

EL 6000 Generación de Energía Eléctrica con Fuentes Renovables

Clase 2: PRINCIPIOS BASICOS DE ELECTROMAGNETISMO

AGENDA

- Campo Magnético
- Ley Circuital de Ampere
- Ley de Biot y Savarat
- Torque eléctrico y
- · Motor elemental.

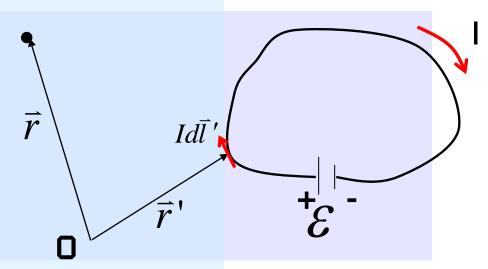
Campo magnético

Campo producido por circuito Γ'

Circuito
$$\Gamma'$$

$$\vec{B} = \oint_{\Gamma'} \frac{\mu_0 I d\vec{l} ' \times (\vec{r} - \vec{r}')}{4\pi |\vec{r} - \vec{r}'|^3}$$

$$\vec{B} = \mu_0 \vec{H}$$

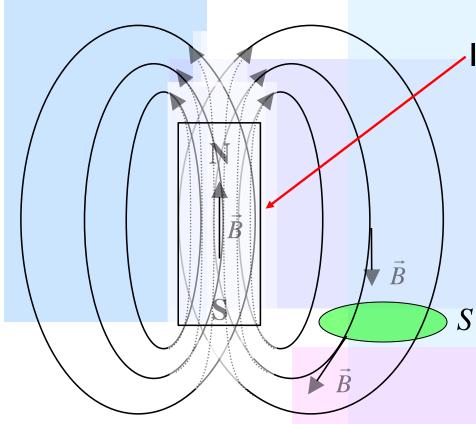


B:Vector campo magnético

H:Vector intensidad de campo magnético

$$\mu_0 = 4\pi \cdot 10^{-7} \left\lceil H/m \right\rceil$$
: permeabilidad magnética del medio

Campo magnético



lmán permanente

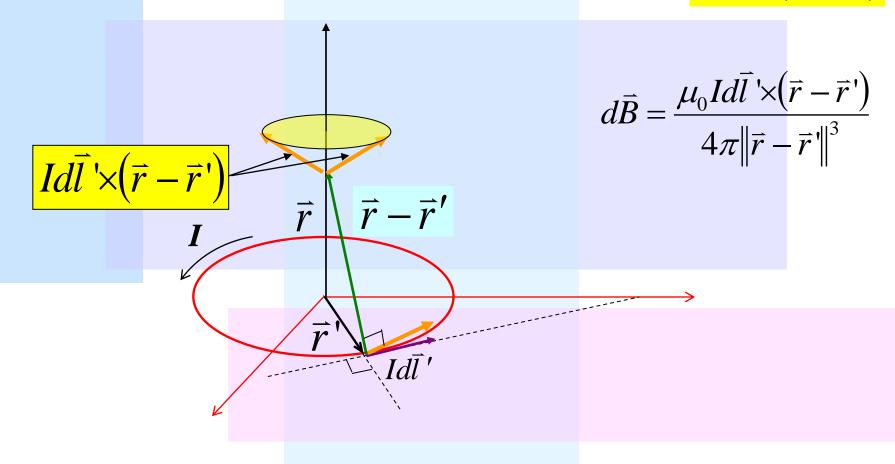
Flujo de líneas de campo a través de una superficie *S*:

$$\phi = \int_{S} \vec{B} \cdot d\vec{S}$$

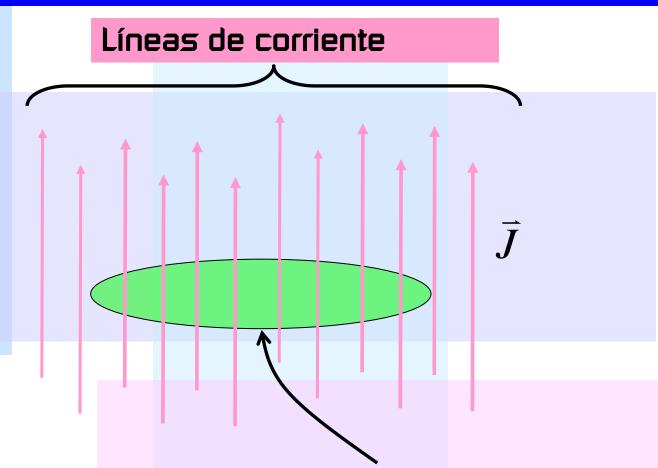
Campo magnético: Regla de la mano derecha

