Using Types and Inheritance in Object-Oriented Languages
Daniel C. Halbert Patrick D. O’Brien

Digital Equipment Corporation, Object-Based Systems Group
HLO 2-3/MO08, 77 Reed Road
Hudson, Massachusetts 01749, USA

Abstract

If the object-oriented style of programming hopes to live up to its potential as an improved methodology for
software programming, a clear understanding of how to use types and inheritance is essential. Our experi-
ences with using object-oriented languages and teaching object-oriented techniques to other programmers
have shown that effective use of types and inheritance may be problematic. There are no concrete guide-
lines to assist programmers, and the existing aphorisms often create interpretation problems for novice
object-oriented programmers. In this paper we look at how types, subtyping, and inheritance are used
in object-oriented languages. We discuss the different ways that types and type hierarchies can be used
to structure programs. We illustrate appropriate use of these concepts through examples and develop
guidelines to assist programmers in using the object-oriented methodology effectively.

1 Introduction

The object-oriented style of programming offers an improved methodology for software development. Types?,
type hierarchies, and inheritance are fundamental concepts of object-oriented programming, and mastery
of these concepts is essential if the benefits of the object-oriented style of programming are to be realized.
We will describe the different ways types and inheritance can be used to structure programs and present
some guidelines for proper use.

The Object-Based Systems Group at Digital has developed an object-oriented language called Trel-
lis/OwlI? [Schaffert et al]. Over the past three years we have been using the Trellis/Owl language to build
several large applications, including the Trellis programming environment, a window management system,
and a project manager’s workstation. We have also introduced object-oriented programming to several
groups within our company. Our experience has shown that the object-oriented methodology increases
programmer productivity by enhancing the maintainability, extensibility, and reusability of software.

To achieve this increase in productivity, types and inheritance must be used effectively. Types are
the major organizing principle in object-oriented programming, and inheritance enables one to specify
important relationships between types. But using these concepts appropriately is a difficult skill to master.
Furthermore, the lack of existing guidelines to assist programmers exacerbates the problem. We believe that
guidelines and heuristics need to be developed to aid both novice and experienced programmers®. In this
paper we will discuss some problems object-oriented programmers encounter and develop some guidelines
they can use in programming.

Different languages provide types and inheritance in different ways. Consequently, when these concepts
are discussed, the reasons for how and why they are used are often couched in terms of a particular
implementation. We will concentrate on types and inheritance in general, and not just how they can be
used in one particular language.

In the next section we review types and inheritance as they relate to object-oriented programming.
Section 3 discusses the use of types in more detail and points out some common difficulties that novices
encounter. It also presents some guidelines for structuring code using types. Section 4 discusses the uses
of inheritance and the different ways that inheritance can be used with types to structure code. It also
describes some uses that should be avoided and presents more desirable alternatives. Section 5 presents a

'In this paper, we use the words type and class synonymously. The same holds for fields and instance variables, operations
and methods, operation names and selectors, and procedure calls and messages.

?Trellis is a trademark of Digital Equipment Corporation.

¥Novice and experienced refer to the user’s familiarity with the object-oriented style of programming. Most of our novice
users were experienced programmers.
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detailed example that illustrates some of the guidelines and principles developed in this paper. We conclude
with a summary and recommendations in section 6.

2 Foundations

In object-oriented programming, computation proceeds by objects sending messages amongst themselves.
Objects encapsulate both state and behavior. Types capture the common characteristics of objects and can
be related hierarchically through inheritance. Inheritance enables types to share various characteristics.
Abstract types, which are used to group characteristics and do not have any instances, are useful when
utilizing inheritance.

2.1 Types

Object-oriented programming combines descriptions of data and procedures within a single entity called an
object. The data in an object consists of fields which may reference other objects. The operations associated
with an object collectively characterize its behavior. Every object has a type and the object is referred to as
an snstance of that type. The type mechanism provides a means of classifying similar objects and capturing
the common characteristics of those objects. An object’s type determines the set of operations that can be
applied to it.

Object-oriented programming differs from conventional control-based programming. It encourages the
programmer to concentrate on the data to be manipulated rather than the code that does the manipulation.
This emphasis helps to maintain a balance between data and control flow. Since types are commonly used
to model entities in the application domain, they provide a natural basis for modularization in a program.
In control-based programming, one is forced to modularize programs based on procedural criteria. This
often leads to program structures that are radically different from the structures in the application domain. '
Since types model application entities, the structures in object-oriented programs can more closely resemble
the structures in the application domain.

