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ABSTRACT
The Multinomial Logit (MNL) model and maximum gravity entropy (ME) model are classical, and widely used to represent the demand for travel in the transportation system and for localization in the land-use system.  Computer resources are required to estimate the parameters for these models using numerical optimization methods, and the need for those resources grows enormously when the number of parameters increases, thus preventing the use of traditional estimation methods for large problems.  This occurs when choices are modeled with a large number of alternatives, attributes and categories of users in metropolises or in inter-regional systems, in the choice of travel destinations and routes, modes of transport or combined modes of transport, and in the choice of localization alternatives.

In this article, new methods are formulated to estimate the MNL and ME parameters and their efficiency is compared to the classical methods. The numerical results indicate that the “bounded search” method, based on confining the search area where the parameter lies, is the one that best combines robustness and efficiency on the computer compared with known methods. Since this superiority considerably increases as the number of parameters specified in the models rises and with the dispersion of the attributes of the choice set, its use is recommended for large problems. Given these advantages, the methodology may be used in other disciplines where large problems are common.
KEY WORDS: Entropy, Multinomial Logit, parameter calibration, efficient estimation
1.  INTRODUCTION

The Multinomial Logit (MNL) and maximum entropy (or gravity) (ME) models are widely used to represent the behavior of users of transportation and land-use systems.  These models are especially useful in cities, given their capacity to represent the behavior of consumers in the face of a variety of discrete alternatives.  They are applied in contexts where the modeler has imperfect information about consumers’ behavior.

Although both models are used in urban planning with a similar frequency, each has been applied preferably to certain specific ambits.  The heterogeneous physical space for the choice of travel and location, for example, naturally creates a wide variety of alternative choices and, therefore, model adjustment parameters, in which the ME model is preferably used, usually called spatial interaction models (Boyce and Bar-Gera, 2004). The ME models are also often used when the choice set is confined by a set of restrictions, in particular when that set is large, like the case of adjusting the travel distribution matrixes by flow counting (Willumsen, 1981), modeling urban and inter-regional transport (for example, Abrahamson and Lundqvist, 1999; and Ham et al., 2005), and real estate supply under zonal regulations (Martínez and Henríquez, 2007).  A rich variety of ME model applications can be seen in Roy (2004).

In other contexts, such as the choice of transport mode, it is the diversity of consumer preferences what motivates the use of models disaggregated from their behavior, like the MNL model.  This comes from the assumption that individual choices are governed by a conditional indirect utility function of an observable component that can be modeled based on the problem variables and a random, Gumbel-identical-independent-distribution (iid) term that accounts for errors in specification, in the measurement of variables and, generally, the idiosyncratic randomness inherent to human nature.  The MNL model was introduced in transportation modeling by Domencich and McFadden (1975) and since then, it has become a standard, to the point where despite significant progress in the investigation of discrete choice models, the MNL continues to be used in its most traditional form in the majority of applications.

The differences between these models lie in their theoretical foundations.  The ME model can be interpreted as the most probable state that a certain variable in a system reaches within a set of restrictions.  That state is assumed to be the one that has the largest number of possible ways of occurring, starting from micro-states (possible order of elements in a disaggregated system) that occur with the same probability (Wilson, 1971).  The number of ways capable of producing a given state of a variable is the measure of entropy defined by Shannon (1948),
 which is maximized, subject to restrictions that limit the possible values of the variable.  The MNL model, on the other hand, comes from assuming that a given discrete variable is random but one selected from a set of events, the selection criteria is to choose its maximum value; this process naturally leads to a Gumbel distribution. In addition when the variable is assumed distributes identical (equal variance) and independent, then the probability of choosing a given state of the variable is represented by the MNL model and the parameters are estimated using the criteria of maximizing likelihood (ML)
. 

Although the ME and MNL models have different origins and assumptions, the solutions are equivalent, as demonstrated by Anas (1983). Several authors have subsequently generalized this equivalency, demonstrating that the model of maximum likelihood (ML) for any function of probability is the dual geometrics of the ME model (see, for example, Altum and Smola, 2006). Paraphrasing Csiszár’s theorem (1996): “if p is a function of exponential density that is feasible for linear restriction, then it is unique and it is also the maximum likelihood estimator for the set of models with an exponential form.”  These results indicate that the equivalency between the ME and ML models is more general than what Anas demonstrated for the particular case of the MNL model.

