Parameterized Complexity – An Overview

Serge Gaspers¹

¹CMM, University of Chile, Santiago, Chile

CC61X: Diseño y Analisis de Algoritmos Adaptivos

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity Motivation Examples of parameters Main Complexity Classes

FPT Algorithms

Vertex Cover: definition and example General Argument by Graph Minors Algorithms for Vertex Cover

W-Hardness

omparison: classical s. parameterized ardness reduction

Induced Biclique: example and definition

Induced Biclique is W-hard

Introduction to Parameterized Complexity

- Motivation
- Examples of parameters
- Main Complexity Classes

FPT Algorithms

- Vertex Cover: definition and example
- General Argument by Graph Minors
- Algorithms for Vertex Cover

W-Hardness

- Comparison: classical vs. parameterized hardness reduction
- Induced Biclique: example and definition
- Induced Biclique is W[1]-hard

Resources

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity Motivation Examples of parameters Main Complexity Classes

FPT Algorithms

Vertex Cover: definition and example

General Argument by Graph Minors

Algorithms for Vertex Cover

N-Hardness

Comparison: classical s. parameterized ardness reduction

Induced Biclique: example and definition

Induced Biclique is W-hard

Introduction to Parameterized Complexity Motivation

- Examples of parameters
- Main Complexity Classes

FPT Algorithms

- Vertex Cover: definition and example
- General Argument by Graph Minors
- Algorithms for Vertex Cover

3 W-Hardness

- Comparison: classical vs. parameterized hardness reduction
- Induced Biclique: example and definition
- Induced Biclique is W[1]-hard

Resources

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity

Motivation

Examples of parameters Main Complexity Classes

FPT Algorithms

ertex Cover: definition nd example

General Argument by Graph Minors

Algorithms for Vertex Cover

N-Hardness

omparison: classical s. parameterized ardness reduction

Induced Biclique: example and definition

Induced Biclique is W-hard

A computer scientist meets a biologist ...

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity Motivation Examples of

Main Complexity Classes

FPT Algorithms

Vertex Cover: definition and example General Argument by Graph Minors Algorithms for Vertex Cover

V-Hardness

Comparison: classical vs. parameterized hardness reduction

Induced Biclique: example and definition

nduced Biclique is N-hard

Eliminating conflicts from experiments

- n = 1000 experiments
- k = 20 experiments failed

Running Time		
Theoretical	Nb of Instructions	Real
2^n	$1.07 \cdot 10^{301}$	3.16 · 10 ²⁸⁵ years
n^k	10^{60}	$2.95\cdot10^{44}$ years
$2^k \cdot n$	$1.05 \cdot 10^9$	0.97 seconds

Notes:

- We assume that 2³⁰ instructions are carried out per second.
- The Big Bang happened roughly $13.5 \cdot 10^9$ years ago.

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity

Motivation

Examples of parameters Main Complexity Classes

FPT Algorithms

ertex Cover: definition and example

General Argument by Graph Minors

Algorithms for Vertex Cover

W-Hardness

Comparison: classical rs. parameterized hardness reduction

Induced Biclique: example and definition

nduced Biclique is N-hard

Goal of Parameterized Complexity

Confine the combinatorial explosion to a parameter k.

nk

For which problem–parameter combinations can we find algorithms with running times of the form

$$f(k)\cdot n^{O(1)},$$

where the f is a computable function independent of the input size n?