Types are the major organizing principle in object-oriented programming. A program with a well-
designed type structure will minimize and localize the interdependencies among types, thus enhancing
maintainability and extensibility.

2.2 Subtyping and inheritance

An object-oriented language often provides a subtyping mechanism in its type system. One type may be a
subtype of another, with the implication that if B is a subtype of A, an object of type B may be used wherever
an object of type A may be used. In other words, objects of type B are also of type A. Some languages permit
a subtype to have multiple parent types (supertypes). The relationships between the types define a type
hierarchy, which can be drawn as a graph:

A

N
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In this example, both B and C are subtypes of A.

Intimately connected with subtyping is the concept of inhkeritance. A subtype may share or inherit
various characteristics of its supertype(s). The subtype in turn may pass on its own or its inherited charac-
teristics to its subtypes. The characteristics that can be inherited usually include the storage representation
of the supertype and the operations provided by the supertype.

Frequently, the inherited characteristics may be changed, or overridden. A subtype may respecify the
storage representation or give new definitions for operations inherited from a supertype. Different languages
allow varying degrees of control over what can be inherited and what can be overridden. For instance, in
Smalltalk-80% [Goldberg & Robson], operations defined in a supertype are always inherited and may be
reimplemented in a subtype. The storage representation of an instance, as defined in the supertype, is

*Smalltalk-80 is a trademark of Xerox Corporation.
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also inherited, and may be augmented by defining additional storage fields. By comparison, in Trellis/Owl,
operations and fields may be declared to be public or private. Private declarations are visible within but
not outside the type, and, therefore, a subtype cannot use a supertype’s private operations and felds.

The definition of an operation consists of two pieces: the interface and the implementation. The interface
describes the external characteristics of the operation, such as the operation name, the type of the return
value, and what arguments the operation takes. The implementation contains the actual code for the
operation.

Altbough most languages allow an existing implementation of an operation to be overridden by a
subtype, they often restrict how an interface can be respecified. For example, in Trellis/Owl, which is a
type-safe language, an interface can be overridden only in specific ways. These restrictions guarantee that
the type checking implied by the interface declarations can always be done at compile-time.

2.3 Abstract types

An abstract type is a type for which no instances are created. Abstract types characterize common behavior
and pass on those characteristics to their subtypes. Often, an abstract type just describes the interface to
the operations of the type, or is a partial implementation of those operations. The complete implementation
is left to one or more subtypes. Other times, an abstract type describes a complete implementation of some
data type, but the type is useful only when it is combined with other types in a new subtype. Even if
a language does not distinguish in its syntax between abstract and non-abstract types, programmers will
often use abstract types and indicate so through coding conventions.

In Smalltalk parlance, one often says that a class obeys a certain protocol. This means that the class
has defined methods for a particular set of selectors, and that these methods obey a certain sermantics.
For example, instances of Integer and Point both obey comparison protocol; that is, both classes provide
methods for <, >, etc. A class can obey more than one protocol; for instance, Integer will also obey
arithmetic protocol by providing methods for +, -, and so forth.

Although the term “protocol” is used informally, the idea can be crystallized and made formal through
the use of abstract types. An abstract type that contains operation interfaces, but no implementations,
defines a protocol. If some implementations are included, the abstract type defines a protocol with default
implementations. Several protocols can be combined by inheriting definitions from multiple supertypes.

Some languages can guarantee that a type implements a certain protocol. For instance, Trellis/Owl
checks at compile-time for operations that are unimplemented in a non-abstract subtype. Therefore, one
can be certain that a subtype has completely implemented an abstract supertype. In Smalltalk-80 this
check is done only by a run-time convention: operations in an abstract supertype that do not supply a
useful default implementation instead provide an implementation that generates a run-time error. The
error indicates that the operation should have been implemented in a subtype.

We have now introduced the concepts of types, which capture common characteristics of objects; inher-
itance, which enables types to share various characteristics; and abstract types, which group behavior but
have no instances. In the next section we begin looking at how types can be used to structure code.

3 Using types

To the novice user, designing a program using types can be a formidable task. A lack of clear guidelines has
compounded the problem, and the fuzzy principles which have been proposed often lead to confusion and
misinterpretation. A clearer understanding of how to use types will result in better structured programs
and also shorten the time it takes to become adept at using the object-oriented style of programming. We
will first discuss a few misconceptions often held by beginning object-oriented programmers, and then will
develop some general guidelines for using types effectively.

