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Optimization of Large-Scale Hydropower System Operations
Mario T. L. Barros1; Frank T-C. Tsai2; Shu-li Yang3; Joao E. G. Lopes4; and William W-G. Yeh, Hon.M.ASCE5

Abstract: A practical monthly optimization model, called SISOPT, is developed for the management and operations of the Br
hydropower system. The system, one of the largest in the world, consists of 75 hydropower plants with an installed capacity of
MW, producing 92% of the nation’s electrical power. The system size and nonlinearity pose a real challenge to the modelers. Th
model is formulated in nonlinear programming~NLP!. The NLP model is the most general formulation and provides a foundation
analysis by other methods. The formulated NLP model was first linearized by two different linearization techniques and solved b
programming~LP!. A comparative analysis was made of the results obtained from the linearized and the NLP models. The result
that the simplest linearized model~referred to as the LP model! without iteration is suitable for planning purposes. For example, the L
model could be used in system capacity expansion studies or to explore various design parameters in connection with feasibility
where details in storage variation are not as important as the power production. With a good initial policy provided by the LP mod
successive linear programming~SLP! model produced excellent results with fast convergence. The NLP model, the most complex
accurate model in the suite, is particularly suited for setting up guidelines for real-time operations using inflow forecast with fre
updating. The performance of the NLP model was checked against the historical operational records, and the comparison yield
tions of superior performance.
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Introduction

Brazil is replete with natural water resources and its hydropow
system, one of the largest in the world, has an installed capa
of 69,375 MW producing 92% of the nation’s electrical powe
The system consists of 75 hydropower plants and a combina
of storage reservoirs and run-of-river plants. The network cov
the following eight basins in Brazil:~1! North ~Amazon!; ~2!
South Atlantic; ~3! Tocantins;~4! Sao Francisco;~5! Southeast
Atlantic; ~6! Parana;~7! Uruguay; and~8! South Atlantic. Fig. 1
shows the spatial distribution of the hydropower plants. Five h
dropower plants are responsible for producing 50% of the Natu
Inflow Energy~NIE!: ~1! Itaipu Dam~14,000 MW!; ~2! Tucurui
Dam ~4,241 MW!; ~3! Xingo Dam ~3,000 MW!; ~4! Paulo
Afonso/Moxoto Dam~4,285 MW!; and ~5! Ilha Solteira/Tres Ir-
maos Dam~4,252 MW!. If considering 75% of the NIE, the num
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ber of reservoirs responsible increases to only 17. This shows
the Brazilian hydropower system is composed of a few very la
storage reservoirs and many medium- and small-sized hy
power plants. Presently, the system is operated in an integr
fashion. A firm established by the Brazilian Federal Governme
the National System Operator~ONS!, is in charge of the opera-
tions. ONS defines the monthly, weekly, and daily operatio
rules. The main operational objective is to maximize the poten
energy of the system. The Brazilian energy commerce is in
process of changing. In 1998, ONS assigned the power contr
for the subsequent 5 years~1999–2003!. A set of models~optimi-
zation and simulation! was used to define the energy that ea
reservoir must produce during this period. After the year 20
the energy commerce in Brazil will be partially controlled by
free market. For the first time, excess energy~amount of energy
over the contract level! will be available to the free market. In the
future, the market will be completely free, but ONS intends
preserve the benefits of integrated operations. For a system
as the Brazilian one, it will be very important to have an optim
zation model to plan the operations in advance to support
management in their decision making. It is also important to po
out that a small improvement in operations for a system of s
size translates into enormous economic benefits.

Optimization techniques have become increasingly import
over the last three decades in the management and operatio
complex reservoir systems. Yeh~1985!, Simonovic~1992!, Wurbs
~1993, 1996!, ReVelle ~1997!, and Momoh et al.~1999a,b! have
provided an extensive literature review and evaluation of vario
optimization methods and their corresponding models. The co
plexities of a multipurpose, multireservoir system generally
quire that release decisions be made by an optimization or si
lation model. Most of the optimization models are based on so
type of mathematical programming technique. In general,
available optimization methods include the following algorithm
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Fig. 1. Spatial distribution of hydropower plants
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Nonlinear Programming „NLP… Model

The basic model is formulated in terms of NLP, which offers
most general formulation and provides a foundation for ana
by other methods~Yeh 1985!. With the drastic advancement
computing power and the development of effective nonlin
solvers in recent years, NLP has become a viable tool in sol
large-scale water resources optimization problems~Peng and
Buras 2000!. The NLP model proposed herein is designed in s
a way that it can be applied to many practical situations. A
tionally, it can be easily incorporated into a decision support
tem that allows the user to update data, execute the model
view the results graphically.