Dirección de campo está dado por el producto

$$Id\vec{l}' \times (\vec{r} - \vec{r}')$$



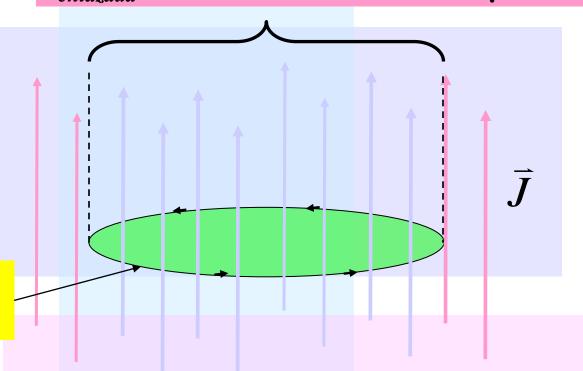
Ley Circuital de Ampere



Plano 5 por donde atraviesan líneas de corriente

Ley Circuital de Ampere

 $I_{enlazada}$ = Corriente enlazada por $\Gamma(s)$



Trayectoria cerrada $\Gamma(s)$

$$\oint_{\Gamma(S)} \vec{B} \cdot d\vec{l} = \mu_0 I_{enlazada}$$

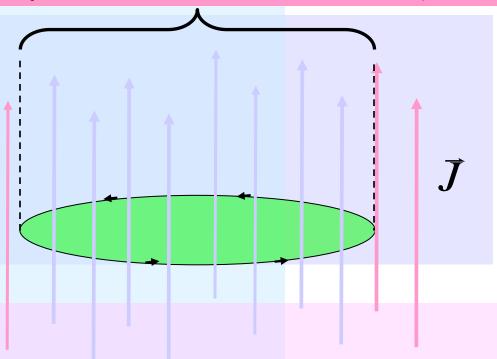
Ley Circuital de Ampere

Ley Circuital de Ampere

$$I_{enlazada}$$
 = Corriente enlazada por $\Gamma(s)$

$$\vec{B} = \mu_0 \vec{H}$$

 \widehat{H} : Vector Intensidad de Campo Magnético



$$\oint \vec{H} \cdot d\vec{l} = I_{enlazada}$$

$$\Gamma(S)$$

Ley Circuital de Ampere

Calcular el campo magnético de una corriente unifilar infinita

$$\vec{B} = ?$$

$$\vec{B} = B\hat{\theta}, \quad \vec{H} = H\hat{\theta}$$

$$d\vec{B} = dB\hat{\theta}$$
 y, \hat{j}

Además sólo depende de la distancia radial r

$$\vec{B} = B(r)\hat{\theta}, \quad \vec{H} = H(r)\hat{\theta}$$

T: trayectoria circular de radio r

 $\vec{B} = B(r)\hat{\theta}, \quad \vec{H} = H(r)\hat{\theta}$

En una trayectoria circular el módulo es constante

$$d\vec{B} = dB\hat{\theta} \qquad y, j$$

S : superficie $\stackrel{'}{}$ circular de radio r

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enlazada}(S)$$

$$\Gamma(S)$$

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enlazada}(S)$$

$$\Gamma(S)$$

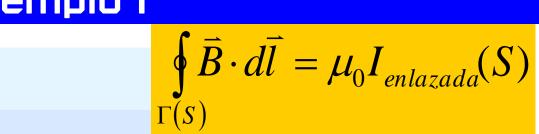
$$d\vec{B} = dB\hat{\theta} \qquad y, \hat{j}$$

$$x, i$$

 $S:$ superficie
circular de radio r

$$\oint_{\Gamma(S)} \vec{B} \cdot d\vec{l} = \int_{\theta=0}^{\theta=2\pi} B(r)\hat{\theta} \cdot rd\theta \hat{\theta} = B(r)r \int_{\theta=0}^{\theta=2\pi} d\theta$$