The ME and  ML models have found a very wide application in the most diverse disciplines, such as image reconstruction, radio astronomy, tomography, turbulence modeling of fluids and plasmas, DNA sequencing and language processing (see Schofield, 2007).  Large problems appear in this variety of applications, i.e. where the set of parameters required to describe the restrictions in the system is very large.  In cities, this occurs naturally when the choices are defined by the physical space, such as localization, travel destination and route choices.

Given the stated relevance of the ME and MNL models in urban planning and in many other areas where an efficient estimation method is important, here we propose novel methods to estimate parameters and compare them to classical methods.  The results using simulations show significant computer advantages of the methods proposed, which increase with the size of the problem.  For this reason, they are methods of interest in large problems in several ambits of application.

Section 2 discusses the ME and MNL from a general viewpoint, their equivalency and the circumstances in which they give rise to large problems.  Section 3 summarizes the numerical methods traditionally used in estimating parameters, based on the Newton method.  Section 4 presents two new methods to estimate the parameters.  Section 5 presents the results of simulation using all of the above methods in order to compare their computer efficiencies.  Finally, Section 6 explains the principal conclusions and recommendations obtained from this analysis.

2.  DISCUSSION OF THE PROBLEM

The maximum entropy model (ME) of the variable 
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, defined as the number of users in the category 
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 who choose alternative 
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, is used to solve the following non-linear optimization problem with linear constraints:

ME: 
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In this formulation, 
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 are the sets of user categories and choice alternatives available to a user in category 
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.  The problem has three sets of restrictions.  The first one defines the number of choices in each category of user 
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 represents an individual.  The second set 
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 of restrictions represents simple aggregations of the variable 
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 defines the category of users and of alternatives considered in a particular aggregation constraint 
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.   The set 
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 of restrictions is formed by linear combinations with weights 
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 of variables 
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, which must totalize vector 
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.  If the restrictions considered in the second set imply those of the first set, the first set can be omitted in this general formulation.  The Lagrange multipliers 
[image: image23.wmf]r
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 and 
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 are respectively associated with the three sets of restrictions.

It is important to note that the equations (2) and (3) generate parameters 
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 and 
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 in the calibration of parameters of the entropy model (known –after a transformation– as balancing factors), that are very different in terms of the calibration process, from the parameters 
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 associated with restriction (4); this difference between these restrictions comes from the existence of the coefficients 
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 in equation (4). 

The totals, in the right hand side of the restrictions, come from observations: 
[image: image30.wmf]N

n

T

T

n

I

i

in

n

Î

"

=

å

Î

     

0

; 
[image: image31.wmf]Q

q

     

T

a

q

A

n

i

in

q

Î

"

=

å

Î

)

,

(

0

 and 
[image: image32.wmf]K

k

      

T

x

b

N

n

I

i

in

kin

k

n

Î

"

=

å

å

Î

Î

0

, where 
[image: image33.wmf]0

in

T

 is the number of users in category 
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 who have chosen alternative 
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. Therefore, the solution to the ME problem, denoted by 
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The Kuhn-Tucker conditions of the ME problem yield the maximum entropy model:
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where, 
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The ME model has been used in predicting travel demand, specially in travel distribution, but also in other problems of spatial interaction like in the choice of location in land-use systems.  In transportation, simple or doubly constrained gravity models have been frequently used both for modeling the simultaneous origin-destination trip choice or the destination choice only.  For example, the travel distribution, doubly constrained entropy model aggregated at destination is obtained from the following formulation of the ME problem.

Doubly constrained ME, aggregated at destination:
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In this application, 
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 is the number of users in category 
[image: image46.wmf]n

 who travel from the origin zone o to the destination zone d, in a given period and travel purpose.  
[image: image47.wmf]c

 and 
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 represent the generalized cost per origin-destination pair and total per user category.

As seen, the restrictions (7) and (8) are type (3) aggregations, while the restrictions (9) are linear or weighted combinations of type (4).  In this case, the restrictions (7) imply restrictions type (2), which is why they do not need to be considered in this formulation.

The maximum entropy model corresponds to:
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where, 
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Following Anas’ (1983) paper, it can be concluded that the Lagrange multipliers 
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 and 
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 in the ME problem (equations 1-5) are also a solution to the following problem:

     ML: 
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Therefore, the maximum likelihood estimators of the MMNL model (12) correspond to the Lagrange multipliers in the ME.
  This important result is obtained from replacing the state variable in the ME problem, 
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 and showing that the first-order conditions, or Kuhn-Tucker conditions, of the ME problems -expressed in variable 
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- and those of the ML problem, are indeed identical.