Traditionally, a reservoir system is designed for multiple p
poses. There are several ways to solve a multiobjective optim
tion problem. Yeh and Becker~1982! used the constraint metho
to generate the trade-off curves among the five objectives co
ered for the California Central Valley Project. Can and Ho
~1984! applied preemptive goal programming to the real-time
eration of a multipurpose, multireservoir system. Their appro
circumvents the need to assign penalty functions, but it doe
quire that the system be highly redundant and that the solutio
nonunique so that objectives can be satisfied sequentially. L
nathan and Bhattacharya~1990! outlined five goal-programmin
schemes and formulated the reservoir operation problem inv
ing multiobjectives as a multiobjective linear program. Ko et
~1992! made a comparative evaluation of several multiobjec
optimization methods in connection with reservoir managem
and operations. They concluded that the constrained method~also
referred to as thee-constrained method! was most suitable fo
generating the tradeoffs among the competing objectives. Esc
bach et al.~2001! developed a multiobjective, preemptive line
goal-programming model for reservoir operation and applied
the Tennessee Valley Authority network. Another way is to co
bine the various objectives by the weighting method or by tr
ing some of the objectives as constraints.

For the Brazilian hydropower system, the proposed N
model considers the following six objectives:~1! minimizing the
loss of the stored potential energy;~2! minimizing storage devia
tions from targets;~3! maximizing total energy production;~4!
minimizing spilled energy;~5! minimizing energy complementa
tion; and ~6! maximizing the profit derived from secondary e
ergy. Note that certain combinations of the objectives are ne
desirable nor feasible. We now quantify each of the six object
considered in the NLP model.
1. Objective 1 minimizes the loss of the stored potential en

~Becker and Yeh 1974!

min f15(
t

(
i

~ci8Ri,t8 1ci9Ri,t9 ! (1)

whereRi ,t8 5power release from reservoiri during time periodt, in
~m3/s!; Ri ,t9 5nonpower release from reservoiri during time period
t (m3/s); andci8 andci9 are the weighting coefficients for pow
release and nonpower release~spill!, respectively. To minimize
the nonpower release, a large value ofci9 is assigned.

2. Objective 2 minimizes the sum of the squares of stor
deviations from targets, and can be represented by the
lowing two different ways:

min f 25(
t

(
i

~Si ,t2Ti ,t!
2 (2a)

or
1. Linear programming~LP!, including network flow models,
2. Quadratic programming~QP!,
3. Dynamic programming~DP!,
4. Nonlinear programming~NLP!,
5. Mixed integer programming~MIP!,
6. Interior point methods~IP!, and
7. Nongradient-based search algorithms.

The choice of methods depends on the characteristics of
system being considered, on the availability of data, and on
objectives and constraints specified. Braga et al.~1998! devel-
oped a model for optimizing the Brazilian hydropower syste
based on the LP-DP method of Becker and Yeh~1974!. Their
model optimizes the operation month by month, and the LP-
decomposition may lead to a near-sighted solution if the mon
ending storage condition is not properly specified. Barros e
~2001! developed an NLP model to optimize the energy prod
tion of the Paranapanema subsystem, which consists of three
age reservoirs and five run-of-river plants~Fig. 1, Nodes 32–39!.
Their model considers the entire planning horizon and invol
no decomposition. Preliminary results show that NLP is a via
approach. In the present paper, the basic NLP model develope
Barros et al.~2003! for the Paranapanema subsystem is exten
to the entire Brazilian hydropower system of 75 hydropow
plants. The system size, complexity, and the nonlinearities a
ciated with hydropower generation pose a real challenge to
modelers. The new model, SISOPT, considers multiple object
and optimizes a combination of objective functions. It consists
three optimization models—the LP, the NLP, and the SLP mo

A joint team of researchers from University of California, Lo
Angeles~UCLA! and the University of Sao Paulo~EPUSP!, Bra-
zil jointly developed the SISOPT model. The National Scien
Foundation~NSF! and its Brazilian counterpart Conselho Naci
nal de Desenvolvimento Cientifico e Technologico~CNPq! sup-
ported the collaborative research. During the development of
model, the team consulted with ONS, Brazilian Electric Ene
Agency~ANEEL! and Brazilian Water Resources Agency~ANA !.
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min f 25(
t

S (
i

Si ,t2TtD 2

(2b)

whereSi ,t5ending storage in theith reservoir at the end of time
periodt, in Mm3 (106 m3); Ti ,t5specified ending storage target a
the ith reservoir at the end of time periodt; and Tt5specified
ending storage target for the summation of the ending stora
vector of the entire system at the end of time periodt.

