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Abstract: A practical monthly optimization model, called SISOPT, is developed for the management and operations of the Brazilian
hydropower system. The system, one of the largest in the world, consists of 75 hydropower plants with an installed capacity of 69,37¢
MW, producing 92% of the nation’s electrical power. The system size and nonlinearity pose a real challenge to the modelers. The basi
model is formulated in nonlinear programmifgLP). The NLP model is the most general formulation and provides a foundation for
analysis by other methods. The formulated NLP model was first linearized by two different linearization techniques and solved by linear
programming(LP). A comparative analysis was made of the results obtained from the linearized and the NLP models. The results show
that the simplest linearized modgkferred to as the LP modelithout iteration is suitable for planning purposes. For example, the LP
model could be used in system capacity expansion studies or to explore various design parameters in connection with feasibility studie:
where details in storage variation are not as important as the power production. With a good initial policy provided by the LP model, the
successive linear programmii§LP) model produced excellent results with fast convergence. The NLP model, the most complex and
accurate model in the suite, is particularly suited for setting up guidelines for real-time operations using inflow forecast with frequent
updating. The performance of the NLP model was checked against the historical operational records, and the comparison yields indice
tions of superior performance.
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Introduction ber of reservoirs responsible increases to only 17. This shows that
the Brazilian hydropower system is composed of a few very large

Brazil is replete with natural water resources and its hydropower storage reservoirs and many medium- and small-sized hydro-
system, one of the largest in the world, has an installed capacitypower plants. Presently, the system is operated in an integrated
of 69,375 MW producing 92% of the nation’s electrical power. fashion. A firm established by the Brazilian Federal Government,
The system consists of 75 hydropower plants and a combinationthe National System Operaté®N9), is in charge of the opera-
of storage reservoirs and run-of-river plants. The network coverstions. ONS defines the monthly, weekly, and daily operational
the following eight basins in Brazil(1) North (Amazon; (2) rules. The main operational objective is to maximize the potential
South Atlantic; (3) Tocantins;(4) Sao Francisco(5) Southeast  energy of the system. The Brazilian energy commerce is in the
Atlantic; (6) Paranaj7) Uruguay; and8) South Atlantic. Fig. 1~ process of changing. In 1998, ONS assigned the power contracts
shows the spatial distribution of the hydropower plants. Five hy- for the subsequent 5 yeat5999—2003 A set of modelgoptimi-
dropower plants are responsible for producing 50% of the Natural zation and simulationwas used to define the energy that each
Inflow Energy(NIE): (1) Itaipu Dam (14,000 MW; (2) Tucurui reservoir must produce during this period. After the year 2003,
Dam (4,241 MW); (3) Xingo Dam (3,000 MW); (4) Paulo  the energy commerce in Brazil will be partially controlled by a
Afonso/Moxoto Dam(4,285 MW); and (5) llha Solteira/Tres Ir-  free market. For the first time, excess enefggnount of energy
maos Dan{4,252 MW). If considering 75% of the NIE, the num-  yer the contract levilwill be available to the free market. In the
future, the market will be completely free, but ONS intends to
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) Nonlinear Programming (NLP) Model
Storage Reservoir
The basic model is formulated in terms of NLP, which offers the
most general formulation and provides a foundation for analysis
by other methodgYeh 1985. With the drastic advancement in
computing power and the development of effective nonlinear

21 solvers in recent years, NLP has become a viable tool in solving
A A O large-scale water resources optimization problefReng and
Buras 2000. The NLP model proposed herein is designed in such
a way that it can be applied to many practical situations. Addi-
tionally, it can be easily incorporated into a decision support sys-
tem that allows the user to update data, execute the model, and
view the results graphically.

Traditionally, a reservoir system is designed for multiple pur-
poses. There are several ways to solve a multiobjective optimiza-

- - m()(—l\:upu muvam Chavantes

» ﬁi tion problem. Yeh and Beckd982 used the constraint method

* to generate the trade-off curves among the five objectives consid-
s I‘Qg % ered for the California Central Valley Project. Can and Houck

(1984 applied preemptive goal programming to the real-time op-

Run-of-river

Paranapanema Sys.
39 33 37 36 3s 34 33

Jurummum

Atlantic Ocean

Atlantic Ocean eration of a multipurpose, multireservoir system. Their approach
) S circumvents the need to assign penalty functions, but it does re-
Fig. 1. Spatial distribution of hydropower plants quire that the system be highly redundant and that the solution be

nonunique so that objectives can be satisfied sequentially. Loga-
nathan and Bhattachary&990 outlined five goal-programming
schemes and formulated the reservoir operation problem involv-
ing multiobjectives as a multiobjective linear program. Ko et al.