In the MNL model (12) 
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 that represents the greatest utility to that user among the alternatives available, described in set 
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.  The utility of an alternative 
[image: image63.wmf]i

 to the user in category 
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 is assumed to be a random variable linear in parameters coming from:

               
[image: image65.wmf]N

n

,

i

x

U

in

K

k

kin

k

Q

q

A

)

n

,

i

(

q

in

q

Î

"

e

+

b

+

a

=

å

å

Î

Î

Î

1

,
(13)

where, 
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 is a vector of specific constants, 
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 is a vector of parameters associated with attributes 
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, and 
[image: image69.wmf]e

 is a vector of Gumbel-iid random terms.
  Therefore, the Lagrange multipliers in the ME problem that are associated with the restrictions in the problem and are parameters in the maximum entropy model (5) are also interpreted to be parameters of the utility function in the MMNL model (12).

When the number of parameters 
[image: image70.wmf]a

 and 
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 increases, the demand for computer resources required to resolve the ME and ML problems also rises.  In the first problem, new parameters result in restrictions of aggregation or of linear combinations while in the second problem, this implies new specific constants or attributes in the specification of utility per alternative.

When problems of choice are addressed with a large number of alternatives, attributes and categories of users and when specific constants are specified per alternative or when different 
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 parameters by category of user are considered, like in the following example:
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large ME and ML problems arise.  This occurs in Transportation and Land-Use systems in large cities or between regions when modeling the trip destination choice, travel routes, transportation modes or combination of them, and when modeling localization of residential alternatives.  The classical Newton-based optimization methods or its variants may no longer be efficient enough in these large ME and ML problems using current personal computers.

3. CLASSIC NEWTON-BASED METHODS
This section summarizes several classical numerical methods of finding solution 
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 and 
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 to ML and ME optimization problems, based on Newton and its variants.

The parameters 
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 and 
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 in the ML problem are determined as a solution to the system of first-order conditions, or Kuhn-Tucker conditions, in the optimization problem described in equations (11) and (12). They directly yield the following:
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If the balancing factors 
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When (17) is replaced in restrictions (2), (3) and (4), the following system of non-linear equations is obtained that determines the values of parameters 
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The first two methods below directly use the Newton vectorial method to estimate the parameters while the remaining methods combine a Fixed-Point algorithm to estimate the balancing factors with different methods to calculate 
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.

3.1 Vectorial Newton in the Maximum likelihood Problem (Newton-ML)

This method uses the vectorial form of the Newton method to resolve the ML problem, or the equivalent to finding 
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3.2 Vectorial Newton in the Maximum Entropy Problem (Newton-ME)

This method uses the vectorial Newton method to resolve the ME problem, i.e. to find 
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Notice that the fundamental difference between these two methods goes beyond the substitution between variables 
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 (which uses exponentials and not the ratios between exponentials that define the MNL model of 
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3.3 Fixed Point in Balancing Factors and Vectorial Newton in the Maximum Entropy Problem (PF-β Newton)

This method comes from observing that the balancing factors 
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The method iterates the Fixed-Point of equations (21) and (22) and the system of equations (20) is solved by the Newton vectorial method.  In the first stage, each 
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 is calculated in terms of the remaining parameters with initial values, using (21).  Then the same is done with each 
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 using (22), and finally the vector 
[image: image112.wmf]b

 is calculated by solving equations (20) using the conditional vectorial Newton method in the previous values of 
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 and 
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.   This sequence is repeated until attaining a convergence of the approximations of 
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.

The Newton vectorial method has been used in the above three methods, which requires calculating the inverse of the Jacobean matrix of the equations system used.  This task consumes a large quantity of computer resources on large problems.  To avoid this calculation the Bregman approach is recommended (Fang et al, 1997) and used in all the following methods. It consists on calculating approximations of the parameters successively, estimating each conditionally in the values of the rest.  As appreciated, the method in 3.3 uses a similar strategy, but only to estimate the parameters 
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 and 
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 and 
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).  The following methods are based on sequential strategies to determine the remaining parameters 
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3.4 Fixed Point in Balancing factors and a Bregman Newton in the Maximum Entropy Problem (PF-β NewtonB)

This is a Bregman Fixed-Point method through which the equations (21) and (22) are evaluated sequentially and each the kth equation of (20) is solved using the Newton scalar method in variable 
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.

3.5 Fixed Point in Balancing factors and MART in the Maximum Entropy Problem (PF-β MART)

This method is similar to the previous one, except that each kth equation in (20) is solved using the MART scalar method
 in variable 
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.  This method is simpler than the previous one because an explicit approximation of 
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 and an estimation of 
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 (Fang et al., 1997).