3.1 Process versus data

As we mentioned earlier, object-oriented programming encourages the programmer to concentrate on data
rather than procedures. This emphasis sometimes presents problems for novice object-oriented program-
mers. Novice programmers generally understand data abstraction: that is, they understand grouping data
and the operations on that data into a type. But they then believe that modelling a process as an object
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goes against the grain of the object-oriented paradigm. By a process we are referring to a procedural
mechanism as opposed to a concrete entity. For example, payroll is probably thought of as a process,
but employees are considered concrete entities. Should payroll be modelled as an operation on employee
entities, or should it be modelled as an independent process defined as a separate type? Both approaches
seem plausible: choosing one or the other will depend on the details of payroll and employees.

As another example, consider a lexical scanner which is a front-end process for a parser. The scanner
accepts strings, and, according to a set of rules, constructs tokens which it passes to the parser. We could
define the scanner process as an operation on the type String, since it operates on strings and generates
tokens from the strings. But to consider the scanner as an operation on the type String does not capture
the desired abstraction, nor does it improve the structure of the program. A better design would be to
create a distinct type for the scanner: this packages the abstraction properly by focusing on the scanner
itself and not the strings it takes as input.

Processes can and should be modelled as separate types. This is not contrary to the object-oriented
style of programming. Later in this section we will discuss reasons to separate behavior into distinct types
and reasons to keep behavior within an existing type.

3.2 Correspondence to the application domain

Novices encounter another difficulty, related to the common aphorism that objects should be used to model
entities in the application domain. This is a useful guideline, but novice users sometimes interpret this
guideline to mean that the only types that should exist are ones that model the external view of the
application.

A program can be viewed as a model of the real world. In moving from real world to computer system,
entities are introduced that do not necessarily correspond to visible real world entities. There is nothing
wrong with this: it simply reflects deeper levels of implementation. The higher levels of the program still
model the application closely.

For example, in a window management system there is often an intangible object called the “window
manager.” The window manager directs I/O traffic between the physical display device and the windows
the user sees on the screen. But the concept of a window manager is artificial, and was introduced only
to help us code the application. It does not intuitively correspond to a real world entity; it is merely an
artifact of how we model a portion of our application.

3.3 What’s in a type?

Code written in an object-oriented language is normally associated with a particular type. When a pro-
grammer adds new code, there are two alternatives: the new code can be added to an existing type or a new
type can be defined. Usually the choice is obvious, but sometimes it is not. Making this decision correctly,
however, is very important: it affects the structure of the program and has important consequences for
further evolution of the program.

To decide where to add new code, one must consider whether the behavior being added is better modelled
as one or more operations on an existing type, or as an independent concept which can stand on its own.
If a new type is created, would the new type be a meaningful abstraction that groups behavior in a useful
way? For example, an operation to clear a window on the screen would naturally be provided in the type
Window itself. But suppose we want to draw a clock in a window. Since clocks are not germane to windows,
and since a clock can be thought of as an independent and useful concept, we would probably create a new
type, Clock, to capture this specialized behavior.

Now, consider the process of enrolling a student in a course. Should this be an operation on the student
or the course? The choice depends on our perspective. Another alternative is to create an Enrollment
type to model the relationship between students and the courses they are taking. This would be important
if we later wanted the enrollment relationship to capture other information, such as the grade a particular
student received. Enrollment is related to other types (Student and Course), but it can be modelled as an
independent concept and thus can stand on its own as a separate type. ]

There is no firm rule that can be applied in all cases to decide where to add behavior. But we can
suggest criteria that should be considered when associating new behavior with types. The programmer
should look at certain aspects of the behavior: its reusability, complexity, applicability, and its knowledge
of representation details. Each of these criteria will be examined in detail.
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If the behavior can be shared by several types, we suggest creating a separate type. This is analogous
to factoring out code into procedures that can be reused by other procedures. For example, consider the
concept of a rectangle. Rectangles are useful for describing the boundaries of windows, and are also useful
for describing graphical shapes that can be displayed inside windows. By factoring out the concept of a
rectangle into a separate type, we can use the abstraction in both windows and graphical shapes. If we had
imbedded the behavior of rectangles within Window, we would have to duplicate the code within graphical
shapes. Reusability is an important consideration when deciding how to structure code. Structuring types
for reusability provides leverage when adding new program functionality. This is sometimes referred to as
the “building block” approach to system development.

If the algorithm for implementing some particular new behavior is quite complex, we might factor out
the code into a separate type, to avoid cluttering up the original type. For instance, calculating the area of
a rectangle is a simple and straightforward algorithm, so we would put this operation in type Rectangle
itself. On the other hand, text hyphenation and justification is a much more complex task, so we would
create a new type to do text formatting, instead of putting the behavior in the text type.

