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Abstract A simple analytical formula is developed to
calculate transient discharge inflow rates into a tunnel or a
well under constant drawdown. The agreement with the
classical, but cumbersome diffusion-equation-based so-
lution of Jacob and Lohman is excellent throughout the
range of dimensionless times. By using only a straight-
forward logarithmic function, this explicit solution may
therefore be used with great computational benefits in
practice, and also when further mathematical manipula-
tions such as differentiation or integration are required.

Resumen Una f�rmula anal�tica sencilla fue desarrollada
para calcular el grado de descarga transitoria hacia un
tfflnel, o un pozo, bajo condici�n de un abatimiento
constante. Existe una concordancia excelente, desde el
comienzo hasta el final, en el rango de los tiempos adi-
mensionales, con la soluci�n cl�sica pero complicada, de
Jacob y Lohman, basada esta fflltima en la ecuaci�n de
difusi�n. Solamente mediante el uso de una funci�n lo-
gar�tmica simple, esta soluci�n expl�cita puede por tanto
ser usada en la pr�ctica con grandes ventajas computa-
cionales, y tambi�n cuando se necesitan manipulaciones
matem�ticas adicionales, tales como diferenciaci�n o in-
tegraci�n.

R�sum� On a d�velopp� une formule analytique simple
pour le calcul du flux infiltr� en r�gime transitoire dans un
tunnel ou un puits en supposant le rabattement constante.
Les r�sultats sont en accord avec la solution plus com-
pliqu�e de Jacob-Lohman de l’�quation de diffusion, sur
tout l’intervalle de temps adimensionel consid�r�. En
utilisant une fonction logarithmique ce solution explicite
peut Þtre utilis�e sans un grand effort de calcul dans la
pratique courante, ainsi que dans les situations o� il est
n�cessaire � d�river ou int�grer l’expression du rabatte-
ment.
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Classical Solution

Confined horizontal flow towards a fully penetrating
well in a semi-infinite, homogeneous aquifer of constant
thickness is classically described by the radial form of the
diffusion equation. Assuming uniform hydrostatic initial
heads and a sudden, constant drawdown at the well, an
analytical expression for the resulting transient discharge
rates was first published by Jacob and Lohman (1952)
who applied the heat conduction solution of Smith (1937)
to groundwater dynamics.

Consider the radial form of the diffusion equation
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with the initial and boundary conditions

sðr; 0Þ ¼ 0;sðro; tÞ ¼ so;sð1;tÞ ¼ 0 ð2Þ
where the symbols stand for aquifer transmissivity (T),
storage coefficient (S), time (t), radial coordinate (r), well
radius (ro), drawdown (s) and drawdown at the well (so).

The above problem was analysed by Smith who re-
sorted to Green’s functions and integral transforms but
could only find a solution for @s=@r at the origin. Using
this result, Jacob and Lohman deduced the flow rate at the
origin (i.e. into the well) as
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where a is dimensionless time, Jo and Yo are first and
second kind zero-order Bessel functions respectively, and
u is a dummy variable.

The above solution has become the reference formula
used to evaluate the transient discharge rates at artesian
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wells or tunnels (e.g. de Marsily 1981; Mar�chal and
Perrochet 2003). However, the complicated nature of the
function G(a) makes its continuous evaluation or ana-
lytical manipulation difficult. Consequently, an alterna-
tive solution is proposed below which overcomes these
practical and mathematical drawbacks.

Proposed Solution

Based on the classical working assumptions enforced in
two-dimensional, confined groundwater dynamics, the
problem defined in Eqs. (1) and (2) is that of transient
Darcian radial flow through a semi-infinite, homogeneous
aquifer towards a well under constant drawdown.

Using the standard linear diffusion equation in this
context implies that the drawdown specified at the origin
has an instantaneous, infinitely small effect throughout
the aquifer, and that this effect is strictly nil only at r=1.
Following the approach used successfully by Perrochet
and Musy (1992) for one-dimensional unconfined drain-
age, an alternative way of defining the problem is to
consider that the effect of the specified drawdown strictly
vanishes beyond a no-flow moving boundary located at a
time-dependent distance r=R(t).

As schematised in Fig. 1, the domain of interest is then
ro�r<R(t), and the boundary conditions in Eq. (2) need to
be modified and complemented by

sðro; tÞ ¼ so;
@s

@r
ðRðtÞ; tÞ ¼ 0;sðRðtÞ; tÞ ¼ 0 ð5Þ

Integrating Eq. (1) over this domain yields the global
time-dependent quantities

QðtÞ ¼ @

@t

ZRðtÞ

ro

2p r Ssðr; tÞdr ¼ @VðtÞ
@t

ð6Þ

where Q(t) is the discharge at the well and V(t) is the
cumulative volume of extracted water.

