Instance-Optimal Geometric Algorithms

Diego Seco

Universidade da Coruña

Diego Seco Instance-Optimal Geometric Algorithms

(日) (同) (三) (三)

э

- Questions are allowed
- Answers are appreciated
- Please... ask and answer...
- and you will be rewarded!

▲ 同 ▶ → 三 ▶

э

Outline

Introduction 2D Maxima 2D Convex Hull Present and Future Work

3 2D Convex Hull

Image: A image: A

Evolution of the Analysis of Algorithms Instance-Optimal Goal

Evolution of the Analysis of Algorithms

- Worst-case
 - Pessimistic
- Average-case
 - No information about the performance on a specific input
- Adaptive
 - Non-comparable algorithms
- Instance-Optimal

Evolution of the Analysis of Algorithms Instance-Optimal Goal

Evolution of the Analysis of Algorithms

- Worst-case
 - Pessimistic
- Average-case
 - No information about the performance on a specific input
- Adaptive
 - Non-comparable algorithms
- Instance-Optimal

Evolution of the Analysis of Algorithms Instance-Optimal Goal

Evolution of the Analysis of Algorithms

- Worst-case
 - Pessimistic
- Average-case
 - No information about the performance on a specific input
- Adaptive
 - Non-comparable algorithms
- Instance-Optimal

Evolution of the Analysis of Algorithms Instance-Optimal Goal

Evolution of the Analysis of Algorithms

- Worst-case
 - Pessimistic
- Average-case
 - No information about the performance on a specific input
- Adaptive
 - Non-comparable algorithms
- Instance-Optimal

< □ > < □ >

Evolution of the Analysis of Algorithms Instance-Optimal Goal

Instance-Optimal

- An algorithm A is instance-optimal if its cost is at most a constant factor from the cost of any other algorithm A' running on the same input, for every input instance
- But... this is to stringent!!!
 - Many linear algorithms when the input is ordered
 - Instance-optimal in the order-oblivious

▲ □ ► < □ ►</p>

Evolution of the Analysis of Algorithms Instance-Optimal Goal

Instance-Optimal

- An algorithm A is instance-optimal if its cost is at most a constant factor from the cost of any other algorithm A' running on the same input, for every input instance
- But... this is to stringent!!!
 - Many linear algorithms when the input is ordered
 - Instance-optimal in the order-oblivious

Image: A = A

Evolution of the Analysis of Algorithms Instance-Optimal Goal

Instance-Optimal

- An algorithm A is instance-optimal if its cost is at most a constant factor from the cost of any other algorithm A' running on the same input, for every input instance
- But... this is to stringent!!!
 - Many linear algorithms when the input is ordered
 - Instance-optimal in the order-oblivious

Evolution of the Analysis of Algorithms Instance-Optimal Goal

Instance-Optimal

- An algorithm A is instance-optimal if its cost is at most a constant factor from the cost of any other algorithm A' running on the same input, for every input instance
- But... this is to stringent!!!
 - Many linear algorithms when the input is ordered
 - Instance-optimal in the order-oblivious

< □ > < □ >

Evolution of the Analysis of Algorithms Instance-Optimal Goal

Instance-Optimal

Definition

A correct algorithm refers to an algorithm that outputs a correct answer for every possible sequence of elements in a domain ${\cal D}$

Definition

For a set S of n elements in \mathcal{D} , $T_A(S)$ denotes the maximum running time of A on input σ over all n! possible permutations σ of S

Definition

OPT(S) denotes the minimum of $T_{A'}(S)$ over all correct algorithms $A' \in \mathcal{A}$ (\mathcal{A} is a class of algorithms)

< □ > < 同 > < 回 >

Evolution of the Analysis of Algorithms Instance-Optimal Goal

Instance-Optimal

Definition

A correct algorithm refers to an algorithm that outputs a correct answer for every possible sequence of elements in a domain ${\cal D}$

Definition

For a set S of n elements in \mathcal{D} , $T_A(S)$ denotes the maximum running time of A on input σ over all n! possible permutations σ of S

Definition

OPT(S) denotes the minimum of $T_{A'}(S)$ over all correct algorithms $A' \in \mathcal{A}$ (\mathcal{A} is a class of algorithms)