One should also consider the general applicability of the behavior: in other words, will most users of
the type want to use the behavior? The more specialized the behavior is, the more sensible it is to factor it
out into a separate type. For example, the capability of converting strings to uppercase is generally useful,
and would likely be included in the String type. Conjugating a regular French verb is quite specialized,
and even though it is a simple operation on a string, it would make more sense to put the behavior into a
different type.

Lastly, one should consider how much the new code needs to know about the representation details of
the type. If the behavior needs to know a great deal, it should be included in the type. For instance, an
operation that makes a copy of a given object should be implemnented in the object’s type. When making
a copy of an object, one has to know whether the object and its copy can share the values of various fields,
or whether the copy will have its own copies of certain field values. Thus, the code implementing the copy
operation will need to have access to the representation and should therefore be associated with the type.
We should point out that if a behavior does not need to know very much about representation details, this
does not necessarily imply that we should create a new type: it merely means that it is less important for
the operation to be implemented in the existing type. In all cases, the programmer should try to minimize
.and localize interdependencies between types.

These criteria must be used in concert to decide where to place new behavior. In many cases applying
the different criteria will give conflicting results. One should weigh each criterion individually, and then
decide which criteria take priority in a particular circumstance.

Consider a more involved example. Suppose we want to sort arrays of objects. We can either define this
behavior as an operation on arrays or create a new type. Since sorting is a complex operation, and since it
does not need to know very much about the representation of the objects being sorted, we decide to create
a type that is a sorter object. The primary operation of the sorter would be sort, which would take an
array and return a sorted version of it. We would also define an abstract type Ordered which would define
operations like greater_than, less_than, and equal. The sort operation would take arrays of Ordered
objects. Therefore, types that we want to sort, like strings and integers, are declared to be subtypes of
Ordered. The Ordered type is created because it groups behavior that is required by the sort operation.

Sorter Ordered

Integer- . - - 8tring

The applicability criterion suggests that the sort behavior should be associated with the array type,
since sorting is a generally useful operation which most users of array would want to use. We chose to stress
the complexity criterion and thus factored out the sort behavior. A shortcoming of this approach is that
the sort algorithm cannot be easily modified based on the type of object being sorted. For example, we
might want to sort arrays of integers and arrays of strings using different algorithms. To do this we would
have to write code within the sort type to choose a particular algorithm based on the type of object passed
to it.
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A better way to accomplish this would be to introduce another abstract type, Sortable. The type
Array[Ordered]® would be a subtype of Sortable. Sortable would define the operation sort, and
this operation would be inherited by all subtypes of Array[Ordered], such as Array[Integer] and Ar-
ray[String]. The default implementation of sort would be similar to the sort operation on the Sorter
type described earlier.

Array[Object] Sortable
Array[Ordered]
Array[Integer) - - . -Array[S8tring]

The advantage of the second approach is that the property of sortability is associated with the objects
that possess this property: arrays of Ordered objects. Sortability is not separated out somewhere else.
Moreover, each type that inherits the properties of Sortable can specialize the behavior and thus replace
the default sort algorithm if desired. By factoring out the sort code into Sortable, we adhere to the
complexity rule. But by using inheritance, we can factor the sort behavior back into the array type, and
thus adhere to the applicability rule.

This example shows one of several ways that inheritance can be used to improve the structure of code.
In the next section, we will take a closer look at the effect that inheritance has on decisions for grouping
behavior within types.

4 TUsing inheritance

In this section, we will discuss how the programmer can turn concepts and implementations into type
hierarchies. We will first describe the general design methodology that subtyping promotes, and then cover
the different ways of using subtyping.

4.1 Subtyping as a design methodology

One of the major problems in designing and implementing large software systems is organizing the complex
relationships that exist among objects in the application domain. Types provide natural criteria for modu-
larization, and thus help shape the strategy for decomposing a program into modules. Subtyping enhances
the type system’s ability to cope with this inherent complexity. Subtyping affects the strategy used in de-
termining the overall organization of programs, in contrast to techniques such as structured programming,
which affect the style of writing small segments of code.

The seminal idea of subtyping is that a program can be constructed by first modelling, in terms of types,
the most general concepts in the application domain, and then proceeding to deal with special cases through
more specialized subtypes. Subtyping thus provides a general design methodology based on “stepwise
refinement by specialization.” This methodology can be compared with the well-known methodology of
“stepwise refinement by decomposition” [Wirth].