3. Objective 3 maximizes total energy production

maxf 35(
t

(
i

~j i ,tRi ,t8 ! (3)

wherej i ,t5energy production function in MW/m3/s per month.

4. Objective 4 minimizes total spilled energy

min f 45(
t

(
i

~j i ,tRi ,t9 ! (4)

5. Objective 5 minimizes energy complementation by the fo
lowing quadratic function

min f 55(
t

FDT2(
i

~j i ,tRi ,t8 !G2

(5)

whereDT5total energy demand, which includes not only hydro
power but also other alternative sources of energy, such as
more expensive thermal or nuclear energy. The purpose of t
objective is to minimize the use of alternative sources of ener
which, in turn, will minimize the total operational cost.

6. Objective 6 maximizes the profit derived from the seconda
energy

maxf 65(
t

ptS (
i

j i ,tRi ,t8 2DCD (6)

where pt5energy price during time periodt ($/MW); and
DC5contractual demand~system firm energy! during time period
t (MW). In Brazil, the concept of firm energy is used to establis
the energy contracts. Firm energy is defined as the average en
that can be produced on a long-term basis with a 5% risk. T
amount of energy produced above the firm energy is called
secondary energy. The price of firm energy is higher than that
the secondary energy, but secondary energy can be sold in
open market.

We now formulate the composite objective function as fo
lows:

minZ5w1f 11w2f 22w3f 31w4f 41w5f 52w6f 6 (7)

As we stated before, certain combinations of the objectives
neither desirable nor infeasible, and some of the objectives can
treated as hard constraints. The weighting coefficients (w8s) re-
flect the priority of these objectives, and a judicious selection
their values is crucial to achieving a balance.

The constraint set includes the monthly energy demand, t
bine capacity, maximum storage variation, flood control reserv
tion, minimum storage, and minimum and maximum allowab
releases through the turbine. Specifically, the following types
constraints are considered:

Energy demand: (
i

j i ,tRi ,t8 >dt ,;t (8)

Turbine capacity: j i ,tRi ,t8 < P̄i ,; i ,;t (9)
180 / JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMEN
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Flow continuity: Si ,t5Si ,t211I i ,t1l (
i PIN

~Ri ,t8 1Ri ,t9 !

2l~Ri ,t8 1Ri ,t9 ! (10)

Monthly maximum storage variation:

Si ,t212Si ,t<d•~Si ,t
max2Si ,t

min!,0<d<1,; i ,;t (11)

Minimum and maximum storages:Si
min<Si ,t<Si

max,; i ,;t
(12)

Minimum and maximum power releases:

Ri8
min<Ri ,t8 <Ri8

max,; i ,;t (13)

Bounds on nonpower release: 0<Ri ,t9 <`,; i ,;t (14)

whereI i ,t5natural inflow into theith reservoir during time period
t; Si ,t215beginning storage at theith reservoir;dt5energy de-
mand during time periodt ~avgMW!; P̄i5effective turbine capac-
ity ~MW! for ith power plant;l5conversion factor from m3/s to
Mm3; and IN5inflow index from upstream reservoir releases.

The term ‘‘avgMW’’ represents the average MW over a certa
period of time. This term is commonly used in Brazil, and a
other symbols have been defined. In the continuity equation, i
assumed that evaporation loss from the reservoir is balanced
precipitation onto the reservoir.

The decision variables in the NLP model areSi ,t , Ri ,t8 , and
Ri ,t9 . The model is nonlinearly constrained with a nonlinear o
jective function, because the energy production function,j i ,t is a
nonlinear function of storage as well as power and nonpow
releases, which can be expressed as follows:

j i ,t5e i~HFi ,t2HTi ,t! (15)

HFi ,t5a0i1a1iSi ,t1a2iSi ,t
2 1a3iSi ,t

3 1a4iSi ,t
4 (16)

HTi ,t5b0i1b1iqi ,t1b2iqi ,t
2 1b3iqi ,t

3 1b4iqi ,t
4 (17)

whereHFi ,t5reservoir forebay water level~m!; HTi ,t5reservoir
tailrace water level~m!; qi ,t5total outflow ~m3/s!, including
power and nonpower releases (Ri ,t8 1Ri ,t9 ); and e i5specific pro-
ductibility ~MW/m3/s/m!.

In Eqs.~16! and~17!, the forebay and tailrace water levels ar
expressed by a fourth-order polynomial in terms of storage a
total outflow.