1. Linear p.rogrammeITP), including network flow models, (1992 made a comparative evaluation of several multiobjective
2. Quadratic programmingQP), optimization methods in connection with reservoir management
3. Dynamic programmingDP), and operations. They concluded that the constrained méttisal

4. Nonlinear programmingNLP), referred to as the-constrained methgdwas most suitable for

S. M'Xe.d integer programmingMVIP), generating the tradeoffs among the competing objectives. Eschen-
6. Interior point method$IP), and bach et al(2001) developed a multiobjective, preemptive linear
7. Nongradient-based search algorithms. goal-programming model for reservoir operation and applied it to

The choice of methods depends on the characteristics of thethe Tennessee Valley Authority network. Another way is to com-
system being considered, on the availability of data, and on thepine the various objectives by the weighting method or by treat-
objectives and constraints specified. Braga e{#98 devel- ing some of the objectives as constraints.
oped a model for optimizing the Brazilian hydropower system For the Brazilian hydropower system, the proposed NLP
based on the LP-DP method of Becker and Y&B74. Their model considers the following six objectivegd) minimizing the
model optimizes the operation month by month, and the LP-DP loss of the stored potential enerd®) minimizing storage devia-
decomposition may lead to a near-sighted solution if the monthly tions from targets{3) maximizing total energy productior)
ending storage condition is not properly specified. Barros et al. minimizing spilled energy(5) minimizing energy complementa-
(2001) developed an NLP model to optimize the energy produc- tion; and(6) maximizing the profit derived from secondary en-
tion of the Paranapanema subsystem, which consists of three storefgy. Note that certain combinations of the objectives are neither
age reservoirs and five run-of-river plarigg. 1, Nodes 32—39 desirable nor feasible. We now quantify each of the six objectives
Their model considers the entire planning horizon and involves considered in the NLP model.
no decomposition. Preliminary results show that NLP is a viable 1. Objective 1 minimizes the loss of the stored potential energy
approach. In the present paper, the basic NLP model developed by ~ (Becker and Yeh 1974
Barros et al(2003 for the Paranapanema subsystem is extended . Ve
to the entire Brazilian hydropower system of 75 hydropower mmflzz E(GR‘ +aRY (1)

plants. The system size, complexity, and the nonlinearities asso ‘whereR! ,=power release from reservaiduring time period, in
ciated with hydropower generation pose a real challenge to the ms): R” =nonpower release from reservoituring time period
modelers. The new model, SISOPT, considers multiple objectivest (m3s); ‘andc/ andc! are the weighting coefficients for power
and Optlmlzes a combination of Objectlve functions. It consists of release and nonpower re|ea(w|||) respect|ve|y To minimize
three Optlmlzatlon models—the LP, the NLP, and the SLP model. the nonpower re|ease, a |arge Va|u&t§ﬁs ass|gned_

A joint team of researchers from University of California, Los
Angeles(UCLA) and the University of Sao Paul&PUSB, Bra-
zil jointly developed the SISOPT model. The National Science
Foundation(NSF) and its Brazilian counterpart Conselho Nacio-
nal de Desenvolvimento Cientifico e Technologi@NPg sup- ]
ported the collaborative research. During the development of the minf,=2>, > (S
model, the team consulted with ONS, Brazilian Electric Energy
Agency(ANEEL) and Brazilian Water Resources Ager@&NA). or

2. Objective 2 minimizes the sum of the squares of storage
deviations from targets, and can be represented by the fol-
lowing two different ways:

—Tip? (29)
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mian:Z (ZI Sii— Tt

Wh(_areSiv_t=endsing storage in thith reservoir at the end of time ~\R!+R!) (10)
periodt, in Mm? (10° m®); T; (=specified ending storage target at ’ '

the ith reservoir at the end of time peridgd and T,=specified Monthly maximum storage variation:

ending storage target for the summation of the ending storage max_ cmin _

vector of the entire system at the end of time petiod Si-17 S S0 (ST S ) 0<8<1VI Vi (1)