Stepwise refinement by decomposition can be applied to both procedural and data abstractions. At each
level of abstraction, the problem is subdivided into smaller components which are in turn subdivided. For
procedural abstraction this subdividing process is achieved by creating procedures which call lower-level
procedures. The program ends up as a hierarchy of procedures.

When decomposition is used to develop layers of data abstractions, the programmer creates a high-
level data type and describes the operations on it. Then the programmer breaks down the top-level data
type into its constituent components, breaks down each of those, and so forth. For example, consider a
payroll database as a top-level data type. When broken down, one component of the payroll type might

®Arrays are defined as parameterized types|[Schaffert et af.
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be a collection of employee records. Each employee record could be broken down into fields describing the
number of hours worked, the hourly wage, the deductions requested, and so forth. Together, these data
types would form an aggregation hierarchy that describes the structure of the top-level payroll data type.

Some early uses of stepwise decomposition did not use procedures to preserve the series of abstractions
that was created. Instead, the components of each decomposition were substituted in-line for the higher-
level abstraction they implemented. Thus, the final program flattened out the design: it did not preserve
the hierarchy of abstractions through which it was created. The result was that maintaining or enhancing
a program developed by decomposition was not necessarily simpler than it would have been for a program
developed in any other way [Shaw].

Similarly, before the introduction of data abstraction into programming languages, abstract data types
were also flattened out. Complex data types were explicitly encoded in terms of simple ones, and only the
encodings were visible, not the abstractions. For instance, records with named components were frequently
encoded as simple arrays with numbered elements. The introduction of programmer-defined data types
helped a great deal by explicitly presenting levels of data abstraction.

Coding a program with data abstractions, but without subtyping, can result in a flattened data type
design along another dimension, namely the subtype hierarchy. Natural progressions from general data
types to more specialized ones are obscured. Frequently, the programmer ends up overloading a type to
represent more than one kind of object. In a language with subtyping, the programmer can factor out the
common behavior in two or more types into a common supertype. But without subtyping the programmer
must maintain several types with very similar code, or instead must combine several similar types into one,
keeping track of the variants using some kind of tag. :

For instance, in the payroll example given above, there may be hourly, weekly, and salaried employees
whose pay information is quite different, but who otherwise have many properties in common, such as age,
badge number, and so forth. In a language with subtyping, one could create an Employee type to hold the
common information, and create subtypes for each category of employee. Without subtyping, the hierarchy
would become encoded in a tag. If there were further divisions, such as temporary and permanent hourly
employees, more tags would be needed.

Thus the lack of subtyping makes the data types harder to understand and obscures the natural hier-
archy. When subtyping is present, it can be used to implement and preserve data abstraction hierarchies,
just as procedures can preserve procedural hierarchies.

With decomposition, one rarely designs strictly in a top-down fashion, even though the methodology in
its purest form calls for it. Sometimes one codes certain lower levels of the program first, to see how their
design will affect higher-level aspects of the program, such as what data must be passed between parts of
the program. Similarly, one does not always design types in a type hierarchy by starting with a supertype
and then creating the subtypes. Frequently, the programmer creates several seemingly disparate types,
realizes they are related, and then factors out their common characteristics into one or more supertypes. In
either case, there is nothing wrong with this bottom-up or middle-out design; several passes up and down
are usually required to produce a complete and correct program design.

In the next section we begin to look at different reasons for using subtyping.

4.2 Subtyping for specialization

As we implied above, subtyping is most frequently used for modelling conceptual hierarchies. Sometimes
the hierarchy produced is a model of the real world. For instance, Jet and Turboprop might be subtypes
of Airplane. Employee might be a subtype of Person. Input device might be the common supertype for
Mouse, Tablet, and Keyboard:

Input.device

Mouse Tablet Keyboard

Other times, the programmer will use type hierarchies to model intangible concepts that are neverthe-
less external to the program. For instance, a hierarchy might model the relationship belween algebraic
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groups, rings, and fields. Finally, subtyping can be used to describe concepts that are particular to the
program itself. For example, the supertype Command might describe behavior common to Batch.-command
and Interactive_command. .

In all these cases, a subtype describes a type that is more specific than that of the supertype. Thus the
subtype is a specialization of the supertype. Conversely, one could say that a supertype is the generalization
of its several subtypes. Which term is used depends on one’s point of view. A programmer could realize
that several types share common characteristics, and factor out the commonality to produce a more general
type which would be a supertype. Or, the programmer might need a more specific description of something,
and so would create a subtype to specialize an existing type.

Another way of viewing specialization is to think of types as describing sets of values. The supertype
defines a possible set of objects, and the subtype restricts the definition in order to define a subset of that
set. Thus the term restriction could be used to describe specialization.

