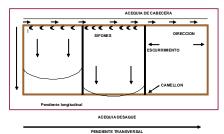

frutales. obra		Uniforme aplicación de agua.
ορtima 0,2%. aplic	de pérdidas por escurrimiento, ralmente se requiere una uniforme > ación de agua. ro de erosión con pendientes fuertes.	Alta eficiencia de aplicación de agua con un diseño adecuado. Sistemas de distribución como tubos, sifones y compuertas de agua que permiten control adecuado de los caudales.
(pastos y cereales). Todos los suelos regables. Pendiente hasta 1,5% óptima.	ación. requiere relativamente grandes ales. > suelos poco profundos no pueden ser	Alta eficiencia de aplicación con buen diseño independientemente del tipo de suelo. Eficiente uso de la mano de obra durante el riego. Buen control sobre el agua de riego.

RIEGO POR TENDIDO


- Es el método de riego más ineficiente. Se puede utilizar en pendientes de hasta 1,5%, como máximo; la óptima es 0,2%. Si se trata de praderas, es posible emplearlo en terrenos con pendientes mayores que 2%, hasta 6%.
- Desventajas:
 - La eficiencia de aplicación del agua es muy baja; el promedio a escala regional en Chile es de un 30%, debido a las exageradas pérdidas por escurrimiento superficial y percolación profunda.
 - La distribución del agua sobre la superficie regada es desuniforme. Algunos sectores quedan con exceso de humedad y otros con déficit.
 - No se recomienda para terrenos con pendiente muy pronunciada, debido al alto riesgo de erosión.
 - Se produce una excesiva subdivisión del terreno, debido al gran número de regueras y desagües que se debe trazar, lo que dificulta el uso de maquinaria agrícola y además la deteriora.
 - Se requiere mucha mano de obra y gran habilidad del obrero agrícola para manejar el riego en la parcela.

RIEGO POR BORDES

- El método de riego por bordes consiste en aplicar el agua por una platabanda ancha, delimitada por camellones o pretiles. Se adapta bien para el riego de cultivos tupidos como son las praderas
- El riego por bordes requiere de una buena nivelación de suelos, tanto en el sentido del riego para que el agua escurra sin problemas, como en sentido transversal.
- De este modo el agua se distribuye uniformemente a todo el ancho de la platabanda.
- La nivelación en sentido transversal a los bordes debe ser cuidadosa de modo que entre un lado y otro de ella quede como máximo una diferencia de nivel de 4 cm.
- Por otra parte entre una platabanda y otra no debe existir un desnivel de más de 10 cm.

RIEGO POR BORDES

- · Caudales a aplicar:
- La cantidad de agua que se aplique debe permitir que sobre la platabanda se forme una lámina de agua de una altura física de entre 5 a 8 cm, lo que se logra con caudales relativamente grandes.
- se logra con caudales relativamente grandes.

 El caudal a aplicar dependerá de la textura del suelo, del ancho de la platabanda, de la pendiente del terreno y de la cubierta vegetal.
- · Para cultivos poco densos:

Qmax = 0.1765 * S -0.175

· Para cultivos densos:

 $Qmax = 0.353 * S^{0.75}$

Qmax = caudal máximo, L/s por metro de ancho de platabanda

S = pendiente del terreno, m/m

- El caudal anterior debe mantenerse hasta que el frente de agua llegue al pie de la platabanda, para luego reducirlo a objeto de evitar pérdidas por escurrimiento.
- Qred = Qmáx / 3

Qred = caudal reducido, L/s/m

	CAUDAL (L/s/m de ancho)							
Pendiente (%)	Arenosa	Areno Francosa	Franco Arenosa	Franco Arcillosa	Arcillosa			
0.2 - 0.3	-	-	-	-	2 - 4			
0.2 - 0.4	10 - 15	7 - 10	5 - 7	3 - 4	-			
0.4 - 0.6	8 - 10	5 - 8	4 - 6	2 - 3	-			
0.6 - 1.0	5 - 8	3 - 6	2 - 4	1 - 2	-			

RIEGO POR BORDES

- Ancho de la platabanda
- El caudal disponible para el riego:

 se requiere la formación de una lámina de agua sobre el pretil, para lo que se necesita un determinado caudal por metro de ancho de platabanda.