The five methods described above are traditional methods used to estimate parameters 
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 (or the equivalent to 
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) and 
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.  Below we present the result of the search for new methods to solve this type of problem.

3.6  Hyman’s method
In an early paper, Hyman (1969) proposes an ad-hoc method for the doubly constrained entropy model in trip distribution problems. It consists on finding the parameters 
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  that adjust the average value of the observed variable xk and the average value when using modeled trips. In its original formulation the observed average trip cost must be reproduced by the modeled average trip cost. 

The modeled average variable is:
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 and the observed average is:



[image: image134.wmf]inkin

in

i

(

k

n

in

0)

Nx

x

N

=

å

å


(24)

with 
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Hyman proposes a secant-type method to solve the problem, which defines a linear approximation of the function 
[image: image141.wmf]k

x()

b

 and finds the root for this linear function in each iteration. The iteration is, 
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where 
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This defines a fixed point iteration method where equations (21) and (22) are evaluated by updating 
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 using equation (25). In a first stage 
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 is calculated using given values for the other parameters, applying (21), then, 
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 is calculated applying (22), and finally, 
[image: image150.wmf]b

 is calculated iteratively using (25); then the sequence is repeated until convergence of 
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4.  THE NEW METHODS 

We now present two new methods to solve the ME and ML problems, are inspired by the observation that if 
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where 
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Note that 
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4.1 Fixed Point in all parameters with a pivot in the ME problem (PF-β Pivot)

This method is based on applying the observation that gave rise to equation (26) by rewriting 
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When (28) is replaced in (20), the result is:
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and solving for term 
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 that multiplies 
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The PF-
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Pivot method consists of evaluating the equations (21) and (22) sequentially according to the Bregman approach and solving each kth equation of (20) in variable 
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 using the Fixed-Point iteration method applied to equation (30).  This process is repeated iteratively until the successive approximations of the parameters converge.

4.2 Fixed Point in Balancing factors and Newton using a “bounded search” in the ME problem (PF-βNewtonBS)

This method came from recognizing that the arbitrary value 
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 has an impact on the efficiency of the calculation of the parameters.  A method is therefore proposed to limit the range where the pivot is defined and also allows choosing good pivot in this range. 

Proposal: “Expression of parameter 
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 as a function of a bounded parameter”
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Applying the Proposition to the kth equation (20) in the unknown 
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where 
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Therefore, it is concluded from equation (31) that conditional on the values 
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When equation (31) is replaced in (20), the result is:
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Thus, the method PF-β NewtonBS consists of sequentially evaluating, á la Bregman, the equations (21) and (22) and solving each kth equation of (30) in the unknown 
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 using the Newton scalar method. This process is repeated iteratively until the successive approximations of the parameters converge.

5.  EXPERIMENTATION USING NEW METHODS

This section develops experiments by simulation to test the new methods proposed in the previous section for the case of the ME_DV model (doubly constrained maximum entropy travel distribution aggregated at destination) as formulated in equations (6)-(9).  This model was chosen because on the one hand, it belongs to a class of widely used entropy models, that of the doubly constrained models, and on the other, because the equivalence with the MNL model deduced in equation (10) given by:
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allows a flexible deterministic utility function to specify specific constant multipliers 
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 (or balancing factors) and also multiple parameters of 
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 associated with users’ categories.

The experiment consisted of applying the two new methods and the five classical methods described above to estimate the parameters 
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 and 
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 in the doubly constrained maximum entropy model and of making a comparison of the results.

A simulated data base was generated on the basis of given values of 
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 and 
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 and of the generalized transportation cost matrix per origin-destination pair and category of user 
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. Using the trips model coming from equation (10), the simulated trip matrix 
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 was generated with the given parameters. From this matrix, the simulated constrains on trip origins 
[image: image239.wmf](

)

on

0

on

T

, trip attraction, 
[image: image240.wmf](

)

d

0

d

T

 and the total transportation costs 
[image: image241.wmf](

)

n

0

n

C

 were calculated, which are then used as inputs in the calibration procedure.  Under this strategy, the maximum entropy problem is feasible and several simulations cases can be created with different values of the unknowns 
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 and 
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.