The supertype in a specialization hierarchy is frequently, but not always, an abstract type. The su-
pertype may have factored out the common characteristics of its subtypes, but standing by itself it is an
incomplete description, incapable of describing any useful object. Subtypes will add behavior that turns
the abstract type into something useful. For example, the Input device type described above would be
incomplete, and so this type would undoubtedly be abstract.

A supertype is also usually abstract if the subtypes partition the instance space of the supertype. For
example, in the Airplane example given above, if all kinds of airplanes of interest can be described using
one subtype or another (e.g. Jet or Turboprop), there is no need to create instances of type Airplane itself,
even though Airplane might be a perfectly reasonable non-abstract type. If a new kind of airplane needs
to be described, a new subtype can be added.

4.3 Subtyping for implementation

Another common use for subtyping is to guarantee that types present a certain interface, that is, they obey
a certain protocol, The programmer can define an abstract supertype that specifies certain operations.
Many of the operations may be unimplemented. The programmer will then define several non-abstract
subtypes that implement the behavior specified in the abstract supertype. For instance, the programmer
may define an abstract type, Dictionary, and then implement this type in two ways, say, Hash.table and
Property_list.

Here, the subtypes are not specializations of an existing supertype, but are realizations of the abstract
supertype. The type hierarchy in this case reflects implementation only: there is no interface change from
supertype to subtype.

4.4 Subtyping for combination

Until now we have been talking about types with single immediate supertypes. When a subtype has multiple
supertypes, they combine to form a type with the behavior of all the supertypes.

In some instances, types of relatively equal importance are combined. For example, one might define a
type Teaching assistant with supertypes Teacher and Student. Here the supertypes seem to add together
equally to form the subtype. In other cases, one combines a primary supertype with other supertypes that
add ancillary functionality. For example, consider a type Text_window, which is a subtype of Window.
Text_window is also a subtype of Keyboard handler, which adds operations to permit keyboard input to
the window. Here we would consider Window to be the main supertype. We might even draw these two
hierarchies differently:

Teacher Student Window Keyboard handler

Teaching assistant Text.window
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As with other kinds of subtyping, the supertypes may or may not include complete implementations
for the types they define. In the examples above, Teacher and Student probably include complete imple-
mentations, but Keyboard handler may be an abstract type that just specifies the interface for, the type-in
operations, and does not provide any implementations. Thus, as mentioned before, a supertype can be
used to guarantee that a subtype provides a certain interface; multiple supertypes just make this capability
easier.

Since multiple supertypes can be used to merge implementations together, programmers are tempted
to use supertyping even when it is inappropriate. For instance, we could create a type Airplane out of the
supertypes Wings, Fuselage, Engine, and Tail:

Wings Fuselage Engine Tail

Airplane

But a conceptual error is being made here. An airplane is composed of these parts: it is not the sum
of the behavior of these parts. Multiple supertypes allow us to view an instance of a subtype as being an
instance of any of its several supertypes. But we are not trying to view an airplane in such a way: we don’t
really want to think of an airplane as a more sophisticated way of viewing an engine or a fuselage.

We should not use subtyping for accomplishing this kind of aggregation. We already have an excellent
mechanism: object fields. In our example, Airplane should have fields that contain the wings, fuselage,
engine, and tail objects. Achieving aggregation through fields instead of through inheritance also allows
more than one instance of a particular type of object, since a subtype cannot inherit a supertype more
than once. If our airplane had more than one engine, or if we wanted Wings to be broken down into two
instances of Wing, we could not use subtyping for aggregation.

To take another example, suppose we would like to keep track of the order in which windows are created.
It would make sense to keep the windows on a linked list. We could define a type Linked 1ist node, which
defines a “next on the list” field, and make it one of the supertypes of Window. Windows would then have
as part of their behavior the ability to be linked together in a list. But we do not necessarily want to
view a window sometimes as a window and sometimes as a node in a linked list. Instead, we should make
the linked list node a field defined in Window, or even better, we should keep a completely separate list of
windows. Then, we could also put a window on more than one linked list, since the list behavior would not
have been added by inheritance.

Nevertheless, it is often hard to decide when to combine types using supertyping, and when to use
aggregation. For example, in our applications, we have coded the type Rectangle and the type Window.
Rectangle implements operations such as overlaps?, includes_point?, upper.left, and so forth. Now,
since windows are rectangular areas on the screen, should Window be a subtype of Rectangle or should it
have a field that is 2 Rectangle? Choices like this are a toss-up. We have chosen one and then later the
other, based on how Window was used by other code, and not based on anything inherent only to Rectangle
and Window.