Assuming now that the drawdown propagation can be
treated as successive steady-state snapshots of the func-
tion s(r, t) over the distance R(t), one can simply replace
the right-hand side of Eq. (1) by a uniform time-depen-
dent source term and consider the equation to solve as
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The two constants of integration as well as the function
i(t) are easily obtained accounting for the three boundary
conditions in Eq. (5), and the solution of Eq. (7) is

sðr; tÞ ¼ soð1�
2RðtÞ2 lnðr=roÞ � r2 þ r2

o

2RðtÞ2 lnðRðtÞ=roÞ � RðtÞ2 þ r2
o

Þ ð8Þ

Introducing this function in the central member of
Eqs. (3) and (6), the global quantities Q(t) and V(t) can be
expressed as

Q ¼ 2pTso ln x
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where x=R/ro, and with the bracketed time symbol omit-
ted for simplicity.

Considering Eq. (6) and the variation of V with that of
R, one can write

Q ¼ @V
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ð11Þ

which, after substitution of Q and @V=@R from Eqs. (9)
and (10), separation of variables, re-arrangement of terms
and integration, becomes
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At this stage the right-hand side of the above equation
could not be fully integrated but, by polynomial analysis,
the following approximation was found excellent:
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Rewriting Eq. (13) as
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and substituting into Eq. (9) for the discharge rate at the
well yields

Q ffi 2pT so
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ð15Þ

Comparing Eq. (15) with Eq. (3), and using the di-
mensionless time defined in Eq. (4) results in

GðaÞ ffi 1

lnð1þ
ffiffiffiffiffiffi
pa
p

Þ ð16Þ
Fig. 1 Sketch of one-dimensional radial flow towards a well with a
no-flow moving boundary at r=R(t)
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A graphical comparison between the functions (16)
and (4) and the absolute error (difference between the two
functions) is shown in Fig. 2 for dimensionless times in
the range 10–4<a<1020. G(a) was computed in this case in
the Laplace-transform space and reverted into the time
domain by a standard inversion technique. The match
between the two curves is excellent throughout this fairly
large range, and errors are maximum in the range
101<a<102 at about 5
10–3. The errors vanish for very
small and very large times, for which the righthand side of
Eq. (16) takes the same asymptotic trends as the original
function G(a).

Equation (15) may therefore replace Eq. (3) to predict
transient discharge rates at a well or a tunnel under con-
fined conditions and constant drawdown. The conditions
of application of Eq. (15) are of course restricted to those
of Eq. (3), themselves dictated by the assumptions en-
forced in classical well hydraulics in infinite and homo-
geneous aquifers. However, one explicit insight is gained
here as to the time during which Eqs. (15) or (3) may
hold.

This time must be smaller than the time needed for the
drawdown perturbation to reach a known aquifer bound-
ary at a given distance L (i.e. impervious layer, surface
water body, etc.). Equations (15) or (3) are therefore valid

to predict transient discharge rates as long as the no-flow
moving boundary at the distance R(t) from the well or the
tunnel has not reached any system boundary. For rela-
tively large times, R(t)>>ro (x>>1), Eq. (14) indicates that
this distance (radius of influence) scales with

ffiffiffiffiffiffiffiffi
pea
p

, and
that the time of validity tlim, such as R(tlim)=L, can be
evaluated by

tlim ¼
Sr2
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For larger times, Eqs. (15) or (3) must not be used
anymore because the flow conditions depart from those
defined in Eqs. (5) or (2). Discharge rates should then be
predicted by other means such as image-based analytical
solutions or numerical simulators.

Concluding Remarks

The alternative solution presented in this note strongly
suggests the replacement of the well function G(a) of
Jacob and Lohman by lnð1þ

ffiffiffiffiffiffi
pa
p
Þ�1 for any a value.

This has two major benefits.
Firstly, this new solution allows straightforward,

pocket-calculator evaluations with excellent practical
accuracy over the whole range of dimensionless times.
Secondly, this substitution makes further numerical or
analytical operations much easier, such as time differen-
tiation, integration or convolution.

Moreover, the comparison with the classical, diffusion-
equation solution for the confined radial case demonstrates
the validity of the approach and the idea that a number of
other flow problems could be analysed in a similar man-
ner. Accurate, but greatly simplified new solutions could
therefore be obtained for typical confined or unconfined
flow configurations.

References

Jacob CE, Lohman SW (1952) Nonsteady flow to a well of constant
drawdown in an extensive aquifer. Trans AGU 33(4):559–569

Mar�chal JC, Perrochet P (2003) New analytical solution for the
study of hydraulic interaction between Alpine tunnels and
groundwater. Bull Soc G�ol Fr 174(5):441–448

Marsily G de (1981) Quantitative hydrogeology. Academic Press,
New York

Perrochet P, Musy A (1992) A simple formula to calculate the
width of hydrological buffer zones between drained agricultural
plots and nature reserve areas. Irrigation Drainage Systems
6:69–81

Smith L P (1937) Heat flow in an infinite solid bounded internally
by a cylinder. J Appl Phys 8:441–448

Fig. 2 Plot of the functions G(a), lnð1þ
ffiffiffiffiffiffi
pa
p
Þ�1 and absolute

error

3