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity

Motivation

Examples of parameters Main Complexity Classes

FPT Algorithms

ertex Cover: definition nd example

General Argument by Graph Minors

Algorithms for Vertex Cover

W-Hardness

Comparison: classical vs. parameterized hardness reduction

Induced Biclique: example and definition

nduced Biclique is V-hard

Introduction to Parameterized Complexity

- Motivation
- Examples of parameters
- Main Complexity Classes

2 FPT Algorithms

- Vertex Cover: definition and example
- General Argument by Graph Minors
- Algorithms for Vertex Cover

3 W-Hardness

- Comparison: classical vs. parameterized hardness reduction
- Induced Biclique: example and definition
- Induced Biclique is W[1]-hard

Resources

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity

Motivation

Examples of parameters

Main Complexity Classes

FPT Algorithms

Vertex Cover: definition and example

General Argument by Graph Minors

Algorithms for Vertex Cover

W-Hardness

omparison: classical s. parameterized ardness reduction

Induced Biclique: example and definition

Induced Biclique is W-hard

Examples of Parameters

A PARAMETERIZED PROBLEM

- Input: an instance of the problem
- Parameter: a parameter
- Question: a Yes–No question about the instance and the parameter
- A parameter can be
 - solution size
 - input size (trivial parameterization)
 - related to the structure of the input (maximum degree, treewidth, branchwidth, genus, ...)
 - etc.

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity

Motivation Examples of parameters

Main Complexity Classes

FPT Algorithms

Vertex Cover: definition and example General Argument by Graph Minors Algorithms for Vertex Cover

W-Hardness

Comparison: classical s. parameterized ardness reduction

Induced Biclique: example and definition

nduced Biclique is V-hard

Resources

1

Introduction to Parameterized Complexity

- Motivation
- Examples of parameters
- Main Complexity Classes

FPT Algorithms

- Vertex Cover: definition and example
- General Argument by Graph Minors
- Algorithms for Vertex Cover

3 W-Hardness

- Comparison: classical vs. parameterized hardness reduction
- Induced Biclique: example and definition
- Induced Biclique is W[1]-hard

Resources

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity Motivation Examples of parameters

Main Complexity Classes

FPT Algorithms

Vertex Cover: definition and example

General Argument by Graph Minors

Algorithms for Vertex Cover

W-Hardness

omparison: classical s. parameterized ardness reduction

Induced Biclique: example and definition

Induced Biclique is W-hard

P: class of problems that can be solved in time $n^{O(1)}$ *FPT*: class of problems that can be solved in time $f(k) \cdot n^{O(1)}$ $W[\cdot]$: parameterized intractability classes

Vertex Cover Dominating Set $x_1 x_2 x_3$ $P \subseteq FPT \subseteq W[1] \subseteq W[2] \cdots \subseteq W[P]$ Mortching Independent Set

Known: If FPT = W[1], then the Exponential Time Hypothesis fails, i.e. 3-SAT can be solved in time $O(2^{\epsilon \cdot n})$ for every $\epsilon > 0$.

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity Motivation Examples of parameters Main Complexity Classes

FPT Algorithms

Vertex Cover: definition and example General Argument by Graph Minors Algorithms for Vertex Cover

N-Hardness

Comparison: classical is. parameterized hardness reduction

Induced Biclique: example and definition

Induced Biclique is W-hard

Introduction to Parameterized Complexity

- Motivation
- Examples of parameters
- Main Complexity Classes

FPT Algorithms

Vertex Cover: definition and example

- General Argument by Graph Minors
- Algorithms for Vertex Cover

3 W-Hardness

- Comparison: classical vs. parameterized hardness reduction
- Induced Biclique: example and definition
- Induced Biclique is W[1]-hard

Resources

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity Motivation Examples of parameters Main Complexity Classes

FPT Algorithms

Vertex Cover: definition and example

General Argument by Graph Minors Algorithms for Vertex Cover

W-Hardness

omparison: classical s. parameterized ardness reduction

Induced Biclique: example and definition

Induced Biclique is W-hard

Vertex Cover

VERTEX COVER (VC)

- Input: A graph G = (V, E) on *n* vertices, an integer *k*.
- Parameter: k
- Question: Is there a set of vertices C ⊆ V of size at most k such that every edge has at least one endpoint in C?