< □ > < 同 > < 回 >

Evolution of the Analysis of Algorithms Instance-Optimal Goal

Instance-Optimal

Definition

A correct algorithm refers to an algorithm that outputs a correct answer for every possible sequence of elements in a domain ${\cal D}$

Definition

For a set S of n elements in \mathcal{D} , $T_A(S)$ denotes the maximum running time of A on input σ over all n! possible permutations σ of S

Definition

OPT(S) denotes the minimum of $T_{A'}(S)$ over all correct algorithms $A' \in \mathcal{A}$ (\mathcal{A} is a class of algorithms)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Evolution of the Analysis of Algorithms Instance-Optimal Goal

Instance-Optimal

Definition

If $A \in \mathcal{A}$ is a correct algorithm such that $T_A(S) \leq O(1) \times OPT(S)$ for every set S, then we say A is instance-optimal in the order-oblivious setting

Evolution of the Analysis of Algorithms Instance-Optimal Goal

- Understand the advantages of the Instance-Optimal analysis
- Examples: 2-D maxima and convex-hull (Techniques)
- Is it the final analysis? (Drawbacks)
- Future?

(日) (同) (三) (三)

Problem Statement Algorithm Upper bound Lower bound

Problem Statement

Definition

For two points p and q, p dominates q if each coordinate of p is greater than that the corresponding coordinate of q

Definition

Given a set S of n points in \mathbb{R}^d , a point p is maximal if $p \in S$ and p is not dominated by any other point in S

Definition

The maxima problem is to report all maximal points from left to right

< ロ > < 同 > < 回 > < 回 >

Problem Statement Algorithm Upper bound Lower bound

Problem Statement

Definition

For two points p and q, p dominates q if each coordinate of p is greater than that the corresponding coordinate of q

Definition

Given a set S of n points in \mathbb{R}^d , a point p is maximal if $p \in S$ and p is not dominated by any other point in S

Definition

The maxima problem is to report all maximal points from left to right

Problem Statement Algorithm Upper bound Lower bound

Problem Statement

Definition

For two points p and q, p dominates q if each coordinate of p is greater than that the corresponding coordinate of q

Definition

Given a set S of n points in \mathbb{R}^d , a point p is maximal if $p \in S$ and p is not dominated by any other point in S

Definition

The maxima problem is to report all maximal points from left to right

< □ > < 同 > < 回 >

Problem Statement Algorithm Upper bound Lower bound

Example

*ロト *部ト *注ト *注ト

æ

Problem Statement Algorithm Upper bound Lower bound

Algorithm

maxima(Q):

- 1. if |Q| = 1 then return Q
- 2. divide Q into the left and right halves Q_{ℓ} and Q_r by the median x-coordinate
- 3. *discover* the point q with the maximum y-coordinate in Q_r (computable in linear time)
- 4. *prune* all points in Q_{ℓ} and Q_r dominated by q
- 5. return the concatenation of $maxima(Q_{\ell})$ and $maxima(Q_{r})$

• □ ▶ • □ ▶ • □ ▶ • □

Problem Statement Algorithm Upper bound Lower bound

X

 \mathbf{x}

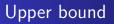
<ロ> <同> <同> < 同> < 同>

э

Example

Х

Problem Statemen Algorithm **Upper bound** Lower bound



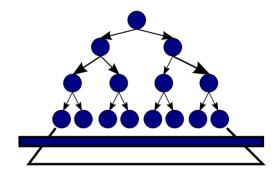
- Kirkpatrick and Seidel: $O(n \log h)$
- $O(n(\mathcal{H}(\Pi_{vert})+1))$
- Afshani, Barbay, and Chan: $O(n(\mathcal{H}(S)+1))$

(日) (同) (三) (三)

э

Problem Statemen Algorithm **Upper bound** Lower bound

Execution tree $[O(n \log h)]$



Problem Statemen Algorithm **Upper bound** Lower bound

Upper bound

Definition

Consider a partition Π of the input set S into disjoint subsets S_1, S_2, \ldots, S_t . Π is respectful if each subset S_k is either a singleton or can be enclosed by an axis-aligned box B_k whose interior is completely below the staircase of S

