. (8.61), we’ve basically just stripped off a certain
part of w that points along the X3 axis, because a rotation around X3 contributes
nothing to the motion of x3. Note, however, that there is in fact an infinite number
of ways to strip off a piece along x3. For example, we can also break w up as, say,
w = w3X3 + waXy. We then obtain dX3/dt = (weX3) X X3, which means that x5 is
instantaneously rotating around X, with frequency ws. Although this is true, it is not
as useful as the result in eq. (8.61), because the X5 axis changes with time. The point
here is that the instantaneous angular velocity vector around which the symmetry
axis rotates is not well-defined (Problem 2 discusses this issue).!* But the 2-axis is
the only one of these angular velocity vectors that is fixed. When we look at the top,
we therefore see it precessing around the z-axis. &

5. ' is also easy to visualize. Imagine that you are at rest in a frame that rotates
around the z-axis with frequency 2. Then you will see the symmetry axis of the
top remain perfectly still, and the only motion you will see is the top spinning
around this axis with frequency w’. (This is true because w = w'x3 + Qz, and
the rotation of your frame causes you to not see the Qz part.) If you paint a
dot somewhere on the top, then the dot will trace out a fixed tilted circle, and
the dot will return to, say, its maximum height at frequency w’.

Note that someone in the lab frame will see the dot undergo a rather com-
plicated motion, but she must observe the same frequency at which the dot
returns to its highest point. Hence, w’ is something quite physical in the lab
frame, also.

6. ws is what you use to obtain the component of L along X3, because L3 = I3ws.
It is not quite as easy to visualize as Q and «’, but it is the frequency with
which the top instantaneously rotates, as seen by someone at rest in a frame
that rotates around the %o axis with frequency we. (This is true because
w = w9Xy +wsX3, and the rotation of the frame causes you to not see the woXo
part.) This rotation is a little harder to see, because the X9 axis changes with
time.

14The instantaneous angular velocity of the whole body is well defined, of course. But if you just
look at the symmetry axis by itself, then there is an ambiguity (see footnote 9).
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There is one physical scenario in which ws is the easily observed frequency.
Imagine that the top is precessing around the z axis at constant 0, and imagine
that the top has a frictionless rod protruding along its symmetry axis. If
you grab the rod and stop the precession motion (so that the top is now
spinning around its stationary symmetry axis), then this spinning will occur
at frequency ws. This is true because when you grab the rod, you apply a
torque in only the (negative) xo direction. Therefore, you don’t change Lg,
and hence you don’t change ws.

7. wo is similar to ws, of course. wo is what you use to obtain the component
of L along X2, because Ly = Ilows. It is the frequency with which the top
instantaneously rotates, as seen by someone at rest in a frame that rotates
around the X3 axis with frequency ws. (This is true because w = woXs + wsXs,
and the rotation of the frame causes you to not see the wsxs part.) Again,
this rotation is a little harder to see, because the X3 axis changes with time.

8. w, is not very useful (as far as I can see). The most important thing to note
about it is that it is not the frequency of precession around the z-axis, even
though it is the projection of w onto z. The frequency of the precession is €2,
as we found above in eq. (8.61). A true, but somewhat useless, fact about
w, is that if someone is at rest in a frame that rotates around the z axis with
frequency w,, then she will see all points in the top instantaneously rotating
around the x-axis with frequency w,, where w, is the projection of w onto the
horizontal x axis. (This is true because w = w;X + w,z, and the rotation of
the frame causes you to not see the w,z part.)

8.7.3 Torque method

This method of solving the heavy top will be straightforward, although a little
