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Rules

Questions are allowed

Answers are appreciated

Please... ask and answer...

and you will be rewarded!
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Instance-Optimal

An algorithm A is instance-optimal if its cost is at most a
constant factor from the cost of any other algorithm A′

running on the same input, for every input instance

But... this is to stringent!!!

Many linear algorithms when the input is ordered
Instance-optimal in the order-oblivious
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Definition

A correct algorithm refers to an algorithm that outputs a correct
answer for every possible sequence of elements in a domain D

Definition

For a set S of n elements in D, TA(S) denotes the maximum
running time of A on input σ over all n! possible permutations σ of
S

Definition

OPT (S) denotes the minimum of TA′(S) over all correct
algorithms A′ ∈ A (A is a class of algorithms)
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Definition

If A ∈ A is a correct algorithm such that
TA(S) ≤ O(1)× OPT (S) for every set S, then we say A is
instance-optimal in the order-oblivious setting
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Understand the advantages of the Instance-Optimal analysis

Examples: 2-D maxima and convex-hull (Techniques)

Is it the final analysis? (Drawbacks)

Future?
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Problem Statement

Definition

For two points p and q, p dominates q if each coordinate of p is
greater than that the corresponding coordinate of q

Definition

Given a set S of n points in Rd , a point p is maximal if p ∈ S and
p is not dominated by any other point in S

Definition

The maxima problem is to report all maximal points from left to
right
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Upper bound

Kirkpatrick and Seidel: O(n log h)

O(n(H(Πvert) + 1))

Afshani, Barbay, and Chan: O(n(H(S) + 1))
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Upper bound

Definition

Consider a partition Π of the input set S into disjoint subsets
S1, S2, . . . ,St . Π is respectful if each subset Sk is either a singleton
or can be enclosed by an axis-aligned box Bk whose interior is
completely below the staircase of S

Definition

H(Π) =
∑t

k=1(|Sk |/n) log(n/|Sk |)

Definition

H(S) is the minimum H(Π)
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Execution tree [O(n(H(S) + 1))]

Xj sublist of maximal points discovered during the first j levels
S (j) subset of S that survives recursion level j and nj = |S (j)|
There can be at most dn/2je points of S (j) with x-coordinates
between any two consecutive points in Xj

All points of S that are strictly below the staircase of Xj have
been pruned during levels 0, . . . , j of the recursion
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Lower bound

O(n log n), O(n log h), O(n(H(Πvert) + 1)). All of them are
optimum!!!

Theorem

OPT (S) = Ω(n(H(S) + 1)) for the 2-d maxima problem in the
comparison model

Use a K -d-tree (T ) to construct a partition

Use an adversary to construct a bad permutation
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Adversary argument

What is an adversary?

A second algorithm which intercepts access to data structures
Constructs the input data only as needed
Attempts to make original algorithm work as hard as possible
... he is the Devil!!!

How does he construct the permutation?

Maintain a box Bp in T (p fixed just in leaves)
For each box B in T , n(B) denotes the number of points p
with Bp contained in B
Invariant: n(B) ≤ |S

⋂
B|

If n(B) = |S
⋂

B|, B is full

Diego Seco Instance-Optimal Geometric Algorithms



Outline
Introduction
2D Maxima

2D Convex Hull
Present and Future Work

Problem Statement
Algorithm
Upper bound
Lower bound

Adversary argument

What is an adversary?

A second algorithm which intercepts access to data structures
Constructs the input data only as needed
Attempts to make original algorithm work as hard as possible
... he is the Devil!!!

How does he construct the permutation?

Maintain a box Bp in T (p fixed just in leaves)
For each box B in T , n(B) denotes the number of points p
with Bp contained in B
Invariant: n(B) ≤ |S

⋂
B|

If n(B) = |S
⋂

B|, B is full

Diego Seco Instance-Optimal Geometric Algorithms



Outline
Introduction
2D Maxima

2D Convex Hull
Present and Future Work

Problem Statement
Algorithm
Upper bound
Lower bound

Adversary argument

What is an adversary?

A second algorithm which intercepts access to data structures
Constructs the input data only as needed
Attempts to make original algorithm work as hard as possible
... he is the Devil!!!

How does he construct the permutation?