Definition $H(\Pi) = \sum_{k=1}^{t} (|S_k|/n) \log(n/|S_k|)$

Definition

H(S) is the minimum $H(\Pi)$

<ロト < 同ト < 三ト

Problem Statement Algorithm **Upper bound** Lower bound

Upper bound

Definition

Consider a partition Π of the input set S into disjoint subsets S_1, S_2, \ldots, S_t . Π is respectful if each subset S_k is either a singleton or can be enclosed by an axis-aligned box B_k whose interior is completely below the staircase of S

Definition

$$H(\Pi) = \sum_{k=1}^{t} (|S_k|/n) \log(n/|S_k|)$$

Definition

H(S) is the minimum $H(\Pi)$

< □ > < 同 > < 回 >

Problem Statement Algorithm **Upper bound** Lower bound

Upper bound

Definition

Consider a partition Π of the input set S into disjoint subsets S_1, S_2, \ldots, S_t . Π is respectful if each subset S_k is either a singleton or can be enclosed by an axis-aligned box B_k whose interior is completely below the staircase of S

Definition

$$H(\Pi) = \sum_{k=1}^{t} (|S_k|/n) \log(n/|S_k|)$$

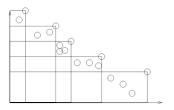
Definition

H(S) is the minimum $H(\Pi)$

Image: A = A

Problem Statemen Algorithm **Upper bound** Lower bound

Example



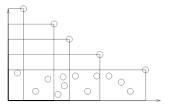


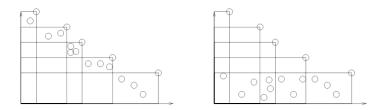
Image: A math the second se

э

 $H(\Pi) = \sum_{k=1}^{t} (|S_k|/n) \log(n/|S_k|)$ is at maximum log h... when? $|S_k| = n/h$

Problem Statemen Algorithm **Upper bound** Lower bound

Example



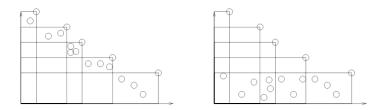
 $H(\Pi) = \sum_{k=1}^{t} (|S_k|/n) \log(n/|S_k|) \text{ is at maximum } \log h \dots \text{ when } ?$ $|S_k| = n/h$

э

∃ >

Problem Statemen Algorithm **Upper bound** Lower bound

Example



 $H(\Pi) = \sum_{k=1}^{t} (|S_k|/n) \log(n/|S_k|)$ is at maximum log h...when? $|S_k| = n/h$

э

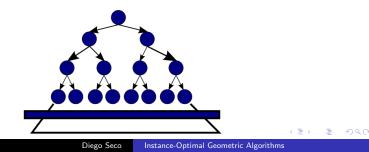
-

▲ 同 ▶ → 三 ▶

Problem Statement Algorithm **Upper bound** Lower bound

Execution tree $[O(n(\mathcal{H}(S) + 1))]$

- X_j sublist of maximal points discovered during the first j levels
- $S^{(j)}$ subset of S that survives recursion level j and $n_j = |S^{(j)}|$
- There can be at most [n/2^j] points of S^(j) with x-coordinates between any two consecutive points in X_j
- All points of S that are strictly below the staircase of X_j have been pruned during levels 0, ..., j of the recursion



Problem Statement Algorithm Upper bound Lower bound

Lower bound

O(n log n), O(n log h), O(n(H(Π_{vert}) + 1)). All of them are optimum!!!

Theorem

 $OPT(S) = \Omega(n(\mathcal{H}(S) + 1))$ for the 2-d maxima problem in the comparison model

- Use a K-d-tree (\mathcal{T}) to construct a partition
- Use an adversary to construct a *bad* permutation

(日)

Problem Statement Algorithm Upper bound Lower bound

Lower bound

O(n log n), O(n log h), O(n(H(Π_{vert}) + 1)). All of them are optimum!!!

Theorem

 $OPT(S) = \Omega(n(\mathcal{H}(S) + 1))$ for the 2-d maxima problem in the comparison model

- Use a *K*-*d*-tree (*T*) to construct a partition
- Use an adversary to construct a *bad* permutation

<ロト < 同ト < 三ト

Problem Statement Algorithm Upper bound Lower bound

Lower bound

O(n log n), O(n log h), O(n(H(Π_{vert}) + 1)). All of them are optimum!!!