(2b) Flow continuity: S (=S 1+l +\ >, (R +R')
ielN ' '

3. Objective 3 maximizes total energy production Minimum and maximum storages: S"'<S; ,<S"®,Vi,Vt
(12)
maXffEt 2. (&R (3) Minimum and maximum power releases:
7 min ’ rmax i
where§; ;=energy production function in MW/#s per month. RiTT<Ri <R T ViVt (13)
4. Objective 4 minimizes total spilled energy Bounds on nonpower release: <®/ ,<%,Vi,Vt (14)

wherel; (=natural inflow into theth reservoir during time period
minf4=2t EI (&R 4) t; S 1=Dbeginning storage at thieh reservoir;d,=energy de-
mand during time periotl(avgMW); P;=effective turbine capac-
5. Objective 5 minimizes energy complementation by the fol- ity (MW) for ith power plantA=conversion factor from ris to
lowing quadratic function Mm?; andIN =inflow index from upstream reservoir releases.
5 The term “avgMW?" represents the average MW over a certain
minfSZE (5) period of time. This term is commonly used in Brazil, and all
t other symbols have been defined. In the continuity equation, it is
whereD =total energy demand, which includes not only hydro- assumed that evaporation loss from the reservoir is balanced with

. recipitation onto the reservoir.
power but also other alternative sources of energy, such as the® . . . ,
more expensive thermal or nuclear energy. The purpose of this_ Thehdeusz)nl yarlabllgs |n|the NLP .mo(;jel f‘e{ Ri’tl,’ and b
objective is to minimize the use of alternative sources of energy, Ri..: The model is nonlinearly constrained with a nonlinear ob-
which, in turn, will minimize the total operational cost. jective function, because the energy production functippjs a

o o i _ nonlinear function of storage as well as power and nonpower
6. Objective 6 maximizes the profit derived from the secondary releases, which can be expressed as follows:

energy

DT_Ei (&R

Eii=€(HF (—HT; o) (15)
maXfGZZ pt(Z Ei,tRi,,t_DC) (6) HF; (=agi+ayS (+a5S +a5S’ +a4S (16)

where p,=energy price during time period ($/MW); and HT; 1= boi +baifl i+ b2idf + bai 0P+ baidly a7
D¢ =contractual demansystem firm energyduring time period  whereHF, ,=reservoir forebay water levéin); HT; ;=reservoir

t (MW). In Brazil, the concept of firm energy is used to establish tajlrace water level(m); q; =total outflow (m%¥s), including
the energy contracts. Firm energy is defined as the average energpower and nonpower releaseR/(+R!,); and e;=specific pro-
that can be produced on a long-term basis with a 5% risk. The ductibility (MW/m¥s/m). ’ ’

amount of energy produced above the firm energy is called the |n Egs.(16) and(17), the forebay and tailrace water levels are

secondary energy. The price of firm energy is higher than that of expressed by a fourth-order polynomial in terms of storage and
the secondary energy, but secondary energy can be sold in thegtal outflow.

open market. _ o ) The NLP model is most accurate, because it involves no ap-

We now formulate the composite objective function as fol- proximation and uses the physically based nonlinear energy pro-
lows: duction function. Hence, the optimized policy and energy produc-
MinZ =wyf 3+ Wyt y— Wafs+Waf 4+ Wefs—Wefg @ tion is most reliable. All gradient-based nonlinear algorithms

require an initial policy, i.e., an initial estimate of the solution.
As we stated before, certain combinations of the objectives areBecause the optimization problem is also nonconvex, a good ini-
neither desirable nor infeasible, and some of the objectives can betial policy increases the likelihood of reaching the global opti-

treated as hard constraints. The weighting coefficients) re- mum. A LP model is developed to provide an initial policy for the
flect the priority of these objectives, and a judicious selection of SLP and NLP models. Additionally, the LP and SLP models are
their values is crucial to achieving a balance. computationally highly efficient and can be utilized to perform