The NLP model is most accurate, because it involves no
proximation and uses the physically based nonlinear energy p
duction function. Hence, the optimized policy and energy produ
tion is most reliable. All gradient-based nonlinear algorithm
require an initial policy, i.e., an initial estimate of the solution
Because the optimization problem is also nonconvex, a good
tial policy increases the likelihood of reaching the global op
mum. A LP model is developed to provide an initial policy for th
SLP and NLP models. Additionally, the LP and SLP models a
computationally highly efficient and can be utilized to perfor
sensitivity analysis in connection with capacity expansion studi

Linear Programming „LP… Model

Our first step is to linearize the NLP model by using a fixed val
for the nonlinear energy production function for each hydropow
plant. Here we choose the average value of the energy produc
function, which is obtained from the long-term operation
records. The second step is to use aL1-norm to replace the
T © ASCE / MAY/JUNE 2003
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L2-norm in the objectives and then transform them into equi
lent linear constraints. Consequently, the LP model is formula
as follows, for Eq.~2a!, theL1-norm is

min f 25(
t

(
i

uSi ,t2Ti ,tu (18)

which is equivalent to the following linear programming proble

min
ai ,t>0

f 25(
t

(
i

a i ,t (19)

subject to

2a i ,t<Si ,t2Ti ,t<a i ,t (20)

wherea i ,t is an intermediate variable introduced in the LP fo
mulation. For Eq.~2b!, theL1-norm is

min f 25(
t

U(
i

Si ,t2TtU (21)

which is equivalent to

min
b t>0

f 25(
t

b t (22)

subject to

2b t<(
i

Si ,t2Tt<b t (23)

whereb t is an intermediate variable.
Either Eq.~19! subject to Eq.~20! or Eq. ~22! subject to Eq.

~23! can be used to represent theL1-norm of objective 2.
The energy complementation in Eq.~5! becomes

min f 55(
t

U(
i

j i ,tRi ,t8 2DTU (24)

which is equivalent to

min
g t>0

f 55(
t

g t (25)

subject to

2g t<(
i

j i ,tRi ,t8 2DT<g t (26)

whereg t is an intermediate variable. A key utilization of the L
model is that its solution provides a good initial policy for th
SLP and the NLP models.

Successive Linear Programming „SLP… Model

We now develop a SLP algorithm. The basic idea is to solve
original nonlinear problem via a sequence of localized linear p
grams so that the final solution is close to that of the NLP mo
solution. The purposes of developing an SLP model are twofo
First, SLP saves computation time and storage requirements
an NLP approach. Second, the resulting model can be rea
solved by a standard LP code. The advantages of LP for reser
management and operations are well documented~Yeh 1985!.
This type of approach has been studied by Yeh et al.~1979!,
Palacios-Gomez et al.~1982!, Martin ~1983!, Grygier and Ste-
dinger ~1985!, Reznicek and Simonovic~1990, 1992!, Tao and
Lennox ~1991!, and Ko et al.~1992!. Using a first-order Taylor
series expansion, each decision variable is perturbed by a s
increment about its current solution
JOURNAL OF WATER RESOUR
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Si ,t
~k11!5Si ,t

~k!1dSi ,t
~k!

Ri ,t8~k11!5Ri ,t8~k!1dRi ,t8~k! (27)

Ri ,t9~k11!5Ri ,t9~k!1dRi ,t9~k!

We let a vectorx(k)5@Si ,t
(k) ,Ri ,t8(k) ,Ri ,t9(k)#T be the current solutio

~superscript T is the transpose operator! and vector u(k)

5@dSi ,t
(k) ,dRi ,t8(k) ,dRi ,t9(k)#T be the unknown increment that is to

determined. Eq.~27! can be expressed as

x~k11!5x~k!1u~k! (28)

This linearization is accurate and convergent only ifu(k) is within
a small vicinity ofx(k); therefore, it is necessary to impose ad
tional bounds onu(k) as follows:

2s<u~k!<s (29)

Vargas et al.~1993! studied the convergence behavior of the S
method. Ifs is too small, optimization may encounter infeasibi
or a slow rate convergence. However, ifs is too large, the metho
may not converge. In any case, the original bounds,xmin andxmax,
as represented by Eqs.~12!–~14!, should not be violated by th
increment. Hence, we have the following new bounds onu(k):

max$xmin2x~k!,2s%<u~k!<min$xmax2x~k!,s% (30)

After linearizing the entire NLP model, Eq.~1! through~11!, the
SLP model can be formulated as follows:

minZ5@w1¹ f 1
~k!1w2¹ f 2

~k!2w3¹ f 3
~k!1w4¹ f 4

~k!1w5¹ f 5
~k!