All the methods were programmed in Gauss language and the results are generated using Ox version 5.00 (see Doornik, 2007) applied to a Mac Pro computer with two Intel processors Xeon 5400 (8 cores) running at 2,8 GHz, with 32 Gb of RAM memory and Mac OS X 10.5.5 of operating system.
Tables 1 to 3 present the results of the execution times of the classical methods and the two new methods for different cases. Table 1 shows the performance when the number of zones is increased, which augments the number of balancing factor parameters; Table 2 shows the performance when the number of users’ categories is increased, which augments the number of balancing factors and  parameters simultaneously; and Table 3 shows the performance when the problem is defined on a cost matrix with a larger variance. As we expected the running time in all methods increases with the problem size, whether this means the number of zone or categories, but this is not always true when we increase the cost matrix variance. 

We observe a general constant performance across all three tables, showing significant differences between methods that led us to classify them into two groups. The first five methods (Newton-MV, Newton-ME, PF-Newton, PF-NewtonB and PF-MART) are the least efficient in running time, while the other three (PF-Pivot, PF-NewtonBS and Hyman) constitute the group of fast methods. The exception to these classes is the performance shown in Table 3 by the Newton-ME method which performed quicker as the cost variance increases. A notable result is the very bad performance in our test f the Bregman and MART methods, which prove to be clearly not recommendable for large problems.

The group of fast methods includes the two new methods and the classical Hyman´s method. Surprisingly, Hyman’s methods performed faster as the number of parameters increased, followed by the two new mehod (PF-Pivot and PF-NewtonBS); the new methods with an execution time between 3 to 5 times Hymans’ method. Although the PF-
[image: image244.wmf]b

Pivot method performs similar to bounded search method as size increases (Tables 1 and 2), it is considerably worse as the cost variance increases. In fact it is noticeable that the bounded search and Hyman’s methods performances are largely insensitive to the increase in costs variance, as shown by the ratio in variances row of Table 3.

Another important result worth mentioning is that Hyman´s method did not always converge. The explanation is well understood in the literature, since it is a type of secant methods which are known to fail to converge in some problems depending on the starting point of the algorithm; unfortunately this can not be anticipated by the modeler, so there is nothing she/he can do to remediate it.

6. CONCLUSIONS

The motivation behind this work came from the need to have an efficient model to estimate parameters in Multinomial Logit models (MNL) and maximum gravity entropy models (ME) for large problems like those that are usual in travel demand models for transportation systems and land-use localization in metropolises or interregional systems.

The literature classical approach is to address this estimation problem using algorithms based on the Newton method, complemented by fixed-point algorithms for parameters called balancing factors. In our tests, however, these methods show a significantly worse performance than the old Hyman’s secant method, although this latter method lacks convergence. 

In this paper we proposed two new methods to estimate MNL and ME models. Both show a better performance in running time than Newton methods but moderately worse than Hyman’s method. Among the new methods, the bounded search method (denoted PF-NewtonBS) performed clearly better in problems where the costs variance increases. 

In sum, for large ME or MNL estimation problems, based on our research results, Hyman’s old method is the faster in running time but is not robust because convergence is not assured. Alternatively, here we have proposed the bounded search method, which combines the fixed point iteration to estimate balancing factors with the Newton method to estimate indirectly the  parameters. This method has the advantage combines robustness (converge is assured) at the cost of a moderately higher running time, but still much faster than the Newton methods.   
Additionally, although our method (and all the others too) do not provide direct statistics of the quality of the estimators, it is possible to obtain them by noting that the maximum likelihood estimators of a Multinomial Logit model yields the same solution than that obtained by our efficient bounded search method. Thus, we can evaluate the optimal solution of the maximum likelihood problem by replacing the estimated parameters in the MNL likelihood function. Then, using this we can calculate the standard statistical tests of the goodness of fit of the Multinomial Logit model, which yields a criterion to compare different models.
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Table 1. Execution times increasing the number of zones (seconds)

	Nr zones
	Nr user categ.
	Nr

Parameters
	NewtonMV
	NewtonME
	PF βNewton
	PF NewtonB
	PF βMART
	PF  βPivot
	PF βNewtonBS
	Hyman

	100
	15
	1615
	20
	305
	

54
	112687
	377395
	4
	3
	1

	200
	15
	3215
	77
	1358
	232
	 >>   1
	 >>   1
	11
	12
	3

	300
	15
	4815
	185
	3326
	571
	
	 
	32
	29
	8

	400
	15
	6415
	335
	5971
	848
	
	 
	48
	57
	13

	500
	15
	8015
	561
	10099
	1415
	
	 
	101
	100
	22

	Ratio zones

(rows1/row5) 
	4,96
	28,05
	33,11
	26,20
	
	
	25,25
	33,33
	22,00


  
1 The execution time is too long.
Table 2. Execution times increasing the number users’ categories (seconds)

	Nr zones
	Nr user categ.
	Nr

Parameters
	NewtonMV
	NewtonME
	PF βNewton
	PF NewtonB
	PF βMART
	PF  βPivot
	PF βNewtonBS
	Hyman