$$\Rightarrow \oint_{\Gamma(S)} \vec{B} \cdot d\vec{l} = 2\pi B(r)r$$



$$I_{enlazada}(S) = I$$

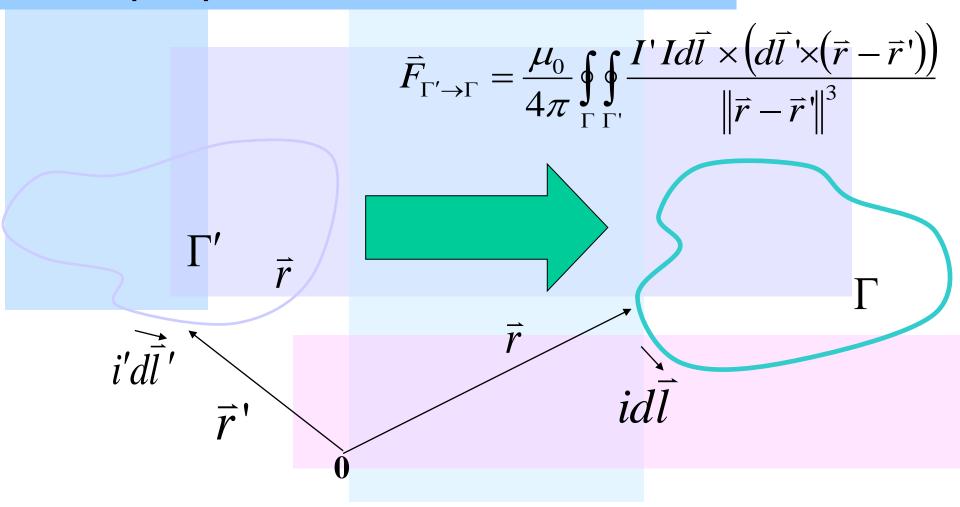
$$d\vec{B} = dB\hat{\theta}$$
 y, j

S : superficie circular de radio r

$$2\pi B(r)r = \mu_0 I \implies B(r) = \frac{\mu_0 I}{2\pi r}$$

$$\therefore \quad \vec{B} = \frac{\mu_0 I}{2\pi r} \hat{\theta}$$

Fuerza que ejerce circuito Γ' sobre circuito Γ



$$\vec{F} = \frac{\mu_0}{4\pi} \oint_{\Gamma \Gamma'} \frac{I' I d\vec{l} \times (d\vec{l}' \times (\vec{r} - \vec{r}'))}{\|\vec{r} - \vec{r}'\|^3} \rightarrow d\vec{F} = \frac{I d\vec{l} \times \mu_0}{4\pi} \oint_{\Gamma'} \frac{I' d\vec{l}' \times (\vec{r} - \vec{r}')}{\|\vec{r} - \vec{r}'\|^3}$$

$$\Gamma'$$

$$\vec{r}'$$

$$i d\vec{l}$$

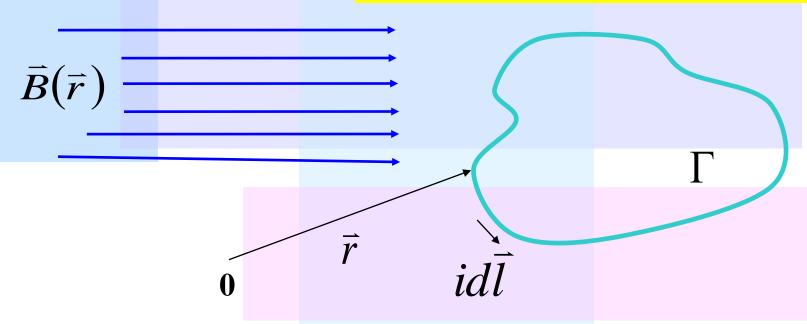
$$d\vec{F} = \frac{Id\vec{l} \times \mu_0}{4\pi} \oint_{\Gamma'} \frac{I'd\vec{l}' \times (\vec{r} - \vec{r}')}{\|\vec{r} - \vec{r}'\|^3} \qquad \therefore \qquad d\vec{F} = Id\vec{l} \times \vec{B}(\vec{r})$$
Campo magnético producido por circulto Γ'

$$i'd\vec{l}' \qquad \qquad \vec{r} \qquad \qquad id\vec{l}$$

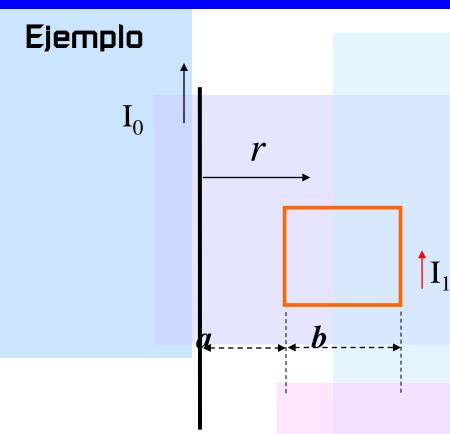
Así, un circuito en presencia de un campo magnético experimenta una fuerza dada por la ecuación

$$d\vec{F} = Id\vec{l} \times \vec{B}(\vec{r})$$

$$\therefore \quad \vec{F} = \oint_{\Gamma} d\vec{F} = \oint_{\Gamma} I d\vec{l} \times \vec{B}(\vec{r})$$