The constraint set includes the monthly energy demand, tur- sensitivity analysis in connection with capacity expansion studies.
bine capacity, maximum storage variation, flood control reserva-
tion, minimum storage, and minimum and maximum allowable
releases through the turbine. Specifically, the following types of Linear Programming (LP) Model
constraints are considered:
Our first step is to linearize the NLP model by using a fixed value
Energy demand: 2 £ R/ =d,,Vt (8) for the nonlinear energy production function for each hydropowe_r
P plant. Here we choose the average value of the energy production
— function, which is obtained from the long-term operational
Turbine capacity: §&; R/ <P;,Vi,Vt ) records. The second step is to useLanorm to replace the
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L,-norm in the objectives and then transform them into equiva-
lent linear constraints. Consequently, the LP model is formulated

as follows, for Eq.(2a), theL-norm is
minf2=2 2. 1Sie—Tidl
which is equivalent to the following linear programming problem

min f2=2 2 Qi
|

a; =0 t

(18)

(19)

subject to
(20)

wherea; ; is an intermediate variable introduced in the LP for-
mulation. For Eq(2b), theL,-norm is

—ai 1SS~ TirSaj;,

mian:Z ‘ZI ST, (21)
which is equivalent to
min f,= >, B, (22)
B=0 t
subject to
_Bt$2i S~ Tis<B¢ (23)

wheref, is an intermediate variable.
Either Eq.(19) subject to Eq(20) or Eq. (22) subject to Eq.
(23) can be used to represent the-norm of objective 2.

The energy complementation in E¢) becomes
min =2, | 2 & R{~Dr (24)
which is equivalent to
min fs= >, v, (25)
v=0 t
subject to
—¥=2 &R~ Dr=v, (26)

whererw, is an intermediate variable. A key utilization of the LP
model is that its solution provides a good initial policy for the
SLP and the NLP models.

Successive Linear Programming  (SLP) Model

We now develop a SLP algorithm. The basic idea is to solve the

k+1)_ ok k
St =8 +ds¥

R’ E[k-f— 1)_ Riryg[k) +d Ri”g(k) (27)
t

1
k+1) _ k k
R =R{{+aR

We let a vectox® =[S R/ R/W]T be the current solution
(superscript T is the transpose operajorand vector 6
=[dg®,dR'{ ,dR'{]T be the unknown increment that is to be
determined. Eq(27) can be expressed as

x(K+1) = x(K) 1 g(k) (28)

This linearization is accurate and convergent oni§ft is within
a small vicinity ofx®; therefore, it is necessary to impose addi-

tional bounds ore™ as follows:
—-s<=0M<s (29)

Vargas et al(1993 studied the convergence behavior of the SLP
method. Ifsis too small, optimization may encounter infeasibility
or a slow rate convergence. Howevers i too large, the method
may not converge. In any case, the original boungs, andXax,

as represented by Eq&l2)—(14), should not be violated by the
increment. Hence, we have the following new bound®&h

max{Xpmin— X, — s}=< 60 < min{ X pa— x*, s} (30)

After linearizing the entire NLP model, E¢l) through(11), the
SLP model can be formulated as follows:

minZ=[w; V¥ +w, Vi —wyV i3 +w, Vi +wsV il
—wgV o Tek + Z(0 (31)
subject to
Energy demand: EI V(gff‘t)Ri”(tk))Te(k)zdt—Ei EOR/
(32)

Turbine capacity: V(¢MR/()ToW<p, MRV (33)

Flow continuity: dS¥=ds¥_,+x > (dR¥+dR')
' ' icIN ' '

—\(dR' W +dR'¥) (34)
Monthly maximum storage variation:
ds® —dg¥<s.(sf-sm"—sk  +s (35)

where

Z59=w F 0+ W, f Y0 — wgf )+ wy F 30+ ws f O — wef &)
(36)

de  0e ae

original nonlinear problem via a sequence of localized linear pro-
grams so that the final solution is close to that of the NLP model
solution. The purposes of developing an SLP model are twofold. ) ) o
First, SLP saves computation time and storage requirements over "€ SLP stops if the following convergence criterion is met.
an NLP approach. Second, the resulting model can be readily |Zk+ D~z
solved by a standard LP code. The advantages of LP for reservoir —m
management and operations are well documelfiedh 1985.

.
V(.):[E'WM’WVJ the gradient operator (37)

<€

(38)

This type of approach has been studied by Yeh et®79,
Palacios-Gomez et al1982, Martin (1983, Grygier and Ste-
dinger (1985, Reznicek and Simonovi¢1990, 1992, Tao and

Care must be taken in the selectionwin Eq. (29). If sis too
small, infeasibility may result. However, #is too large, the SLP
model may not converge. Fig. 2 shows the SLP flowchart.