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity Motivation Examples of parameters Main Complexity Classes

PT Algorithms Vertex Cover: definition

General Argument by Graph Minors Algorithms for Vertex Cover

N-Hardness

Comparison: classical vs. parameterized hardness reduction

Induced Biclique: example and definition

nduced Biclique is N-hard

Resources

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction to Parameterized Complexity

- Motivation
- Examples of parameters
- Main Complexity Classes

FPT Algorithms

- Vertex Cover: definition and example
- General Argument by Graph Minors
- Algorithms for Vertex Cover

3 W-Hardness

- Comparison: classical vs. parameterized hardness reduction
- Induced Biclique: example and definition
- Induced Biclique is W[1]-hard

Resources

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity Motivation Examples of parameters Main Complexity Classes

FPT Algorithms

Vertex Cover: definition and example

General Argument by Graph Minors

Algorithms for Vertex Cover

W-Hardness

Comparison: classical s. parameterized ardness reduction

Induced Biclique: example and definition

Induced Biclique is W-hard

General Argument by Graph Minors

Well-quasi-ordering: reflexive and transitive ordering which has no infinite antichain (any set of pairwise incomparable objects is finite) $H \leq G$ $G \leq J \Rightarrow$ $H \leq J // G \leq G$ Minor: A graph *H* is a minor of a graph *G* if *H* can be obtained by contracting edges of a subgraph of *G*.

By Robertson, Seymour:

- finite graphs are well quasi ordered under taking minors
- checking whether H is a minor of G can be done in time $f(|H|)\cdot |G|^{O(1)}$

→ any graph problem whose Yes-instances (or No-instances) are closed under taking minors is FPT.

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity Motivation Examples of parameters Main Complexity Classes

FPT Algorithms

/ertex Cover: definition and example

General Argument by Graph Minors

Algorithms for Vertex Cover

W-Hardness

Comparison: classical /s. parameterized nardness reduction

Induced Biclique: example and definition

nduced Biclique is N-hard

Graph Minor argument applied to VC

Yes-instances of VC are closed under taking minors.

Let *G* be a graph and *C* be a vertex cover of size $\leq k$ of *G*.

- if *H* is obtained from *G* by removing an edge, then *C* is a v.c. of size ≤ *k* of *H*
- if *H* is obtained from *G* by removing a vertex, ...
- if *H* is obtained from *G* by contracting an edge, ...

Thus, $VC \in FPT$.

But: this argument does not give us an FPT algorithm, as the proofs are not constructive.

Parameterized Complexity

. Gaspers

Introduction to Parameterized Complexity Motivation Examples of parameters Main Complexity Classes

FPT Algorithms

Vertex Cover: definition and example

General Argument by Graph Minors

Algorithms for Vertex Cover

W-Hardness

Comparison: classical vs. parameterized hardness reduction

Induced Biclique: example and definition

Induced Biclique is W-hard

Resources

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへの

Introduction to Parameterized Complexity

- Motivation
- Examples of parameters
- Main Complexity Classes

FPT Algorithms

- Vertex Cover: definition and example
- General Argument by Graph Minors
- Algorithms for Vertex Cover

W-Hardness

- Comparison: classical vs. parameterized hardness reduction
- Induced Biclique: example and definition
- Induced Biclique is W[1]-hard

Resources

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity Motivation Examples of parameters Main Complexity Classes

FPT Algorithms

Vertex Cover: definition and example

General Argument by Graph Minors

Algorithms for Vertex Cover

W-Hardness

Comparison: classical s. parameterized ardness reduction

Induced Biclique: example and definition

Induced Biclique is W-hard

Brute Force Algorithms

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity Motivation Examples of parameters Main Complexity Classes

FPT Algorithms

Vertex Cover: definition and example

General Argument by Graph Minors

Algorithms for Vertex Cover

W-Hardness

Comparison: classical /s. parameterized hardness reduction

Induced Biclique: example and definition

nduced Biclique is N-hard

Resources

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

An FPT Algorithm

Algorithm vc1(G, k):

Input : A graph G = (V, E), an integer $k \ge o$ **Output**: Yes if G has a vertex cover of size < k, No otherwise.