Ejemplo

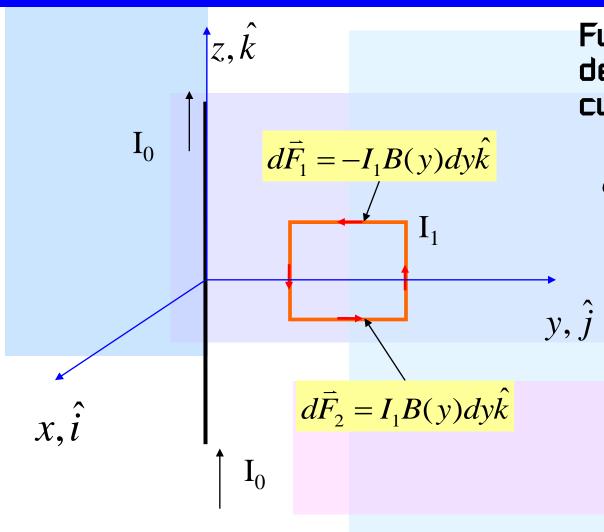


Campo producido por el conductor infinito es

$$\vec{B} = \frac{\mu_0 I_0}{2\pi r} \hat{\theta}$$

Fuerza sobre elemento de corriente de espira cuadrada

$$d\vec{F} = I_1 d\vec{l} \times \vec{B}(\vec{r})$$



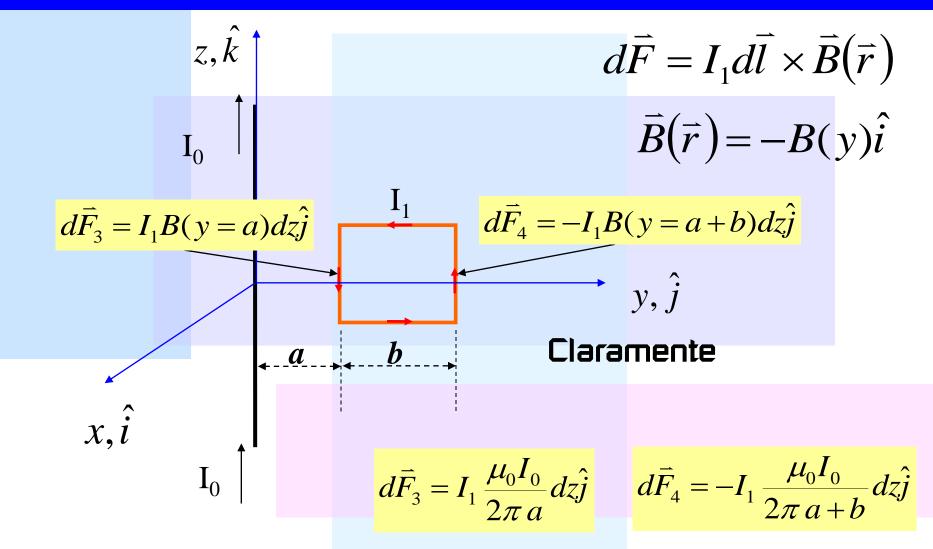
Fuerza sobre elemento de corriente de espira cuadrada

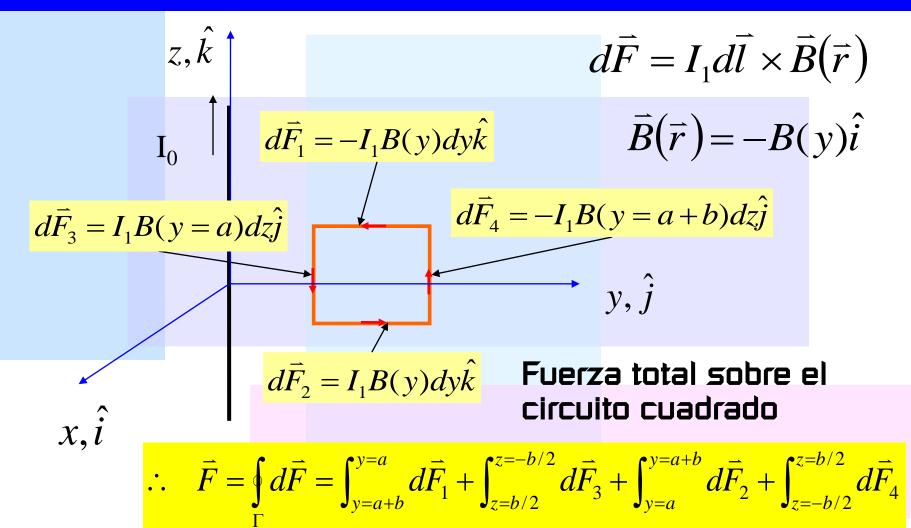
$$d\vec{F} = I_1 d\vec{l} \times \vec{B}(\vec{r})$$