4.5 Nonstandard subtyping

In the uses for subtyping we have discussed so far, concepts from the abstract design of the program are
closely reflected in the type hierarchy. We will now discuss some uses for subtyping that are driven mostly
by implementation, not design considerations.

4.5.1 Subtyping for generalization

Subtyping for generalization is the opposite of subtyping for specialization. Here, a subtype extends a
supertype to create a more general kind of object. For instance, Ellipse could be implemented as a
subtype of Circle. A circle would be described by a single center point (focus) and a radius. An ellipse
can be described by adding another focus. Or consider a Plain_window, which displays its contents on a
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simple white background. The programmer could create a subtype of Plain.window, Color_window, which
allows the background color to be other than white, by adding an additional field to store the color, and
by changing the inherited window display code so the background was drawn in that color.

In these examples, the conceptual hierarchy we would expect does not correspond to the actual type
hierarchy. For instance, circles are special cases of ellipses, not the other way around. Nevertheless, the
hierarchy specified by the programmer allows useful implementations to be inherited from supertype to
subtype, and can save much recoding.

The programmer should be wary of disassociating the conceptual and implementation hierarchies in this
way, since it goes against intuition, and may make the subtypes unduly dependent on the implementation
of the supertype. If the hierarchies are dissimilar solely for reasons of implementation expediency, the
programmer should consider whether there is a way to rearrange the implementation hierarchy to make it
match the conceptual dependencies. For instance, Circle, above, might better be described as an E1lipse
in which the two foci are identical.

On the other hand, casually trying to match the conceptual and implementation hierarchies can cause
other problems. In the window example above, one alternative is to make Plain window be a subtype of
Color.window, with the background color restricted always to be white. This causes problems, however,
if the color of a Color_window can be changed at runtime, since an attempt to change the color of a
Plain window should be detected as an error by code in Plain window. We can avoid the possibility of
such a runtime error by factoring out the common behavior of windows into an abstract type Window, and
then creating the new types Fixed_color window and Varying.color_window, with Plain_window being a
subtype of Fixed.color_window:

Window

Fixed_color_window Varying.color_window

Plain window

In some cases, this sort of restructuring may be more trouble than it is worth. Keeping the original
implementation hierarchy is easier, even it does not correspond to the conceptual hierarchy.

Subtyping for generalization may also be unavoidable if the programmer does not have complete control
of the type hierarchy. For instance, the programmer may wish to create a generalization of some type in
the system library, but to do so would mean creating a new type that is a supertype of the system type. If
such changes to the library are not permitted, the reasonable alternative is to subtype the system type.

4.5.2 Subtyping for variance

Subtyping for variance is similar to subtyping for generalization: the conceptual hierarchy does not match
the implementation hierarchy. In the case of variance, however, there is no direct hierarchical relationship
between the supertype and the subtype. Instead, the types are likely to be cousins or siblings in the
conceptual hierarchy.

For instance, in the Input_device example given earlier, the implementations of Mouse and Tablet
may be nearly identical. One could then make Mouse a subtype of Tablet, or vice versa, to allow all the
common code to be reused.

As with subtyping for generalization, there may be a better way to structure the types. In the example
above, factoring out the common code into an abstract type, say Pointing. device, is conceptually cleaner.
And as with subtyping for generalization, an inability to change an existing type hierarchy might make
subtyping for variance necessary, though not the most desirable choice.

5 Types and inheritance: an extended example

To illustrate the ideas and principles we have presented in the previous sections, we will describe a more
involved example, and show how our design choices are influenced by these guidelines.
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We will consider the design of an inspector facility. An inspector displays debugging information about
an object in a window designed for that purpose. The information displayed includes various aspects of
the object’s state, such as the contents of some or all of its fields, and perhaps some computed values as
well. Different types of inspectors are needed for different kinds of objects. For instance, all the interesting
information about a point can be displayed at once in a simple format, whereas a large two-dimensional
array might best be displayed as a matrix which can be scrolled. Such type-specific data display can greatly
speed up the debugging process. )

We should first decide where to put the behavior of the inspector. Should we put it in the type of the
object to be inspected, or in a new, separate type? An inspector window is a visible, concrete entity, and
seems to be a good abstraction in its own right. On the other hand, the information the inspector will
display is closely related to the object being inspected. Because we have conflicting indications about where
inspector behavior should go, we will consider the guidelines discussed in section 3.3 in more detail.