Lennox (1997, and Ko et al.(1992. Using a first-order Taylor Fig. 3 shows the relationship among the LP, SLP, and NLP
series expansion, each decision variable is perturbed by a smalimodels. The LP model replaces the nonlinear energy production
increment about its current solution function by a fixed value for each power plant. This value corre-
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LP Model Prescribed Energy Production Function
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Fig. 3. Relationship among the linear programmitigP), successive
linear programming(SLP), and nonlinear programmingNLP)

models
method of linear programming; and a primal-dual interior-point
Yes algorithm PCx(Czyzyk et al. 1998 which uses a logarithmic
v barrier function to accommodate constraints and uses Newton’s
End method to solve the Karush-Kuhn-Tucké(KT) equations. In
many hydropower and hydrothermal optimization problems, it
Fig. 2. Flowchart of successive linear programmi{&_P) has been shown that the interior point method is much faster than

the MINOS LP for large-scale optimizatioiMomoh et al.
1999h. Medina et al.(1998 made a comparative evaluation of
sponds to the historical long-term average. Outputs from the LP several interior point codes. Ponnambalam e{®89 applied
model include the monthly values of storage, power release andthe Karmarkars interior point LP algorithm to optimize the opera-
nonpower release at each power plant. These values are used amons of a multireservoir system. Christoforidis et @l996

the initial policy for the SLP and NLP models. To solve the de- showed that very large midterm or long-term resources schedul-
veloped LP, SLP, and NLP models, we have explored severaling problems could be successfully solved using the interior point
linear and nonlinear solvers. MINO8Vlurtagh and Saunders  method.

1995 is employed to solve the basic NLP model. With regard to Our model uses Excel and Visual Basic in conjunction with
the linear models, we have investigated the following three dif- FORTRAN. All input data for the objectivelEqgs. (1)—(6)], the
ferent solvers:(1) EMNET (McBride, 1983, an algorithm de- constraintd Egs. (8)—(14)], and the energy production functions
signed for solving embedded generalized network flow problems; [Egs.(15)—(17)] are listed in the Excel worksheets. Excel creates
(2) the MINOS LP, which is based on the standard simplex a convenient user-interface for operating the hydropower model.

Table 1. Linear ProgrammingLP) Scenarios and Results, Case 1

Scenarios 1 2 3 4 5

Number of planning years 5 5 5 10 15

System version Paranapanema Parana Entire Entire Entire

Number of nodes 8 39 75 75 75

Storage variatior{%) 100 100 10 10 10

Number of variables 1,620 7,200 13,680 27,360 41,040

Number of constraints 600 2,460 9,180 18,360 27,540
(a) Objective value (1%)

MINOS 0.081086 1.784977 1.401181 2.490497 6.693066

EMNET 0.081086 1.784977 — — —

PCx 0.081086 1.784977 1.401181 2.490497 6.693069

(b) CPU (s)

MINOS 1.53 56.74 246.50 1,238.46 2,912.09

EMNET 1.70 133.41 — — —

PCx 0.28 1.76 8.13 24.83 41.30

Ratio (MINOS/PCx 5.46 32.24 30.32 59.96 70.51

Ratio (EMNET/PCX 6.07 75.80 — — —
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Table 2. Model Dimension and Simulation Scenario for the Entire 1800
System, Case 2 g 1600
Scenario Dimension £ 1400
Simulation period 1991-1995 % 1200
Installed capacity 69,375 MW % 1000
Number of nodes 75 & o y
1ati B 800 = ¥ = perfect Forecast
Storage variation 100% A —&=—Man Inflow
Number of variable 13,680 600 "
Number of constraints 9180 Apr-99 Aug-99 Nov-99 Feb-00 May-00 Sep-00 Dec-00 Mar-01

Month

Fig. 4. Comparison against historical monthly energy production by
maximizing f5, Paranapanema subsystem, Case 3

Three optimization models—LP, SLP, and NLP—are pro-

grammed using the FORTRAN language and compiled as a
dynamic-link library (DLL) for Excel. The optimization solvers  Table 4. Paranapanema Subsystem and Simulation Scenario, Case 3
(MINOS, EMNET, and PCxare linked with Fortran codes. After

- - Scenario Dimension
the optimum results are obtained from the Fortran codes, these
results are stored in the Excel worksheets and visualized with Simulation period April 1999 to March 2001
monthly energy production graphs, monthly storage variation Installed capacity 2,308MW)
graphs, and so forth. Visual Basic manipulates the input and out-Number of nodes 9
put data between Excel and FORTRAN. The present version runsStorage variation 100%
on a PC with a 500 MHz Pentium Il processor and 160 MB Number of variables 648
RAM. In the case study section, we will discuss the computa- Number of constraints 240

tional efficiency of various solvers.