	100
	5
	605
	4.5 
	 96
	10
	141 
	271 
	 0.63
	0.89
	0.27

	300
	5
	1805
	60
	1052
	205
	 >>   1
	 >>   1
	11
	9
	3

	300
	10
	3310
	149
	2232
	386
	
	 
	23
	20
	5

	300
	15
	4815
	185
	3326
	571
	
	 
	32
	29
	8

	300
	20
	6320
	259
	4530
	728
	
	 
	38
	40
	11

	Ratio params (rows1/row5) 
	10.5
	57.6
	47.2
	72.8
	
	
	60.3
	45.0
	40.7



1 The execution time is too long.
Table 3. Execution time increasing costs variance (seconds)

	Nr zones
	Nr user categ.
	Nr

Var.
	Var
	Max-Min
	Newton MV
	Newton ME
	PF βNewton
	PF βPivot
	PF βNewtonBS
	Hyman

	300
	15
	4815
	0.36
	5,23
	185
	3326
	571
	32
	29
	8

	300
	15
	4815
	3.27
	14,71
	356
	3304
	1365
	68
	27
	9

	300
	15
	4815
	13.1
	28,54
	526
	3006
	1690
	159
	22
	11

	300
	15
	4815
	29.4
	42,20
	727
	2586
	3271
	252
	24
	11

	300
	15
	4815
	52.3
	57,50
	3630
	1880
	2744
	298
	27
	11

	Ratio variances (rows1/row5) 
	145.3
	11.0
	19.6
	0.6
	4.8
	9.3
	0.9
	1.4


Note: the methods PF-NewtonB and PF- βMART are omitted in this table.

Table 1. Execution time by increasing the number of zones (seconds)

	Nr zones
	Nr user categ.
	NewtonMV
	NewtonME
	PF βNewton
	PF NewtonB
	PF βMART
	PF  βPivot
	PF βNewtonBS
	Hyman

	100
	15
	20
	305
	

54
	
	
	4
	3
	1

	200
	15
	77
	1358
	232
	
	 
	11
	12
	3

	300
	15
	185
	3326
	571
	
	 
	32
	29
	8

	400
	15
	335
	5971
	848
	
	 
	48
	57
	13

	500
	15
	561
	10099
	1415
	
	 
	101
	100
	22

	500/ 100
	
	28
	33
	26
	
	
	29
	39
	27


Table 2. Execution time increasing the number users’ categories (seconds)
	Nr zones
	Nr user categ.
	Newton MV
	Newton ME
	PF βNewton
	PF NewtonB
	PF βMART
	PF βPivot
	PF βNewtonBS
	Hyman

	300
	5
	60
	1052
	205
	
	 
	11
	9
	3

	300
	10
	149
	2232
	386
	
	 
	23
	20
	5

	300
	15
	185
	3326
	571
	
	 
	32
	29
	8

	300
	20
	259
	4530
	728
	
	 
	38
	40
	11

	300
	25
	448
	5734
	1273
	
	 
	75
	53
	14

	
	25/5
	7
	5
	6
	
	
	7
	6
	6


Table 3. Execution time increasing costs variance (seconds)
	Nr zones
	Nr user categ.
	Newton MV
	Newton ME
	PF βNewton
	PF NewtonB
	PF βMART
	PF βPivot
	PF βNewtonBS
	Hyman

	300
	15
	185
	3326
	571
	
	 
	32
	29
	8

	300
	15
	356
	3304
	1365
	
	 
	68
	27
	9

	300
	15
	526
	3006
	1690
	
	 
	159
	22
	11

	300
	15
	727
	2586
	3271
	
	 
	252
	24
	11

	300
	15
	3630
	1880
	2744
	
	 
	298
	27
	11












































































































� Although there are other measures of entropy, see, for example, Roy (2004), Shannon’s is the one most used in urban models and which creates the equivalency to the MNL model.

� Other Logit models are obtained by relaxing the conditions of independent and identical Gumbel distribution.

� It is also concluded that �EMBED Equation.3���

� The parameters α and β implicitly contain the Gumbel distribution scalar factor.

� MART: Multiplicative Algebraic Reconstruction Technique
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