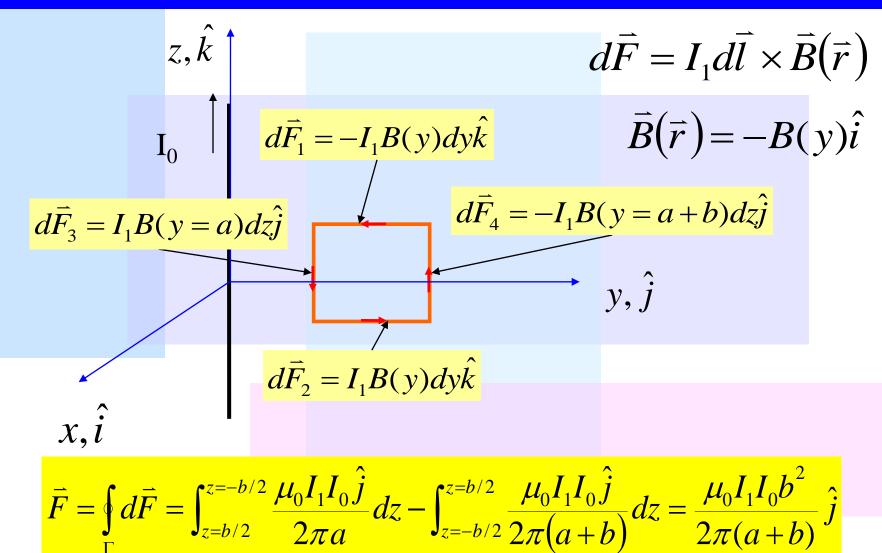
$$\vec{B}(\vec{r}) = -B(y)\hat{i}$$

Claramente

$$d\vec{F}_1 = -d\vec{F}_2$$





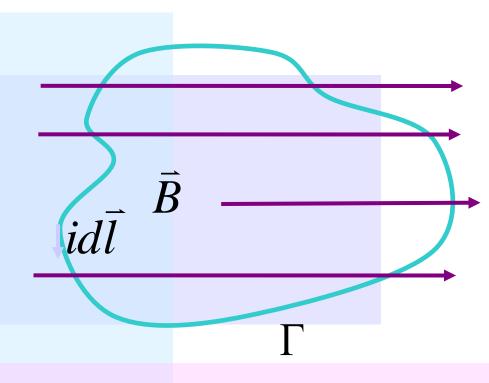


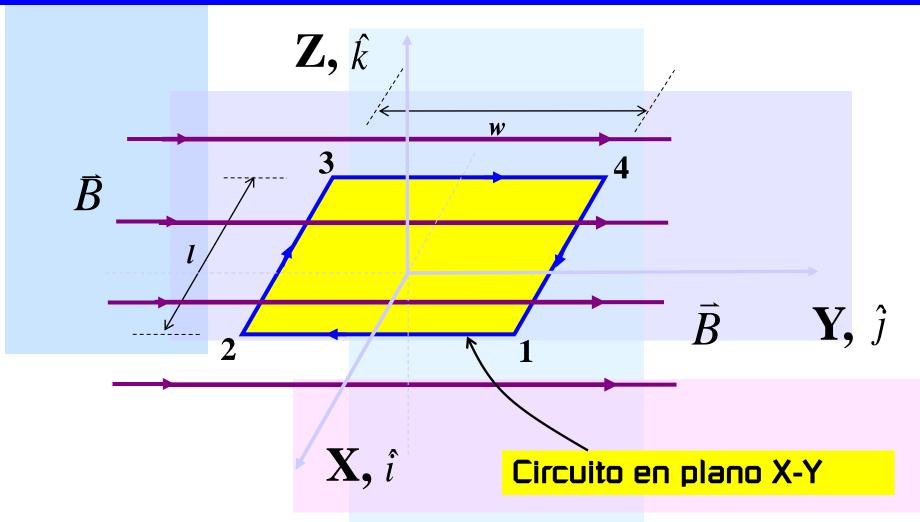
Fuerza que ejerce circuito Γ sobre circuito Γ'

