Auxiliar - Redes Bayesianas 2

Cátedra: Inteligencia Artificial Profesor: Pablo Barceló, Gonzalo Rios Auxiliar: Miguel Romero

5 de Julio del 2010

1. Decimos que una variable aleatoria X, que toma valores naturales, sigue una distribución de Poisson, de parametro $\lambda>0$ si

$$Pr(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

- (a) El conjunto de datos $D = \{k_i\}_{i=1}^N$ es un muestreo independiente de la variable X. Calcule el estimador de maxima verosimilitud para el parametro λ a partir de los datos.
- (b) Asuma que tenemos una distribucion a priori sobre λ uniforme en el intervalo [10, 20] y un conjunto de datos $D = \{19\}$. Encuentre una expresión para la distribucion a posteriori, el estimador maximo posterior y el estimador de bayes para λ .
- 2. Una clínica ha modelado la dependencia entre 3 enfermedades E_1 , E_2 y E_3 , y sus posibles síntomas S_1 y S_2 por medio de la red Bayesiana ilustrada a continuación Utilizando registros históricos, ha determinado las siguientes probabilidades:

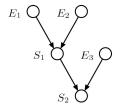


Figure 1: Red bayesiana pregunta 2

$$P(e_1) = 0.001$$
 $P(e_2) = 0.0001$ $P(e_3) = 0.0003$ $P(s_1) = 0.0007$ $P(s_1 | \neg e_1, \neg e_2) = 0.0001$ $P(s_2 | \neg s_1, \neg e_3) = 0.0001$ $P(s_1 | \neg e_1, e_2) = 0.2$ $P(s_2 | \neg s_1, e_3) = 0.5$ $P(s_1 | e_1, \neg e_2) = 0.6$ $P(s_2 | s_1, \neg e_3) = 0.3$ $P(s_1 | e_1, e_2) = 0.7$ $P(s_2 | s_1, e_3) = 0.6$

- (a) Demuestre que $Pr(E_1, E_2 \mid S_1, S_2, E_3) = Pr(E_1, E_2 \mid S_1)$.
- (b) Un nuevo paciente llega y se observa que presenta ambos síntomas. Se descartó la posibilidad de existir la enfermedad E_3 . Si se quiere determinar si el paciente presenta la enfermedad E_1 , E_2 o ambas, indique la respuesta bayesiana y compárela contra la respuesta de máxima verosimilitud.
- (c) Suponga que a partir de cierto conjunto de datos, de tamaño 1000000, se obtiene que el puntaje de verosimilitud de la red anterior (G_1) es -13.5 y que para la red G_2 , la cual es G_1 mas el arco (E_1, E_3) y (E_2, E_3) es -6.5. Indique que red conviene mas segun el puntaje de descripcion minima.
- 3. Considere la red Bayesiana ilustrada a continuación, donde N="Está nublado", C="Está chispeando", L="Llueve", M="El pasto está mojado". Ud dispone de

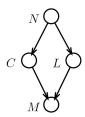


Figure 2: Red bayesiana pregunta 3

la siguiente tabla de probabilidades:

P(n) = 0.5				
$P(c \mid n) = 0.1$	$P(c \mid \neg n) = 0.5$			
$P(l \mid n) = 0.8$	$P(c \mid \neg n) = 0.2$			
$P(m \mid c, l) = 0.99$	$P(m \mid c, \neg l) = 0.9$			
$P(m \mid \neg c, l) = 0.9$	$P(m \mid \neg c, \neg l) = 0$			

N	С	L	M	Frecuencias
$\neg n$	c	1	m	3
n	c	¬l	¬m	2
n	$\neg c$	1	m	4
$\neg n$	$\neg c$	¬l	m	5

- (a) Si el pasto esta mojado ¿ Cuál es la probabilidad de que esté nublado? Si luego observa que está chispeando ¿ Cómo cambia la probabilidad de que esté nublado?.
- (b) Utilizando el puntaje de verosimilitud y el AIC, indique si conviene eliminar el arco (L,M) (Para estimar las TPC, use maxima verosimilitud). Recuerde que PuntajeAIC(G) = PuntajeVerosimilitud(G) dim(G).