Table 5. Comparison of Total Energy Production by Maximizifig

Case Study and Results Paranapanema Subsystem, Case 3
Objective functionf, Increase
Case 1: Comparison of LP Solvers Model (avgMw) (%)
Mean-inflow forecast 1,264 4.09

The first case study tests the validity and computation efficiency
among the MINOS LP, EMNET, and PCx. Three system configu- P‘?”‘e‘?t forecast 1,297 6.86
rations are considered ranging from a small subsystem to theHistorical 1214 -
entire systen{Fig. 1): (1) Paranapanema subsysténodes 32—

39); (2) Parana subsystefiodes 1-40, not including Node 23 o

and (3) the entire systentiNodes 1-75 The objective functions ~ Case 2: Model Application to Large-scale System

considered are the minimization of total stored potential energy The developed LP, SLP, and NLP models are applied to the Bra-
(f1) and individual storage deviations from targefs)( We use  zjlian hydropower system with 75 hydropower plants, schemati-
historical inflow data for all scenarios. cally represented by the 75 nodes in Fig. 1. From the testing
The system sizes and optimization results of the five scenariosyesylts of the three LP solvers mentioned earlier, we have found
analyzed are shown in Table 1. The optimized objective values that in all cases PCx is much faster than the MINOS LP and
obtained from the MINOS LP, EMNET, and PCx are virtually EMNET. Because the constraint matrix is not dominated by net-
identical. This shows that the LP solvers are valid. The first two \york substructure, EMNET turned out to be ineffective in this

Scenal’iOS ShOW that PCx and the MINOS LP are more effiCient par“cu'ar app“cat'on Hencel we have adopted PCx as the LP

than EMNET for small-scale problems. For large-scale problems, gglver for the rest of the studies.

PCx outperforms the MINOS LP, and PCx is almost 71 times  Taple 2 lists the model dimension and simulation scenario. The

faster than the MINOS LP for Scenario 5. simulation period is from 1991 to 1995. Monthly time period and
historical inflows are used in the simulation. The corresponding
optimization model has 13,680 variables and 9,180 constraints. In
this example, we chose Objective ;) for demonstration. Table

Table 3. Optimized Total Energy Production and Computation Time 3 shows the optimization results and computation time. As can be

from Linear Programming(LP), Successive Linear Programming seen, there is no major difference in terms of the maximized total

(SLP), and Nonlinear Programmin@NLP) Models, Case 2 energy production among the three models.
Objective function One important characteristic of the basic model is that it can

Model Solver f4 (avgMW) CPU time be used to analyze system operations by two different

N approaches—linear and nonlinear. The LP model replaces the en-
LP PCx 49,698 1—’(5). ergy production functions by their corresponding average values.
SLP PCx 49,965 3.73min) The SLP model uses a Taylor series expansion about the initial
NLP® MINOS 49,974 2.19h policy provided by the LP model and achieves convergence to a
ALinear programming. local optimum through successive iterations. The objectivg (
PSuccessive linear programming. was chosen to maximize the total energy production. Reservoir
°Nonlinear programming. storage was constrained by flood control reservation during the
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Fig. 5. Comparison against historical monthly storage variations at the three storage reservoirs, Paranapanema Subsystem, by maximizing tt
total energy productionfg), Case 3
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Table 6. Comparison of Total Energy Production by Minimizifig, 1800
Paranapanema Subsystem, Case 3 g 1000
Objective function,fs Increase £ 1400
Model (avg MW) (%) g
g 1200
Mean-inflow forecast 1,267 4.33 & 1000
Perfect forecast 1,296 6.72 5 - 8- perfect Forecast
Historical 1,214 — W80 —a—pwean inflow
600

Apr-99 Aug-99 Nov-99 Feb-00 May-00 Sep-00 Dec-00 Mar-01
Month

wet season, and no constraint was imposed on the maximum al-_. . . S .
- Fig. 6. Comparison against historical monthly energy production,
lowable monthly storage variation.