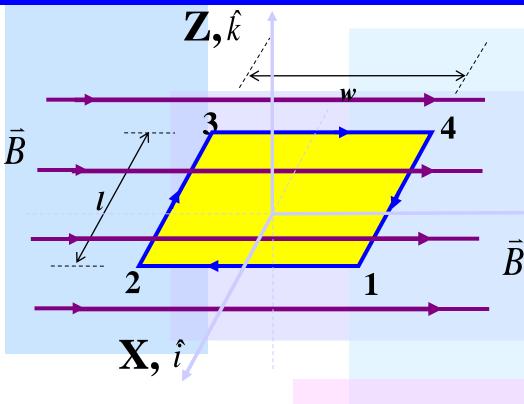
$$\vec{F}_{\Gamma \to \Gamma'} = \frac{\mu_0}{4\pi} \oint \int \frac{II' d\vec{l}' \times \left(d\vec{l} \times (\vec{r} - \vec{r}') \right)}{\|\vec{r} - \vec{r}'\|^3} = -\frac{\mu_0}{4\pi} \oint \int \frac{I' I d\vec{l} \times \left(d\vec{l}' \times (\vec{r} - \vec{r}') \right)}{\|\vec{r} - \vec{r}'\|^3}$$

$$\vec{\Gamma}' \qquad \vec{r} \qquad \vec{I}' d\vec{l}' \qquad \vec{r}' \qquad \vec{I}' \qquad \vec{I}$$

$$\therefore d\vec{F} = Id\vec{l} \times \vec{B}(\vec{r})$$





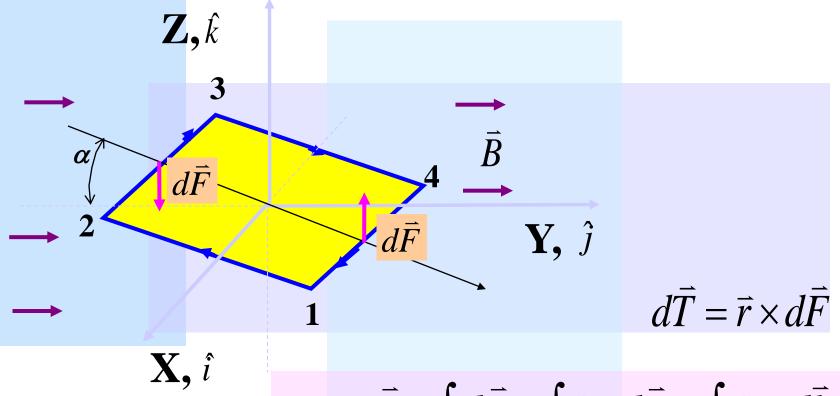


En lados 1-2 y 3-4 $Id\vec{l}$ es paralelo a \vec{B} Luego F=0

 \mathbf{Y}, \hat{j}

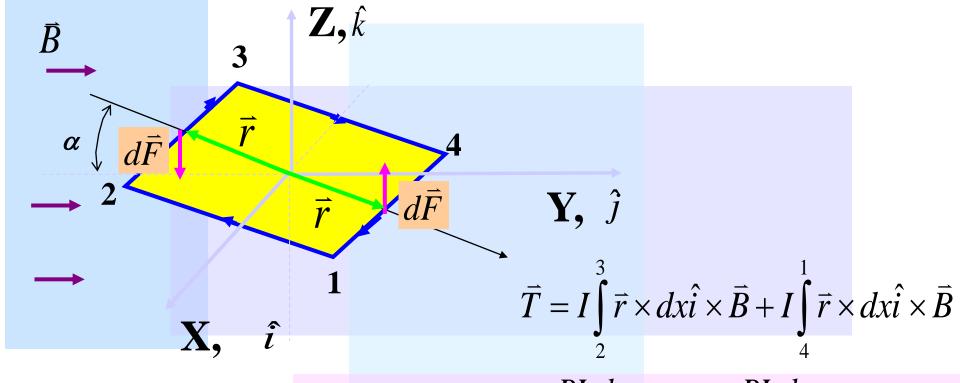
Fuerza neta nula sobre el circuito si \bar{B} constante

$$\vec{F} = I \int_{2}^{3} d\vec{l} \times \vec{B} + I \int_{4}^{1} d\vec{l} \times \vec{B} \implies \vec{F} = I \int_{2}^{3} dx (-\hat{i}) \times \vec{B} + I \int_{4}^{1} dx (\hat{i}) \times \vec{B}$$



$$\vec{T} = \oint_{c} d\vec{T} = \oint_{c} \vec{r} \times d\vec{F} = \oint_{c} \vec{r} \times id\vec{l} \times \vec{B}$$