2w6¹ f 6
~k!#Tu~k!1Z0

~k! (31)

subject to

Energy demand: (
i

¹~j i ,t
~k!Ri ,t8~k!!Tu~k!>dt2(

i
j i ,t

~k!Ri ,t8~k!

(32)

Turbine capacity: ¹~j i ,t
~k!Ri ,t8~k!!Tu~k!< P̄i2j i ,t

~k!Ri ,t8~k! (33)

Flow continuity: dSi ,t
~k!5dSi ,t21

~k! 1l (
i PIN

~dRi ,t8~k!1dRi ,t9~k!!

2l~dRi ,t8~k!1dRi ,t9~k!! (34)

Monthly maximum storage variation:

dSi ,t21
~k! 2dSi ,t

~k!<d•~Si ,t
max2Si ,t

min!2Si ,t21
~k! 1Si ,t

~k! (35)

where

Z0
~k!5w1f 1

~k!1w2f 2
~k!2w3f 3

~k!1w4f 4
~k!1w5f 5

~k!2w6f 6
~k!

(36)

¹~• !5F ]•

]Si ,t
,

]•

]Ri ,t8
,

]•

]Ri ,t9 GT

the gradient operator (37

The SLP stops if the following convergence criterion is met.

uZ~k11!2Z~k!u
Z~k! <e (38)

Care must be taken in the selection ofs in Eq. ~29!. If s is too
small, infeasibility may result. However, ifs is too large, the SLP
model may not converge. Fig. 2 shows the SLP flowchart.

Fig. 3 shows the relationship among the LP, SLP, and
models. The LP model replaces the nonlinear energy produ
function by a fixed value for each power plant. This value co
CES PLANNING AND MANAGEMENT © ASCE / MAY/JUNE 2003 / 181
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sponds to the historical long-term average. Outputs from the
model include the monthly values of storage, power release
nonpower release at each power plant. These values are use
the initial policy for the SLP and NLP models. To solve the d
veloped LP, SLP, and NLP models, we have explored seve
linear and nonlinear solvers. MINOS~Murtagh and Saunders
1995! is employed to solve the basic NLP model. With regard
the linear models, we have investigated the following three d
ferent solvers:~1! EMNET ~McBride, 1985!, an algorithm de-
signed for solving embedded generalized network flow problem
~2! the MINOS LP, which is based on the standard simpl

Fig. 2. Flowchart of successive linear programming~SLP!
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method of linear programming; and a primal-dual interior-po
algorithm PCx~Czyzyk et al. 1999!, which uses a logarithmic
barrier function to accommodate constraints and uses Newt
method to solve the Karush-Kuhn-Tucker~KKT ! equations. In
many hydropower and hydrothermal optimization problems
has been shown that the interior point method is much faster
the MINOS LP for large-scale optimization~Momoh et al.
1999b!. Medina et al.~1998! made a comparative evaluation o
several interior point codes. Ponnambalam et al.~1989! applied
the Karmarkars interior point LP algorithm to optimize the ope
tions of a multireservoir system. Christoforidis et al.~1996!
showed that very large midterm or long-term resources sche
ing problems could be successfully solved using the interior p
method.

Our model uses Excel and Visual Basic in conjunction w
FORTRAN. All input data for the objectives@Eqs. ~1!–~6!#, the
constraints@Eqs. ~8!–~14!#, and the energy production function
@Eqs.~15!–~17!# are listed in the Excel worksheets. Excel crea
a convenient user-interface for operating the hydropower mo

Fig. 3. Relationship among the linear programming~LP!, successive
linear programming ~SLP!, and nonlinear programming~NLP!
models
ire

0
0

66

69

9

Table 1. Linear Programming~LP! Scenarios and Results, Case 1

Scenarios 1 2 3 4 5

Number of planning years 5 5 5 10 15
System version Paranapanema Parana Entire Entire Ent
Number of nodes 8 39 75 75 75
Storage variation~%! 100 100 10 10 10
Number of variables 1,620 7,200 13,680 27,360 41,04
Number of constraints 600 2,460 9,180 18,360 27,54

~a! Objective value (109)

MINOS 0.081086 1.784977 1.401181 2.490497 6.6930
EMNET 0.081086 1.784977 — — —
PCx 0.081086 1.784977 1.401181 2.490497 6.6930

~b! CPU ~s!