The results obtained show that the LP model produced 0.6% Paranapanema subsystem, by minimizing the energy complementa-

less total energy and took only 17 s of CPU time to sdable tion (f), Case 3

3). The total energy produced by the SLP and NLP models is

virtually the samegTable 3. A close examination of the results

(not shown hergindicates that the storage varies more frequently unrestricted, i.e.3=1 (Table 4. First, we maximize the total

in the NLP model than in the LP model. In general, the LP model energy production f(z), subject to flood control and all other
produced smoother storage transitions. However, with a good ini- constraints.

tial policy provided by the LP model, the SLP model converged In real-time operation, reservoir operators rely upon inflow
and produced excellent results for this particular example. The (natural inflow forecasts with frequent updating. It is well under-
success of the SLP model is problem dependent. For a convexstood that inflow forecast plays an important role in real-time
problem, it can be shown that the final solution of the SLP con- operation. To compare the NLP results against the historical op-
verges to the solution of the original nonlinear problem. For prob- erational records, we use the following two types of inflow fore-
lems that are nonconvex, which is the case here, the final solutioncast models as inputs to the optimization mod&):perfect fore-

of the SLP is not guaranteed to be close to that of the original cast; and(2) mean-inflow forecast. The perfect forecast model
nonlinear solution. simply uses the observed historical inflows as the forecasts. This

Overall, when compared with the NLP model, the LP model implies that there is no forecast error. In real-time operation, of
produced good results in terms of the total energy production, course, this is not realistic, but the results obtained from the op-
recognizing that there are differences in reservoir storage varia-timization model based on the perfect forecast model will provide
tions, but these factors are not important for planning purposes.an upper bound for the energy production for this particular pe-
Therefore, we conclude that the LP model can be used as anriod under consideration. The mean-inflow forecast model uses
efficient tool to explore various design parameters in connection the monthly mean as its forecast. Because most of the streamflow
with feasibility studies. With a good initial policy provided by the forecast models should be able to provide inflow forecasts that are
LP model, the SLP model produced excellent results and cutbetter than simply using the mean values, the results obtained
down the CPU time from hours to minutes. Of course, the NLP from the optimization model will provide an estimate of the en-
model is the most accurate one among the three; therefore, weergy production that might be achievable in real-time operation.
proceed to test it against the historical operational records. To simulate real-time operation, the state of the system is updated
on a monthly basis whenever new information becomes available
at the beginning of each month, such as the previous month’s
observed inflow.

The ONS (Operador Nacional do Sistepn# in charge of the Table 5 shows the comparison against the historical opera-
Brazilian hydropower system operation. To provide guidelines for tional records. It can be seen that during the same period of op-
real-time operations, ONS first uses an energy strategy model,eration with the same initial and ending storages, the NLP model
NEWAVE, which is an operation-planning model and generates produced 6.86% more energy using the perfect forecast model
operational strategy for the next 60 months. This model aggre- and 4.04% more energy using the mean-inflow forecast model. As
gates all reservoirs into a single reservoir and is solved by sto-we have mentioned, a small percentage increase in total energy
chastic DP. The solution from the stochastic DP is then disaggre-production usually translates into large benefits. A 4.04% increase
gated by simulation, i.e., the NEWAVE operational strategy is in power production is in reality quite substantial. Fig. 4 shows a
used as the input for a simulation model to define the energy comparison of the monthly energy production against the histori-
production for each reservoir on a monthly basis. The weekly, cal operational records. The optimization model takes advantage
daily, and hourly operations are obtained by simulation with flow of the inflow forecast by minimizing spill and maximizing head
and demand forecasting models. The hourly operations are usedvithin the feasible region of the decision space. Hence, the energy
for real-time operationgBarros 2000. The historical monthly production distribution obtained by the optimization model is ex-
energy production is obtained by adding the hourly energy pro- pected to be different from the historical operational records,
duction for the particular month under consideration. which did not use optimization.