Torque neto no nulo sobre el circuito

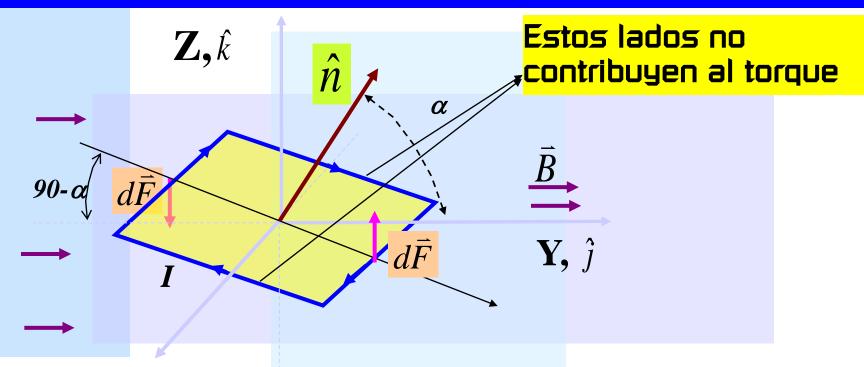


$$\vec{T} = \frac{BIwl}{2}\cos\alpha\,\hat{i} + \frac{BIwl}{2}\cos\alpha\,\hat{i}$$