MINOS 1.53 56.74 246.50 1,238.46 2,912.0
EMNET 1.70 133.41 — — —
PCx 0.28 1.76 8.13 24.83 41.30
Ratio ~MINOS/PCx! 5.46 32.24 30.32 59.96 70.51
Ratio ~EMNET/PCx! 6.07 75.80 — — —
NT © ASCE / MAY/JUNE 2003
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Table 2. Model Dimension and Simulation Scenario for the Entir
System, Case 2

Scenario Dimension

Simulation period 1991–1995
Installed capacity 69,375 MW
Number of nodes 75
Storage variation 100%
Number of variable 13,680
Number of constraints 9,180
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Fig. 4. Comparison against historical monthly energy production
maximizing f 3 , Paranapanema subsystem, Case 3
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Three optimization models—LP, SLP, and NLP—are p
grammed using the FORTRAN language and compiled a
dynamic-link library ~DLL ! for Excel. The optimization solver
~MINOS, EMNET, and PCx! are linked with Fortran codes. Afte
the optimum results are obtained from the Fortran codes, t
results are stored in the Excel worksheets and visualized
monthly energy production graphs, monthly storage varia
graphs, and so forth. Visual Basic manipulates the input and
put data between Excel and FORTRAN. The present version
on a PC with a 500 MHz Pentium III processor and 160 M
RAM. In the case study section, we will discuss the comp
tional efficiency of various solvers.

Case Study and Results

Case 1: Comparison of LP Solvers

The first case study tests the validity and computation efficie
among the MINOS LP, EMNET, and PCx. Three system confi
rations are considered ranging from a small subsystem to
entire system~Fig. 1!: ~1! Paranapanema subsystem~nodes 32–
39!; ~2! Parana subsystem~Nodes 1–40, not including Node 23!;
and ~3! the entire system~Nodes 1–75!. The objective functions
considered are the minimization of total stored potential en
( f 1) and individual storage deviations from targets (f 2). We use
historical inflow data for all scenarios.

The system sizes and optimization results of the five scen
analyzed are shown in Table 1. The optimized objective va
obtained from the MINOS LP, EMNET, and PCx are virtua
identical. This shows that the LP solvers are valid. The first
scenarios show that PCx and the MINOS LP are more effic
than EMNET for small-scale problems. For large-scale proble
PCx outperforms the MINOS LP, and PCx is almost 71 tim
faster than the MINOS LP for Scenario 5.
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Case 2: Model Application to Large-scale System

The developed LP, SLP, and NLP models are applied to the B
zilian hydropower system with 75 hydropower plants, schema
cally represented by the 75 nodes in Fig. 1. From the testi
results of the three LP solvers mentioned earlier, we have fou
that in all cases PCx is much faster than the MINOS LP an
EMNET. Because the constraint matrix is not dominated by ne
work substructure, EMNET turned out to be ineffective in thi
particular application. Hence, we have adopted PCx as the
solver for the rest of the studies.

Table 2 lists the model dimension and simulation scenario. T
simulation period is from 1991 to 1995. Monthly time period an
historical inflows are used in the simulation. The correspondin
optimization model has 13,680 variables and 9,180 constraints
this example, we chose Objective 3 (f 3) for demonstration. Table
3 shows the optimization results and computation time. As can
seen, there is no major difference in terms of the maximized to
energy production among the three models.

One important characteristic of the basic model is that it ca
be used to analyze system operations by two differe
approaches—linear and nonlinear. The LP model replaces the
ergy production functions by their corresponding average valu
The SLP model uses a Taylor series expansion about the ini
policy provided by the LP model and achieves convergence to
local optimum through successive iterations. The objective (f 3)
was chosen to maximize the total energy production. Reserv
storage was constrained by flood control reservation during t

Table 4. Paranapanema Subsystem and Simulation Scenario, Cas

Scenario Dimension

Simulation period April 1999 to March 2001
Installed capacity 2,308~MW!

Number of nodes 9
Storage variation 100%
Number of variables 648
Number of constraints 240

Table 5. Comparison of Total Energy Production by Maximizingf 3 ,
Paranapanema Subsystem, Case 3

Model
Objective function,f 3

~avgMW!
Increase

~%!

Mean-inflow forecast 1,264 4.09
Perfect forecast 1,297 6.86
Historical 1,214 —
Table 3. Optimized Total Energy Production and Computation Ti
from Linear Programming~LP!, Successive Linear Programmin
~SLP!, and Nonlinear Programming~NLP! Models, Case 2

Model Solver
Objective function

f 3 ~avgMW! CPU time

LPa PCx 49,698 17~s!
SLPb PCx 49,965 3.73~min!

NLPc MINOS 49,974 2.19~h!
aLinear programming.
bSuccessive linear programming.
cNonlinear programming.
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Fig. 5. Comparison against historical monthly storage variations at the three storage reservoirs, Paranapanema Subsystem, by maxim
total energy production (f 3), Case 3
184 / JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT © ASCE / MAY/JUNE 2003



Table 6. Comparison of Total Energy Production by Minimizingf 5 ,
Paranapanema Subsystem, Case 3

Model
Objective function,f 5

~avg MW!
Increase

~%!