1 if $E = \emptyset$ then

else if k = 0 then

// we used too many vertices

return No 4

else

Select an edge $uv \in E$; 6

return vc1 $(G - u, k - 1) \lor$ vc1(G - v, k - 1)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Parameterized Complexity

Algorithms for Vertex

Running time?

Running Time of Algorithm vc1

Algorithm vc2(G, k);

- 1 if $E = \emptyset$ then // all edges are covered 2 return Yes
- 3 else if k = 0 then // we used too many vertices 4 return No
- 5 else if $\Delta(G) \le 2$ then // *G* has maximum degree ≤ 2 6 | Solve the problem in polynomial time;

7 else

8

- Select a vertex v of maximum degree;
- 9 return vc2 $(G v, k 1) \lor$ vc2(G N[v], k d(v))

vorticos

PT Algorithms

Parameterized Complexity

Vertex Cover: definition and example

General Argument by Graph Minors

Algorithms for Vertex Cover

W-Hardness

Comparison: classical vs. parameterized hardness reduction

Induced Biclique: example and definition

Induced Biclique is W-hard

Resources

Running time?

Exercise

Show that VC can be solved in polynomial time for graphs of maxmium degree at most 2.

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity Motivation Examples of parameters Main Complexity Classes

FPT Algorithms

Vertex Cover: definition and example

General Argument by Graph Minors

Algorithms for Vertex Cover

W-Hardness

Comparison: classical vs. parameterized hardness reduction

Induced Biclique: example and definition

nduced Biclique is N-hard

Running Time of Algorithm vc2

v has degree
$$\geq 3$$

 k^{2} k^{2}

・ロト・日本・ヨト・ヨト・日 うらく

orithms for Vertex

Introduction to Parameterized Complexity

- Motivation
- Examples of parameters
- Main Complexity Classes

FPT Algorithms

- Vertex Cover: definition and example
- General Argument by Graph Minors
- Algorithms for Vertex Cover

3 W-Hardness

- Comparison: classical vs. parameterized hardness reduction
- Induced Biclique: example and definition
- Induced Biclique is W[1]-hard

Resources

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity Motivation Examples of parameters Main Complexity Classes

FPT Algorithms

lertex Cover: definition and example

General Argument by Graph Minors

Algorithms for Vertex Cover

N-Hardness

Comparison: classical vs. parameterized hardness reduction

Induced Biclique: example and definition

Induced Biclique is W-hard

Parameterized Reduction

Definition 1 (parameterized reduction)

A parameterized reduction is a transformation, taking as input an instance (I, k) of a problem Π_1 , and producing an instance (I', k') of a problem Π_2 in time $f(k) \cdot |I|^{O(1)}$ such that

- (I, \mathbf{k}) is a Yes-instance for $\Pi_1 \iff (I', \mathbf{k}')$ is a Yes-instance for Π_2
- $k' \leq g(k)$ for a function g

$$T_{\lambda} \longrightarrow T_{2}$$

$$(I,k) \longmapsto (I',k')$$

$$transformation done in time f(k) \cdot II)^{o(k)}$$

$$YES \iff YES$$

$$k' \leq g(k)$$

Parameterized Complexity

S. Gaspers

ntroduction to Parameterized Complexity Motivation Examples of parameters Main Complexity Classes

FPT Algorithms Vertex Cover: definition

General Argument by Graph Minors Algorithms for Vertex Cover

W-Hardness

Comparison: classical vs. parameterized hardness reduction

Induced Biclique: example and definition

Induced Biclique is W-hard

Resources

Introduction to Parameterized Complexity

- Motivation
- Examples of parameters
- Main Complexity Classes

FPT Algorithms

- Vertex Cover: definition and example
- General Argument by Graph Minors
- Algorithms for Vertex Cover

3 W-Hardness

- Comparison: classical vs. parameterized hardness reduction
- Induced Biclique: example and definition
- Induced Biclique is W[1]-hard