We will first consider the general applicability of inspector behavior, and also how much the inspector
must know about the representation of the object it will display. Since every type of object should be
inspectable, and since debugging is a common task, inspector behavior is generally useful, and is applicable
to every type. An inspector must also have intimate knowledge about the type of the object being inspected,
because it needs to know what values to display, and what kind of display is most suitable for that type of
object. Thus, both of these criteria imply that we should define inspector behavior within each type whose
objects can be inspected.

But this conclusion conflicts with what the criteria of reusability and algorithm complexity would
suggest. Many types of objects will be displayed in the same way. If we implement the display code in each
type separately, we would end up with a lot of duplicated code. Instead, we should put the common code
in a separate type; then the behavior could be shared by all the types that use it. In addition, handling
the display of the debugging information on the screen is a complex task, and will probably require quite
a lot of complicated code. Many aspects of this code have nothing to do with the type of the object being
inspected. For reasons of modularity, this code should be put in a separate type.

The subtyping guidelines presented in section 4 also suggest that inspector behavior should be imple-
mented in a separate type. Different types of objects will be displayed in different ways, but the variations
from one type of display to another may be slight. Different kinds of inspectors will still have a great deal of
behavior in common. We can therefore factor out this common behavior into a few supertypes, and create
subtypes to handle the variations of different kinds of inspectors.

Since we have concluded that some aspects of object inspection are closely associated with the object
itself, and others are not as germane, we should split the behavior for inspectors along this division. Thus,
we will implement inspectors as separate types, but we will include an interface in each object type that
allows an inspector to lock at the internals of the object in a systematic way. We will also provide an
operation in every type that creates and displays the proper kind of inspector for objects of that type.

Our new type, Inspector, will handle the actual display of debugging information. Inspector will have
subtypes that define different kinds of inspectors, such as Matrix_inspector and Bitmap inspector. An
inspector will be given an object to be displayed. But the inspector will get information about the object
through an inspector_data operation which is defined on the type Object. The default implementation
of this operation in Object will return the names of all the fields in the object and their values. Each type,
however, will be able to reimplement this operation to return whatever names and values are appropriate.
Special-purpose inspectors may need more information, and will require that the objects they can inspect
provide the information through additional operations. Thus we continue to follow our guidelines by
associating the knowledge of what is to be displayed with individual types, and yet breaking off the details
of the display into separate inspector types.

Next, we need to describe how a specific type of inspector gets associated with a particular kind of
object. Recall that we want to specify this behavior on a type by type basis. We can do this by defining
another operation on Object, called inspect. The default implementation for inspect will simply create
and display a default kind of inspector. Again, types can override this implementation if they want a specific
type of inspector to be created. For example, a hash table might display a Dictionary inspector instead.

Finally, we should consider the structure of the type hierarchy used for the different kinds of inspectors.
At first glance, we might consider defining the default Inspector as the top supertype. Types such as
Matrix_inspector and Dictionary. inspector would be subtypes of this type. But in this type structure,
subtyping is used largely for variation. A better structure might be one in which there is an abstract
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supertype Abstract-inspector, with subtypes Default_inspector, Matrix_inspector, Dictionary.in-
spector, and so forth.

In this type hierarchy, the common behavior is clearly in Abstract inspector. In the earlier hierarchy,
the common code is mixed in with the code that is specific for the default inspector. A programmer may
end up coding a new inspector in a way that makes the new one unduly dependent on the implementation
of Inspector. The whole hierarchy would therefore be less maintainable and extensible.

The example we have presented here illustrates applying some of the principles we described eatlier
in the paper. But these guidelines are not a panacea, and are not hard and fast rules. Creativity and
clear-headed thinking are still the most important ingredients of design. Nevertheless, we hope that the
ideas we have presented allow the design to proceed in a more methodical way than might otherwise be
expected.

6 Conclusion

In this paper, we have looked at typing, subtyping, and inheritance as they are used in object-oriented lan-
guages. We have discussed what types should represent, how to distribute program behavior among types,
how to design programs that use subtyping and inheritance, and the different ways in which inheritance
can be used. We have tried to draw out issues and codify principles which the programmer should consider
when making these decisions.

Any one particular object-oriented language will influence how types and inheritance are used in the
program to be written. Nevertheless, the programmer should think about the design of the types in the
program in more general terms before constraining the design to fit onto a particular language.

When properly applied, object-oriented languages can significantly enhance the maintainability, exten-
sibility, and reusability of the code in a program. But the proper and careful use of types and inheritance
is critical to the success of programs built in an object-oriented way. In this paper, we have presented a
number of guidelines for using types and inheritance; we hope they will contribute to good object-oriented
program design.
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