The Paranapanema subsystem is located in the Paranapanema Fig. 5 presents a comparison of the monthly storage variations
River, a tributary of the Parana River. It consists of three storage of the three large storage reservoirs against the historical opera-
power plants and five run-of-river power plants with an installed tional records. The total storage increased approximately 15% in
capacity of 2,308 MW. The monthly historical energy production the Chavantes reservdiNode 33 and approximately 19% in the
from April 1999 to March 2001 is shown in Fig. 4. To optimize Capivara reservoi(Node 37 using either the perfect forecast or
the hydropower production for this period, the model has 648 the mean-inflow forecast model. It can be seen that the NLP
decision variables and 240 constraints. The storage variation ismodel is able to take advantage of the inflow forecast by keeping

Case 3: Comparison with Historical Records
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energy complementatiorf4), Case 3
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the storage, and thus the head, at a higher level to maximizeNotation

energy production and to minimize spill.

We have also compared the performance of the NLP model The following symbols are used in this paper:

against the historical operational records using Objectivés), ( c/

i.e., minimizing energy complementation. Table 6 summarizes the  ¢j

results. Again, the NLP model produced more energy using either D¢ =

the perfect inflow or the mean-inflow forecast model. For a given

total energy demand), we note that both Objectives 3 and 5 D+
seek to maximize the hydropower energy production, but in a
different way. Objective 5 is a quadratic function in terms of d;

energy production; thus, the optimization model will maximize HFit = Irtor
= reservoir tailrace water levém);

the energy production, but, at the same time, minimize the varia- HTi.

tion of energy production distribution over the planning horizon. lie =

Fig. 6 shows such characteristics in the optimized monthly energy

production when compared to the historical operational records. P
The optimized energy production distribution using the perfect Pt
forecast model is especially uniform. Fig. 7 compares the monthly i
storage variations at the three storage reservoirs. Again, the total ,
storage increased more than 11% in the Chavantes reservoir and Rit
about 18% in the Capivara reservoir using either inflow forecast

model. it

Summary and Conclusions

An NLP model has been formulated and applied to the Brazilian
hydropower system, one of the largest in the world with an in- T,
stalled capacity of 69,375 MW. The model was solved by NLP.
Additionally, the NLP model was linearized and solved by LP and
SLP. The LP model uses thg-norm and replaces the nonlinear €
energy production functions by their corresponding average val- N

ues. The SLP model uses a Taylor series expansion about an ¢ =

initial policy provided by the LP model, and convergence to a
local optimum is achieved via a sequence of localized linear pro-

= weighting coefficient for power release;

weighting coefficient for nonpower releaéspill);
contractual demantbystem firm energyduring
time periodt (avgMW);

total energy demand, including hydropower,
thermal energy, and nuclear energy;

= energy demand during time periodavgMW);

reservoir forebay water levém);

natural inflow into thdth reservoir during time
periodt;

turbine capacityMW) for ith power plant;
energy price during time periotl

total outflow (m¥s), including power and non-
power releasesR/ ;+ R/,);

power release from reservaiduring time period
t (m¥ls);

non-power release from reservoiduring time
periodt (m¥/s);

ending storage in thih reservoir at the end of
time periodt;

= beginning storage at th¢h reservoir;

specified ending storage target at ttiereservoir

at the end of time perioti

specified ending storage target for the summation
of the ending storage vector of the entire system
at the end of time periotl

= specific productibility(MW/m?s/m);

conversion factor from ffs to Mnt; and
energy production function in MW/#s/month.

grams. The LP, SLP, and NLP models were designed to perform geferences

different tasks with different objective functions. The multiobjec-

tive optimization problem can be solved by the weighting method pgarros, M. T. L.(2000. Proc., Workshop on Operation of Brazilian Hy-

or solved as a single objective optimization problem by treating
other objectives as constraints.

dropower SystepEPUSP, Sao Paulo, Brazil, FCTH, San Paulo, Bra-
zil (in Portuguese

The impact of nonlinearity was analyzed, and the results show Barros, M. T. L., Yang, S., Lopes, J. E. G., and Yeh, W. W(2Z00J.

that, for planning purposes, the LP model is sufficient. The pro-
posed SLP produced excellent results with fast convergence. It
can also be used for planning purposes. But the NLP model is the
most accurate and particularly suitable for real-time operation.
The performance of the NLP model was compared against the
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the heagl and by minimizing spill. The NLP model is extreme
useful for setting up guidelines for real-time operation.
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