Theorem

 $OPT(S) = \Omega(n(\mathcal{H}(S) + 1))$ for the 2-d maxima problem in the comparison model

- Use a K-d-tree (\mathcal{T}) to construct a partition
- Use an adversary to construct a *bad* permutation

< □ > < 同 > < 回 >

Problem Statemen Algorithm Upper bound Lower bound

K-d-tree

*ロト *部ト *注ト *注ト

æ

Problem Statement Algorithm Upper bound Lower bound

Adversary argument

• What is an adversary?

- A second algorithm which intercepts access to data structures
- Constructs the input data only as needed
- Attempts to make original algorithm work as hard as possible
- ... he is the Devil!!!

• How does he construct the permutation?

- Maintain a box B_p in \mathcal{T} (p fixed just in leaves)
- For each box *B* in *T*, *n*(*B*) denotes the number of points *p* with *B_p* contained in *B*
- Invariant: $n(B) \leq |S \cap B|$
- If $n(B) = |S \cap B|$, B is full

< ロト < 同ト < 三ト <

Problem Statement Algorithm Upper bound Lower bound

Adversary argument

• What is an adversary?

- A second algorithm which intercepts access to data structures
- Constructs the input data only as needed
- Attempts to make original algorithm work as hard as possible
- ... he is the Devil!!!

• How does he construct the permutation?

- Maintain a box B_p in \mathcal{T} (p fixed just in leaves)
- For each box B in T, n(B) denotes the number of points p with B_p contained in B
- Invariant: $n(B) \leq |S \cap B|$
- If $n(B) = |S \cap B|$, B is full

< ロト < 同ト < 三ト <

Problem Statement Algorithm Upper bound Lower bound

Adversary argument

- What is an adversary?
 - A second algorithm which intercepts access to data structures
 - Constructs the input data only as needed
 - Attempts to make original algorithm work as hard as possible
 - ... he is the Devil!!!
- How does he construct the permutation?
 - Maintain a box B_p in \mathcal{T} (p fixed just in leaves)
 - For each box *B* in *T*, *n*(*B*) denotes the number of points *p* with *B_p* contained in *B*
 - Invariant: $n(B) \leq |S \cap B|$
 - If $n(B) = |S \cap B|$, B is full

Image: A image: A

Problem Statement Algorithm Upper bound Lower bound

Adversary argument

- Solving the comparisons (x-coordinates between two points p and q):
 - If B_p (resp. B_q) at even depth
 - Reset B_p to one of its children (resp. B_q)
 - Both at odd depths
 - Median x-coordinate of B_p less than median x-coordinate of B_q
 - Reset B_p to the left child (B'_p) and B_q to the right child (B'_q)
 - Comparison solved
 - If a child B'_p of B_p is full
 - Reset B_p to the sibling B_p'' of B_p'
 - Go back to step 1 to solve the comparison
 - 3 When B_p (sim. B_q) is a leaf we use the actual x-coordinate

Problem Statement Algorithm Upper bound Lower bound

Adversary argument

- Solving the comparisons (x-coordinates between two points p and q):
 - If B_p (resp. B_q) at even depth
 - Reset B_p to one of its children (resp. B_q)
 - Both at odd depths
 - Median x-coordinate of B_p less than median x-coordinate of B_q
 - Reset B_p to the left child (B'_p) and B_q to the right child (B'_q)
 - Comparison solved
 - 2 If a child B'_p of B_p is full
 - Reset B_p to the sibling B_p'' of B_p'
 - Go back to step 1 to solve the comparison

③ When B_p (sim. B_q) is a leaf we use the actual x-coordinate

Problem Statement Algorithm Upper bound Lower bound

Adversary argument

- Solving the comparisons (x-coordinates between two points p and q):
 - If B_p (resp. B_q) at even depth
 - Reset B_p to one of its children (resp. B_q)
 - Both at odd depths
 - Median x-coordinate of B_p less than median x-coordinate of B_q
 - Reset B_p to the left child (B'_p) and B_q to the right child (B'_q)
 - Comparison solved
 - 2 If a child B'_p of B_p is full
 - Reset B_p to the sibling B_p'' of B_p'
 - Go back to step 1 to solve the comparison
 - **(3)** When B_p (sim. B_q) is a leaf we use the actual x-coordinate