Torque neto sobre el circuito

$$\vec{T} = IBwl \cos \alpha \hat{i}$$

Torque de campo sobre circuito rectangular



$$\mathbf{X}, \hat{i}$$

Torque

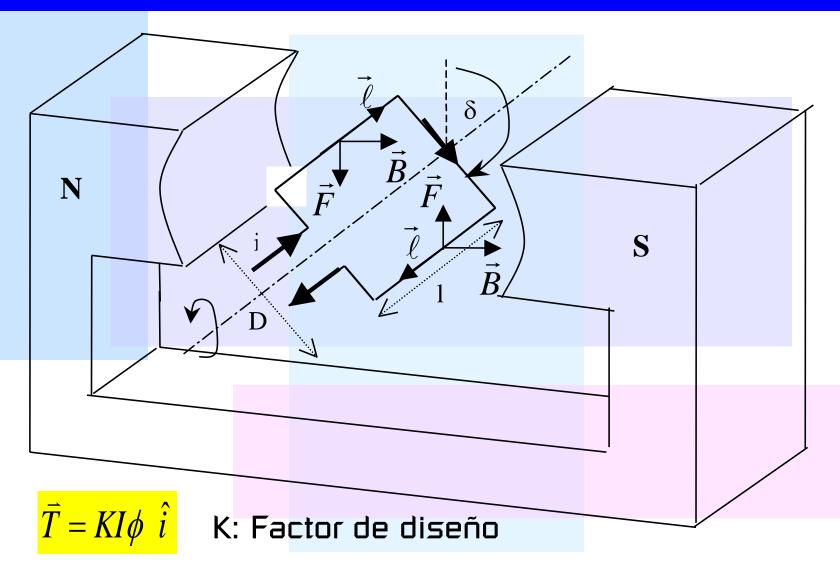
$$\vec{T} = IBwl \cos \alpha \hat{i}$$

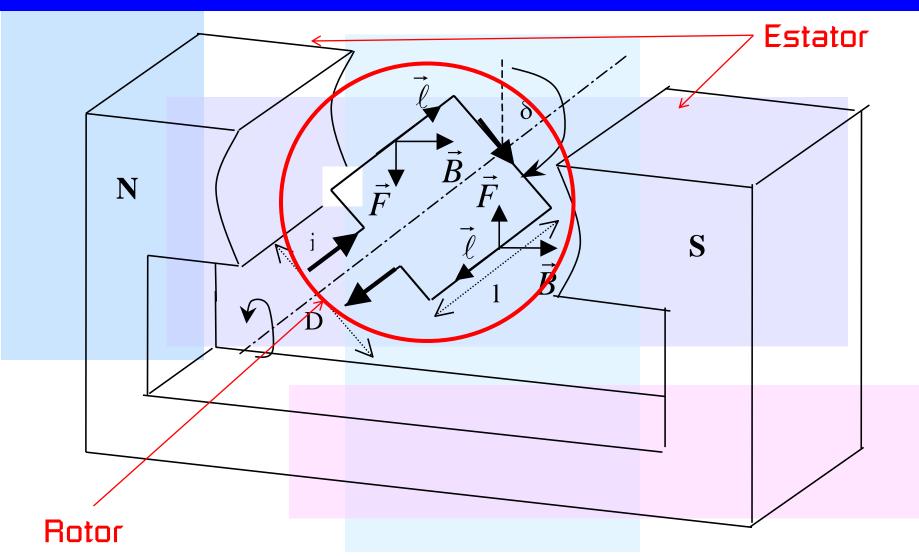
$$\vec{T} = I\phi \cos \alpha \hat{i}$$

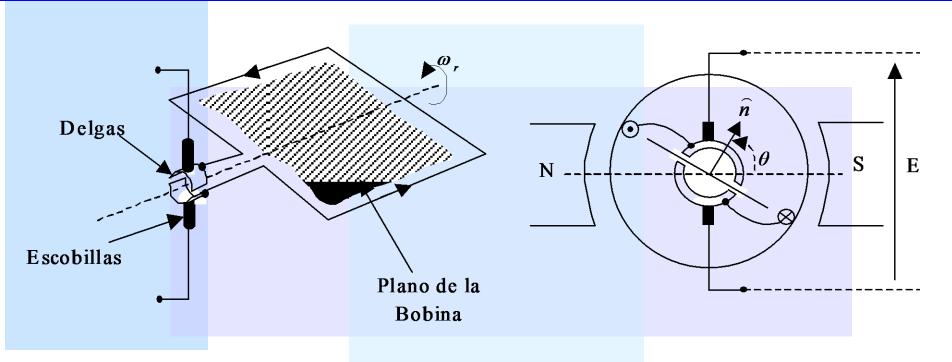
$$\phi = B \times A$$

UNIDADES

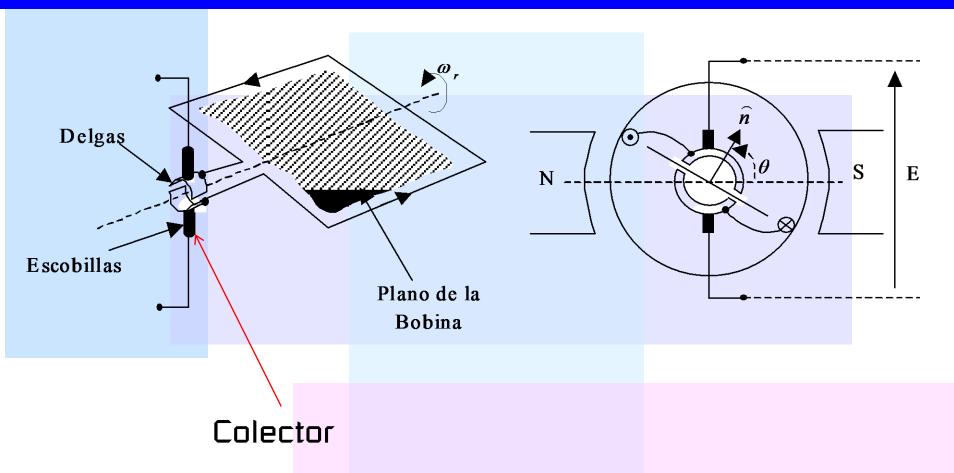
	φ	$ec{B}$
Sistema CGS	[líneas]	[líneas/cm ²]
Sistema mks	[Wb] (Weber)	$[Wb/m^2] = [Tesla]$
Equivalencias	$1 \text{ [Wb]} = 10^8 \text{ [líneas]}$	$1 \text{ [Tesla]} = 10^4 \text{ [Gauss]} = 10 \text{ [kGauss]}$



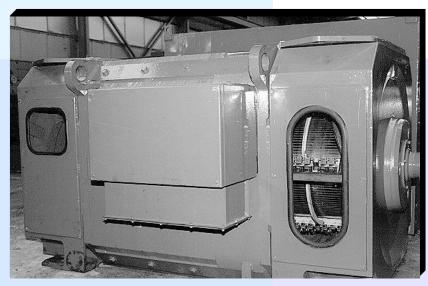




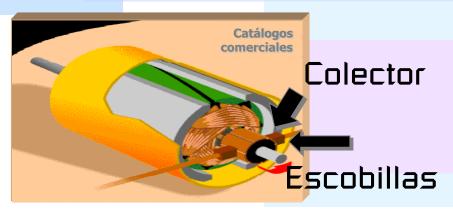
$$\vec{T} = KI\phi \hat{i}$$



Motores



Motor de CC de 6000 kW fabricado por ABB



Colector real