Mean-inflow forecast 1,267 4.33
Perfect forecast 1,296 6.72
Historical 1,214 —
a
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Fig. 6. Comparison against historical monthly energy production
Paranapanema subsystem, by minimizing the energy complemen
tion ( f 5), Case 3
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wet season, and no constraint was imposed on the maximum
lowable monthly storage variation.

The results obtained show that the LP model produced 0.
less total energy and took only 17 s of CPU time to solve~Table
3!. The total energy produced by the SLP and NLP models
virtually the same~Table 3!. A close examination of the results
~not shown here! indicates that the storage varies more frequen
in the NLP model than in the LP model. In general, the LP mod
produced smoother storage transitions. However, with a good
tial policy provided by the LP model, the SLP model converg
and produced excellent results for this particular example. T
success of the SLP model is problem dependent. For a con
problem, it can be shown that the final solution of the SLP co
verges to the solution of the original nonlinear problem. For pro
lems that are nonconvex, which is the case here, the final solu
of the SLP is not guaranteed to be close to that of the origi
nonlinear solution.

Overall, when compared with the NLP model, the LP mod
produced good results in terms of the total energy producti
recognizing that there are differences in reservoir storage va
tions, but these factors are not important for planning purpos
Therefore, we conclude that the LP model can be used as
efficient tool to explore various design parameters in connect
with feasibility studies. With a good initial policy provided by th
LP model, the SLP model produced excellent results and
down the CPU time from hours to minutes. Of course, the N
model is the most accurate one among the three; therefore,
proceed to test it against the historical operational records.

Case 3: Comparison with Historical Records

The ONS ~Operador Nacional do Sistema! is in charge of the
Brazilian hydropower system operation. To provide guidelines
real-time operations, ONS first uses an energy strategy mo
NEWAVE, which is an operation-planning model and genera
operational strategy for the next 60 months. This model agg
gates all reservoirs into a single reservoir and is solved by s
chastic DP. The solution from the stochastic DP is then disagg
gated by simulation, i.e., the NEWAVE operational strategy
used as the input for a simulation model to define the ene
production for each reservoir on a monthly basis. The week
daily, and hourly operations are obtained by simulation with flo
and demand forecasting models. The hourly operations are u
for real-time operations~Barros 2000!. The historical monthly
energy production is obtained by adding the hourly energy p
duction for the particular month under consideration.

The Paranapanema subsystem is located in the Paranapa
River, a tributary of the Parana River. It consists of three stora
power plants and five run-of-river power plants with an installe
capacity of 2,308 MW. The monthly historical energy productio
from April 1999 to March 2001 is shown in Fig. 4. To optimiz
the hydropower production for this period, the model has 6
decision variables and 240 constraints. The storage variatio
C
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unrestricted, i.e.,d51 ~Table 4!. First, we maximize the total
energy production (f 3), subject to flood control and all other
constraints.

In real-time operation, reservoir operators rely upon inflow
~natural inflow! forecasts with frequent updating. It is well under-
stood that inflow forecast plays an important role in real-time
operation. To compare the NLP results against the historical op
erational records, we use the following two types of inflow fore-
cast models as inputs to the optimization model:~1! perfect fore-
cast; and~2! mean-inflow forecast. The perfect forecast mode
simply uses the observed historical inflows as the forecasts. Th
implies that there is no forecast error. In real-time operation, o
course, this is not realistic, but the results obtained from the op
timization model based on the perfect forecast model will provide
an upper bound for the energy production for this particular pe
riod under consideration. The mean-inflow forecast model use
the monthly mean as its forecast. Because most of the streamflo
forecast models should be able to provide inflow forecasts that a
better than simply using the mean values, the results obtaine
from the optimization model will provide an estimate of the en-
ergy production that might be achievable in real-time operation
To simulate real-time operation, the state of the system is update
on a monthly basis whenever new information becomes availab
at the beginning of each month, such as the previous month
observed inflow.

Table 5 shows the comparison against the historical opera
tional records. It can be seen that during the same period of o
eration with the same initial and ending storages, the NLP mode
produced 6.86% more energy using the perfect forecast mod
and 4.04% more energy using the mean-inflow forecast model. A
we have mentioned, a small percentage increase in total ener
production usually translates into large benefits. A 4.04% increas
in power production is in reality quite substantial. Fig. 4 shows a
comparison of the monthly energy production against the histor
cal operational records. The optimization model takes advantag
of the inflow forecast by minimizing spill and maximizing head
within the feasible region of the decision space. Hence, the energ
production distribution obtained by the optimization model is ex-
pected to be different from the historical operational records
which did not use optimization.