Maintain a box Bp in T (p fixed just in leaves)
For each box B in T , n(B) denotes the number of points p
with Bp contained in B
Invariant: n(B) ≤ |S

⋂
B|

If n(B) = |S
⋂

B|, B is full

Diego Seco Instance-Optimal Geometric Algorithms



Outline
Introduction
2D Maxima

2D Convex Hull
Present and Future Work

Problem Statement
Algorithm
Upper bound
Lower bound

Adversary argument

Solving the comparisons (x-coordinates between two points p
and q):

1 If Bp (resp. Bq) at even depth

Reset Bp to one of its children (resp. Bq)
Both at odd depths
Median x-coordinate of Bp less than median x-coordinate of
Bq

Reset Bp to the left child (B ′
p) and Bq to the right child (B ′

q)
Comparison solved

2 If a child B ′
p of Bp is full

Reset Bp to the sibling B ′′
p of B ′

p

Go back to step 1 to solve the comparison

3 When Bp (sim. Bq) is a leaf we use the actual x-coordinate
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Adversary argument

At the end of the simulation every Bp is already a leaf (if the
algorithm is correct). . . why?

Because in other case the evil adversary can modify the input
and obtain a partition consistent with the comparison made
and a different set of maximal points
Note that Bp contains at least two points and is not
completely underneath the staircase of S

The sum of the depth of Bp, D, provides a lower bound for
the number of comparisons T that the algorithm makes

Each comparison O(1) ordinary increments (step 1)
The total number of exceptional increments (step 2) is
asymptotically at most the total number of ordinary
increments (O(T )). (Amortization argument)
D = O(T ) (i.e. T = Ω(D))
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Adversary argument

At the end of the simulation each Bp has depth
Θ(log(n/|S

⋂
Bp|))

T = Ω(D) = Ω(
∑

leafB |S
⋂

B| log(n/|S
⋂

Bp|)) =
Ω(nH(Πkd−tree)) = Ω(nH(S))

Diego Seco Instance-Optimal Geometric Algorithms



Outline
Introduction
2D Maxima

2D Convex Hull
Present and Future Work

Problem Statement
Algorithm
Upper bound
Lower bound

Adversary argument

At the end of the simulation each Bp has depth
Θ(log(n/|S

⋂
Bp|))

T = Ω(D) = Ω(
∑

leafB |S
⋂

B| log(n/|S
⋂

Bp|)) =
Ω(nH(Πkd−tree)) = Ω(nH(S))

Diego Seco Instance-Optimal Geometric Algorithms



Outline
Introduction
2D Maxima

2D Convex Hull
Present and Future Work

Problem Statement
Algorithm
Upper bound
Lower bound

Problem Statement

Definition

Given a set S of n points in Rd , the convex hull is the minimal
convex set containing S

It can be computed by running the upper hull algorithm on S
and its reflection
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Upper bound

A partition Π is respectful if each subset Sk in Π is either a
singleton or can be enclosed by a simples 4k whose interior is
completely below the upper hull of S

Theorem

This 2-d upper hull algorithm runs in O(n(H(S) + 1))

Substitute Bk with 4k in the proof
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Execution tree [O(n(H(S) + 1))]

Xj sublist of maximal points discovered during the first j levels
S (j) subset of S that survives recursion level j and nj = |S (j)|
There can be at most dn/2je points of S (j) with x-coordinates
between any two consecutive points in Xj

All points of S that are strictly below the upper hull of Xj

have been pruned during levels 0, . . . , j of the recursion
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Lower bound

Theorem

OPT (S) = Ω(n(H(S) + 1)) for the upper hull problem in the
multilinear decision tree model

The proof is based on partition trees
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Present Work

Instance-Optimal in the random-order setting

TA(S) ≤ O(1)× OPT avg (S) (OPT avg (S) is the min T avg
A′ (S))

Competitive against randomized algorithms
Subsume average − case algorithms

Instance-optimal algorithm for 3-d convex hull

Other instance-optimal algorithms: orthogonal line segment
intersection in 2-d, off-line orthogonal range searching in 2-d,
off-line point location in 2-d, etc.
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Future Work

Other instance-optimal algorithm

Reporting all intersections between a set of disjoint red line
segments and a set of disjoint blue line segments in 2-d
Computing the L2− or L∞− closest pair between a set of red
points and a set of blue points in 2-d
Computing the diameter or the width of a 2-d point set

Instance-optimal order-conscious (order-aware) algorithms?
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