Problem Statement Algorithm Upper bound Lower bound

Adversary argument

- At the end of the simulation every B_p is already a leaf (if the algorithm is correct)...why?
 - Because in other case the evil adversary can modify the input and obtain a partition consistent with the comparison made and a different set of maximal points
 - Note that B_p contains at least two points and is not completely underneath the staircase of S
- The sum of the depth of B_p , D, provides a lower bound for the number of comparisons T that the algorithm makes
 - Each comparison O(1) ordinary increments (step 1)
 - The total number of exceptional increments (step 2) is asymptotically at most the total number of ordinary increments (O(T)). (Amortization argument)

•
$$D = O(T)$$
 (i.e. $T = \Omega(D)$)

< ロ > < 同 > < 三 > <

Problem Statement Algorithm Upper bound Lower bound

Adversary argument

- At the end of the simulation every B_p is already a leaf (if the algorithm is correct)...why?
 - Because in other case the evil adversary can modify the input and obtain a partition consistent with the comparison made and a different set of maximal points
 - Note that B_p contains at least two points and is not completely underneath the staircase of *S*
- The sum of the depth of *B_p*, *D*, provides a lower bound for the number of comparisons *T* that the algorithm makes
 - Each comparison O(1) ordinary increments (step 1)
 - The total number of exceptional increments (step 2) is asymptotically at most the total number of ordinary increments (O(T)). (Amortization argument)

•
$$D = O(T)$$
 (i.e. $T = \Omega(D)$)

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Problem Statement Algorithm Upper bound Lower bound

Adversary argument

- At the end of the simulation every B_p is already a leaf (if the algorithm is correct)...why?
 - Because in other case the evil adversary can modify the input and obtain a partition consistent with the comparison made and a different set of maximal points
 - Note that B_p contains at least two points and is not completely underneath the staircase of *S*
- The sum of the depth of B_p , D, provides a lower bound for the number of comparisons T that the algorithm makes
 - Each comparison O(1) ordinary increments (step 1)
 - The total number of exceptional increments (step 2) is asymptotically at most the total number of ordinary increments (O(T)). (Amortization argument)

•
$$D = O(T)$$
 (i.e. $T = \Omega(D)$)

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Problem Statemen Algorithm Upper bound Lower bound

Adversary argument

- At the end of the simulation each B_p has depth $\Theta(\log(n/|S \cap B_p|))$
- $T = \Omega(D) = \Omega(\sum_{l \in afB} |S \cap B| \log(n/|S \cap B_p|)) = \Omega(n\mathcal{H}(\Pi_{kd-tree})) = \Omega(n\mathcal{H}(S))$

- 4 同 6 4 日 6 4 日 6

э

Problem Statement Algorithm Upper bound Lower bound

Adversary argument

- At the end of the simulation each B_p has depth $\Theta(\log(n/|S \cap B_p|))$
- $T = \Omega(D) = \Omega(\sum_{l \in afB} |S \cap B| \log(n/|S \cap B_p|)) = \Omega(n\mathcal{H}(\Pi_{kd-tree})) = \Omega(n\mathcal{H}(S))$

- 4 同 6 4 日 6 4 日 6

Problem Statement Algorithm Upper bound Lower bound

Problem Statement

Definition

Given a set S of n points in \mathbb{R}^d , the convex hull is the minimal convex set containing S

• It can be computed by running the *upper hull* algorithm on S and its reflection

Image: A = A

Problem Statement Algorithm Upper bound Lower bound

Example

*ロ * * @ * * 注 * * 注 *

æ

Problem Statement Algorithm Upper bound Lower bound

Algorithm

hull(Q):

- 1. if |Q| = 2 then return Q
- 2. *prune* all points from Q strictly below the line through the leftmost and rightmost point of Q
- 3. divide Q into the left and right halves Q_{ℓ} and Q_r by the median x-coordinate p_m
- 4. discover points q, q' that define the upper-hull edge $\overline{qq'}$ intersecting the vertical line at p_m
- 5. *prune* all points from Q_{ℓ} and Q_r that are strictly underneath the line segment $\overline{qq'}$
- 6. return the concatenation of $hull(Q_{\ell})$ and $hull(Q_r)$