Fig. 5 presents a comparison of the monthly storage variation
of the three large storage reservoirs against the historical oper
tional records. The total storage increased approximately 15%
the Chavantes reservoir~Node 33! and approximately 19% in the
Capivara reservoir~Node 37! using either the perfect forecast or
the mean-inflow forecast model. It can be seen that the NL
model is able to take advantage of the inflow forecast by keepin
ES PLANNING AND MANAGEMENT © ASCE / MAY/JUNE 2003 / 185
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Fig. 7. Comparison against historical monthly storage variations at the three storage reservoirs, Paranapanema subsystem, by minimiz
energy complementation (f 5), Case 3
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the storage, and thus the head, at a higher level to maxim
energy production and to minimize spill.

We have also compared the performance of the NLP mod
against the historical operational records using Objective 5 (f 5),
i.e., minimizing energy complementation. Table 6 summarizes t
results. Again, the NLP model produced more energy using eith
the perfect inflow or the mean-inflow forecast model. For a give
total energy demand,DT , we note that both Objectives 3 and 5
seek to maximize the hydropower energy production, but in
different way. Objective 5 is a quadratic function in terms o
energy production; thus, the optimization model will maximize
the energy production, but, at the same time, minimize the var
tion of energy production distribution over the planning horizon
Fig. 6 shows such characteristics in the optimized monthly ener
production when compared to the historical operational record
The optimized energy production distribution using the perfe
forecast model is especially uniform. Fig. 7 compares the month
storage variations at the three storage reservoirs. Again, the to
storage increased more than 11% in the Chavantes reservoir
about 18% in the Capivara reservoir using either inflow foreca
model.

Summary and Conclusions

An NLP model has been formulated and applied to the Brazilia
hydropower system, one of the largest in the world with an in
stalled capacity of 69,375 MW. The model was solved by NLP
Additionally, the NLP model was linearized and solved by LP an
SLP. The LP model uses theL1-norm and replaces the nonlinear
energy production functions by their corresponding average va
ues. The SLP model uses a Taylor series expansion about
initial policy provided by the LP model, and convergence to
local optimum is achieved via a sequence of localized linear pr
grams. The LP, SLP, and NLP models were designed to perfo
different tasks with different objective functions. The multiobjec
tive optimization problem can be solved by the weighting metho
or solved as a single objective optimization problem by treatin
other objectives as constraints.

The impact of nonlinearity was analyzed, and the results sho
that, for planning purposes, the LP model is sufficient. The pr
posed SLP produced excellent results with fast convergence
can also be used for planning purposes. But the NLP model is t
most accurate and particularly suitable for real-time operatio
The performance of the NLP model was compared against t
historical operational records. To simulate real-time operation, t
NLP model takes advantage of the inflow forecast with freque
updating. We have used two inflow forecast models to estima
the upper and lower bounds in the NLP model performance. T
results are extremely promising in that the NLP model meets t
demand and produces more energy by maximizing storage~thus,
the head! and by minimizing spill. The NLP model is extreme
useful for setting up guidelines for real-time operation.
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Notation

The following symbols are used in this paper:
ci8 5 weighting coefficient for power release;
ci9 5 weighting coefficient for nonpower release~spill!;

DC 5 contractual demand~system firm energy! during
time periodt ~avgMW!;

DT 5 total energy demand, including hydropower,
thermal energy, and nuclear energy;

dt 5 energy demand during time periodt ~avgMW!;
HFi ,t 5 reservoir forebay water level~m!;
HTi ,t 5 reservoir tailrace water level~m!;

I i ,t 5 natural inflow into theith reservoir during time
period t;

P̄i 5 turbine capacity~MW! for ith power plant;
pt 5 energy price during time periodt;

qi ,t 5 total outflow ~m3/s!, including power and non-
power releases (Ri ,t8 1Ri ,t9 );

Ri ,t8 5 power release from reservoiri during time period
t ~m3/s!;

Ri ,t9 5 non-power release from reservoiri during time
period t ~m3/s!;

Si ,t 5 ending storage in theith reservoir at the end of
time periodt;

Si ,t21 5 beginning storage at theith reservoir;
Ti ,t 5 specified ending storage target at theith reservoir

at the end of time periodt;
Tt 5 specified ending storage target for the summation

of the ending storage vector of the entire system
at the end of time periodt;

e i 5 specific productibility~MW/m3/s/m!;
l 5 conversion factor from m3/s to Mm3; and

j i ,t 5 energy production function in MW/m3/s/month.
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