Resources

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity Motivation Examples of parameters Main Complexity Classes

FPT Algorithms

lertex Cover: definition and example

General Argument by Graph Minors

Algorithms for Vertex Cover

W-Hardness

Comparison: classical s. parameterized ardness reduction

Induced Biclique: example and definition

nduced Biclique is N-hard

Definition by example

Parameterized Complexity

6. Gaspers

Introduction to Parameterized Complexity Motivation Examples of parameters Main Complexity Classes

FPT Algorithms

Vertex Cover: definition and example General Argument by Graph Minors Algorithms for Vertex Cover

W-Hardness

Comparison: classical vs. parameterized hardness reduction

Induced Biclique: example and definition

Induced Biclique is W-hard

Definitions

INDUCED BICLIQUE (IB)

- Input: G = (V, E), k.
- Parameter: k
- Question: Does *G* have an induced (*k*, *k*)-Biclique?

INDEPENDENT SET (IS)

- Input: G = (V, E), k.
- Parameter: k
- Question: Does G have k pairwise non-adjacent vertices?

IS is a typical W[1]-complete problem.

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity Motivation Examples of parameters Main Complexity Classes

FPT Algorithms

Vertex Cover: definition and example General Argument by Graph Minors Algorithms for Vertex Cover

W-Hardness

Comparison: classical s. parameterized ardness reduction

Induced Biclique: example and definition

Induced Biclique is W-hard

Resources

Introduction to Parameterized Complexity

- Motivation
- Examples of parameters
- Main Complexity Classes

FPT Algorithms

- Vertex Cover: definition and example
- General Argument by Graph Minors
- Algorithms for Vertex Cover

3 W-Hardness

- Comparison: classical vs. parameterized hardness reduction
- Induced Biclique: example and definition
- Induced Biclique is W[1]-hard

Resources

Parameterized Complexity

S. Gaspers

Introduction to Parameterized Complexity Motivation Examples of parameters Main Complexity Classes

FPT Algorithms

lertex Cover: definition and example

General Argument by Graph Minors

Algorithms for Vertex Cover

W-Hardness

omparison: classical s. parameterized ardness reduction

Induced Biclique: example and definition

Induced Biclique is W-hard

Resources

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�(♡

Independent Set reduces to Induced Biclique

(G, k) instance for ind. set. Parameterized Complexity (G', k') instance for induced Bidique K-ind. set in G => ind (K,k) - Biclique in 6' ind. (k,k)-Biclique in 6'=> k-ind, set in G

Ind. Set reduces to Induced Biclique by a parameterized Reduction.

Resources

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Induced Biclique is

Exercise K-Leaf Tree In: G= (V,E), integer k Panam: k G have a subtree with 3 k leaves Qu: Does connected acyclic subpraph k= 3 Jept. sol. T st. UEV. either u is a leaf in T or T contains all edges incident to a k. poly (n) time alporithm for Design a 4 Task: k-leaf

$$\begin{array}{c} I = uternal \\ |L| + |B| \ge k : 7ES \\ |B| = 0 : No \\ |B| = 0$$

Resources

Books

- R.G. Downey, M. R. Fellows: Parameterized Complexity. Springer-Verlag, 1999.
- J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.
- R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
- M. R. Fellows and F. A. Rosamond. Parameterized Complexity Extremal Theory. Cambridge University Press. In progress.
- H. Fernau. Parameterized Algorithmics: A Graph-Theoretic Approach. Habilitationsschrift, Wilhelm-Schickard Institut für Informatik, Universität Tübingen, 2005. Book in progress.
- WIKI: http://fpt.wikidot.com

Parameterized Complexity

6. Gaspers

Introduction to Parameterized Complexity Motivation Examples of parameters Main Complexity Classes

FPT Algorithms

Vertex Cover: definition and example General Argument by Graph Minors Algorithms for Vertex Cover

W-Hardness

Comparison: classical vs. parameterized hardness reduction

Induced Biclique: example and definition

Induced Biclique is W-hard