 Ejemplo: si se cuenta con un caudal para el riego con 20 L/s, y se necesitan entre 2 a 4 L/s por metro de ancho de platabanda, el ancho máximo de estas será de entre 8 a 15 m.
- Pendiente transversal del terreno:
 - dado que la diferencia de nivel que debe existir entre un lado y otro de las platabandas no debe superar los 4 cm, la pendiente transversal del terreno limita el ancho de éstas.
 - Ejemplo: si la pendiente transversal del terreno es de 0,5% el ancho máximo debe ser de 8 m.
- Ancho de la maquinaria:
 - lo ideal es que el ancho de la platabanda sea múltiplo del ancho de trabajo de la maquinaria que se utilice.
- En el caso que se desee utilizar este método en frutales o viñas, el ancho de la platabanda queda definido por la distancia de plantación. En este caso las plantas se ubican sobre los camellones.

RIEGO POR BORDES

- Longitud de las Platabandas
- La longitud de las platabandas se determina de acuerdo a la curva de avance, empleando la metodología usada para surcos.
- La longitud de las platabandas depende de varios factores, dentro de los más importantes se encuentran los siguientes:
 - Textura del suelo
 - Velocidad de infiltración
 - Profundidad radicular del cultivo
 - Pendiente del terreno en el sentido del riego
 - Caudal disponible
- El largo debe ser el máximo posible, mientras se logre una buena eficiencia de riego y una aplicación uniforme del agua.

	LONGITUD (m)							
Pendiente (%)	Arenosa	Areno Francosa	Franco Arenosa	Franco Arcillosa	Arcillosa			
0.2 - 0.3	-	-	-	-	350 o más			
0.2 - 0.4	60 - 90	75 - 150	90 - 250	180 - 300	-			
0.4 - 0.6	60 - 90	75 - 150	90 - 180	90 - 180	-			
06 10	76	76	00	00				

RIEGO POR BORDES

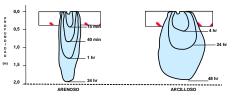
- Diseño de los Bordes
- El cálculo de la altura de los bordes es importante, sobre todo, si la pendiente del terreno es baja y la rugosidad hidráulica es alta.
- La altura de borde se puede calcular conociendo primeramente la altura del nivel del agua a aplicar (do), utilizando la ecuación de Manning

$$do = \left(\frac{Q \max^* n}{S^{1/2}}\right)^{3/5}$$

• Qmáx = caudal durante el avance, m³/s

S = pendiente del terreno, m/m n = coeficiente de rugosidad Valores normales de rugosidad en platabanda

Malores normales de rugosidad en platabandas con empastadas de trébol de baja altura, n = 0.05 y para cultivos densos y altos (trigo) n = 0.15


B=1.2*do

RIEGO POR SURCOS

- En el riego por surcos, a diferencia del riego por tendido por ejemplo, se moja sólo una fracción de la superficie del suelo (normalmente entre un quinto y un medio).
- Sin embargo, se debe mojar todo el suelo explorado por las raíces de las plantas.
 Esto se logra colocando los surcos a una distancia adecuada unos de otros, regulando su largo y aplicando tiempos de riego apropiados. Las prácticas de laboreo pueden incidir en la forma del surco.
- El diseño debe contemplar el espaciamiento entre surcos, la forma de los mismos, su longitud, el caudal a aplicar, y el tiempo de riego.

RIEGO POR SURCOS

Recomendación de la distancia entre surcos para diferentes profundidades radicales y texturas de suelo

	DISTANCIA ENTRE SURCOS (cm)					
Profundidad radicular (cm)	Arenoso	Franco	Arcilloso			
30	15	45	75			
60	30	90	150			
90	45	135	220			
120	60	180	300			

E = Pr * Cs

Donde:

E = espaciamento de los surcos, m Pr = profundidad radicular del cultivo, m

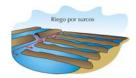
Cs = factor que depende del tipo de suelo:

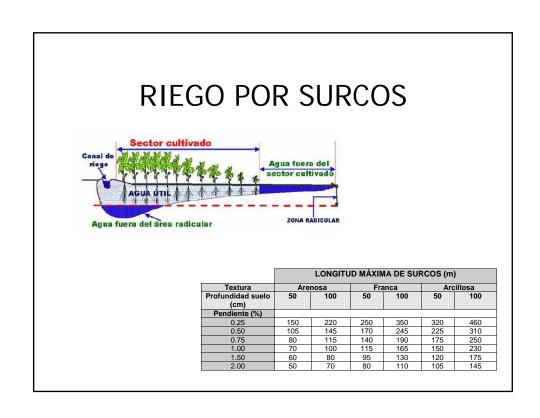
Cs = 2.5 para suelos arcillosos Cs = 1.5 para suelos francos Cs = 0.52 para suelos arenosos

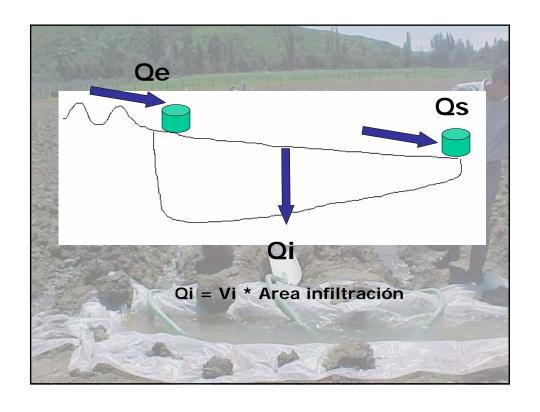
RIEGO POR SURCOS

Caudal máximo no erosivo

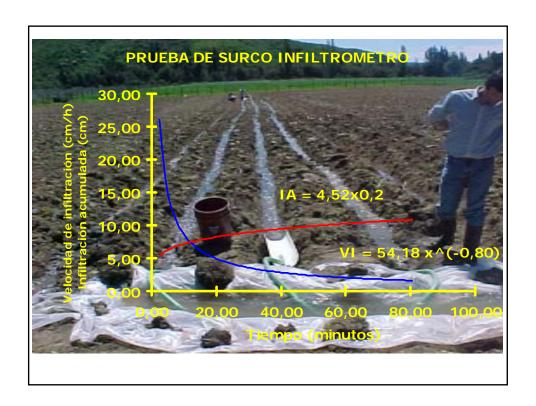
Q = 0.63 / P%


Q = caudal máximo no erosivo, L/s P%= pendiente del terreno, %


Caudal reducido


Q red = 0.5 * Q

Q red = Caudal reducido L/s Q = caudal máximo no erosivo, L/s


	CAUDALES (L/s/m)			
Pendiente (%)	Máximos	Reducidos		
0.2	3.2	1.6		
0.4	1.6	0.8		
0.6	1.1	0.5		
0.8	0.8	0.4		
1.0	0.6	0.3		
1.2	0.5	0.3		
1.4	0.5	0.2		
1.6	0.4	0.2		
1.8	0.4	0.2		
2.0	0.3	0.2		

		Tiempo			Caudal				
Hora	Intervalo	entrada	salida	promedio	entrada	salida	infiltrado	VI	IA
	(min)	(min)	(min)	(min)	(L/s)	(L/s)	(L/s)	(cm/h)	(cm)
11:00	-	0	-	-	-	-	-	-	-
11:05	0	5	0	2,50	1,17	0,47	0,70	16,80	5,43
11:06	1	6	1	3,50	1,25	0,58	0,67	16,08	5,81
11:08	2	8	9	8,50	1,33	0,66	0,67	16,08	6,93
11:10	2	10	11	10,50	1,17	0,76	0,41	9,84	7,23
11:15	5	15	16	15,50	1,17	0,83	0,34	8,16	7,82
11:20	5	20	21	20,50	1,05	0,86	0,19	4,56	8,27
11:30	10	30	31	30,50	1,17	1,00	0,17	4,08	8,95
11:40	10	40	41	40,50	1,17	1,00	0,17	4,08	9,48
12:00	20	60	61	60,50	1,05	1,00	0,05	1,20	10,27
12:20	20	80	81	80,50	1,05	1,00	0,05	1,20	10,87