Problem Statement Algorithm Upper bound Lower bound

Example

・ロト ・ 一 ト ・ ヨ ト

э

э

Problem Statemen Algorithm **Upper bound** Lower bound

Upper bound

A partition Π is respectful if each subset S_k in Π is either a singleton or can be enclosed by a simples △_k whose interior is completely below the upper hull of S

Theorem

This 2-d upper hull algorithm runs in $O(n(\mathcal{H}(S)+1))$

• Substitute B_k with $riangle_k$ in the proof

(日)

Problem Statemen Algorithm **Upper bound** Lower bound

Upper bound

A partition Π is respectful if each subset S_k in Π is either a singleton or can be enclosed by a simples △_k whose interior is completely below the upper hull of S

Theorem

This 2-d upper hull algorithm runs in $O(n(\mathcal{H}(S)+1))$

• Substitute B_k with $riangle_k$ in the proof

< ロ > < 同 > < 三 > <

Problem Statemen Algorithm **Upper bound** Lower bound

Upper bound

A partition Π is respectful if each subset S_k in Π is either a singleton or can be enclosed by a simples △_k whose interior is completely below the upper hull of S

Theorem

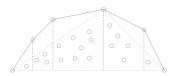
This 2-d upper hull algorithm runs in $O(n(\mathcal{H}(S) + 1))$

• Substitute B_k with $riangle_k$ in the proof

< D > < P > < P > < P >

Problem Statemen Algorithm **Upper bound** Lower bound

Example



<ロ> <同> <同> < 同> < 同>

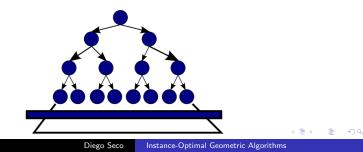
æ

Diego Seco Instance-Optimal Geometric Algorithms

Problem Statement Algorithm **Upper bound** Lower bound

Execution tree $[O(n(\mathcal{H}(S) + 1))]$

- X_j sublist of maximal points discovered during the first j levels
- $S^{(j)}$ subset of S that survives recursion level j and $n_j = |S^{(j)}|$
- There can be at most [n/2^j] points of S^(j) with x-coordinates between any two consecutive points in X_j
- All points of S that are strictly below the upper hull of X_j have been pruned during levels $0, \ldots, j$ of the recursion



Problem Statement Algorithm Upper bound Lower bound

Lower bound

Theorem

$OPT(S) = \Omega(n(\mathcal{H}(S) + 1))$ for the upper hull problem in the multilinear decision tree model

• The proof is based on partition trees

(日) (同) (日) (日) (日)

э

Problem Statement Algorithm Upper bound Lower bound

Lower bound

Theorem

 $OPT(S) = \Omega(n(\mathcal{H}(S) + 1))$ for the upper hull problem in the multilinear decision tree model

• The proof is based on partition trees

< 日 > < 同 > < 三 > < 三 >

э

Present Work Future Work

Present Work

- Instance-Optimal in the random-order setting
 - $T_A(S) \leq O(1) \times OPT^{avg}(S) \ (OPT^{avg}(S) \text{ is the min } T_{A'}^{avg}(S))$
 - Competitive against randomized algorithms
 - Subsume average case algorithms
- Instance-optimal algorithm for 3-d convex hull
- Other instance-optimal algorithms: orthogonal line segment intersection in 2-d, off-line orthogonal range searching in 2-d, off-line point location in 2-d, etc.

A (a) < (b) < (b) </p>

Present Work Future Work

Future Work

- Other instance-optimal algorithm
 - Reporting all intersections between a set of disjoint red line segments and a set of disjoint blue line segments in 2-d
 - Computing the L_2- or $L_{\infty}-$ closest pair between a set of red points and a set of blue points in 2-d
 - Computing the diameter or the width of a 2-d point set
- Instance-optimal order-conscious (order-aware) algorithms?

< □ > < □ >

Present Work Future Work

References

- P. Afshani, J. Barbay, T. Chan *Instance-Optimal Geometric Algorithms*. FOCS'09.
- D. G. Kirkpatrick, R. Seidel *The ultimate planar convex hull algorithm*. SIAM'86.
- D. G. Kirkpatrick, R. Seidel *Output-size sensitive algorithm for finding maximal vectors*. ACM Symp. on Computational Geometry (1985).

Image: A = A