
Modeling Objects and
Classes
Alexandre Bergel

abergel@dcc.uchile.cl
15/04/2010

Roadmap

1.UML Overview

2.Classes, attributes and operations

3.UML Lines and Arrows

4.Parameterized Classes, Interfaces and Utilities

5.Objects, Associations

6.Inheritance

7.Patterns, Constraints and Contracts

Sources

 The Unified Modeling Language Reference Manual

 James Rumbaugh, Ivar Jacobson and Grady Booch, Addison
Wesley, 1999

 UML Distilled

 Martin Fowler, Kendall Scott, Addison- Wesley,

 Second Edition, 2000

Roadmap

1.UML Overview

2.Classes, attributes and operations

3.UML Lines and Arrows

4.Parameterized Classes, Interfaces and Utilities

5.Objects, Associations

6.Inheritance

7.Patterns, Constraints and Contracts

UML

 What is UML?

 uniform notation: Booch + OMT + Use Cases (+ state charts)

 UML is not a method or process

 ... The Unified Development Process is

 Why a Graphical Modeling Language?

 Software projects are carried out in team

 Team members need to communicate

 “One picture conveys a thousand words”

 ... But which words?

Why UML?

 Reduces risks by documenting assumptions

 domain models, requirements, architectures, design
implementation

 Represents industry standard

 more tool support, more people understand your diagrams, less
education

 Is reasonably well-defined

 ... although there are interpretations and dialects

Why UML?

 Is open

 stereotypes, tags and constraints to extend basic constructs

 has a meta-meta-model for advanced extensions

UML history

 1994: Grady Booch (Booch method) + James
Rumbaugh (OMT) at Rational

 1994: Ivar Jacobson (OOSE, use cases) joined
Rational

 “The three amigos”

 1996: Rational formed a consortium to support UML

 1997: UML 1.0 submitted to OMG by consortium

 1997: UML 1.1 accepted as OMG standard

UML history

 1998- ... : Revisions UML 1.2-1.5

 2005: Major revision to UML2.0, includes OCL

UML Distilled

Roadmap

1.UML Overview

2.Classes, attributes and operations

3.UML Lines and Arrows

4.Parameterized Classes, Interfaces and Utilities

5.Objects, Associations

6.Inheritance

7.Patterns, Constraints and Contracts

Class Diagrams

“Class diagrams show generic
descriptions of possible systems, and
object diagrams show particular
instantiations of systems and their
behaviour.”

Attributes and operations are also
collectively called features.

Danger: class diagrams risk
turning into data models.
Be sure to focus on behaviour

Visibility and Scope of Features

Attributes and Operations

 Attributes are specified as:

 name: type = initialValue { property string }

 Operations are specified as:

 name (param: type = defaultValue, ...) : resultType

Roadmap

1.UML Overview

2.Classes, attributes and operations

3.UML Lines and Arrows

4.Parameterized Classes, Interfaces and Utilities

5.Objects, Associations

6.Inheritance

7.Patterns, Constraints and Contracts

UML Lines and Arrows

Roadmap

1.UML Overview

2.Classes, attributes and operations

3.UML Lines and Arrows

4.Parameterized Classes, Interfaces and Utilities

5.Objects, Associations

6.Inheritance

7.Patterns, Constraints and Contracts

Parameterized Classes

 Parameterized (aka “template” or “generic”) classes
are depicted with their parameters shown in a dashed
box.

Interfaces

 Interfaces, equivalent to abstract classes with no
attributes, are represented as classes with the
stereotype «interface» or, alternatively, with the
“Lollipop-Notation”:

Utilities

 A utility is a grouping of global attributes and
operations. It is represented as a class with the
stereotype «utility». Utilities may be parameterized.

Utilities

 NB: A utility’s attributes are already interpreted as
being in class scope, so it is redundant to underline
them.

 A “note” is a text comment associated with a view,
and represented as box with the top right corner
folded over.

Roadmap

1.UML Overview

2.Classes, attributes and operations

3.UML Lines and Arrows

4.Parameterized Classes, Interfaces and Utilities

5.Objects, Associations

6.Inheritance

7.Patterns, Constraints and Contracts

Objects

 Objects are shown as rectangles with their name and
type underlined in one compartment, and attribute
values, optionally, in a second compartment.

At least one of the name or the type must be present.

Associations

 Associations represent
structural relationships
between objects

 usually binary (but may be
ternary etc.)

 optional name and direction

 (unique) role names and
multiplicities at end-points

Multiplicity

 The multiplicity of an association constrains how
many entities one may be associated with

0..1 Zero or one entity

1 Exactly one entity

* Any number of entities

1..* One or more entities

1..n One to n entities

And so on …

Associations and Attributes

 Associations may be implemented as attributes

 But need not be …

Aggregation and Composition

 Aggregation is denoted by a diamond and indicates a
part-whole dependency:

 A hollow diamond indicates a reference; a solid
diamond an implementation (i.e., ownership).

Aggregation: parts may
be shared.
Composition: one part
belongs to one whole.

Association Classes

 An association may be an instance of an association
class:

In many cases the association class only stores attributes, and its
name can be left out.

Qualified Associations

 A qualified association uses a special qualifier value to
identify the object at the other end of the association.

 NB: Qualifiers are part of the association, not the
class

Roadmap

1.UML Overview

2.Classes, attributes and operations

3.UML Lines and Arrows

4.Parameterized Classes, Interfaces and Utilities

5.Objects, Associations

6.Inheritance

7.Patterns, Constraints and Contracts

Generalization

 A subclass specializes its superclass:

What is Inheritance For?

 New software often builds on old software by
imitation, refinement or combination

 Similarly, classes may be extensions, specializations
or combinations of existing classes

Generalization expresses ...

 Conceptual hierarchy

 conceptually related classes can be organized into a specialization
hierarchy

 people, employees, managers

 geometric objects ...

 Polymorphism

 objects of distinct, but related classes may be uniformly treated by
clients

 array of geometric objects

Generalization expresses ...

 Software reuse

 related classes may share interfaces, data structures or behaviour

 geometric objects ...

The different faces of inheritance

Roadmap

1.UML Overview

2.Classes, attributes and operations

3.UML Lines and Arrows

4.Parameterized Classes, Interfaces and Utilities

5.Objects, Associations

6.Inheritance

7.Patterns, Constraints and Contracts

Design Patterns as Collaborations

Constraints

 Constraints are restrictions on values attached to
classes or associations

OCL - Object Constraint Language

 Used to express queries and constraints over UML
diagrams

 Navigate associations:

 Person.boss.employer

 Select subsets:

 Company.employee->select(title=“Manager”)

 Boolean and arithmetic operators:

 Person.salary < Person.boss.salary

Design by Contract in UML

 Combine constraints with stereotypes:

 NB: «invariant», «precondition», and «postcondition»
are predefined in UML.

Using the Notation

 During Analysis
 Capture classes visible to users

 Document attributes and responsibilities

 Identify associations and collaborations

 Identify conceptual hierarchies

 Capture all visible features

 During Design
 Specify contracts and operations

 Decompose complex objects

 Factor out common interfaces and functionalities

The graphical notation is only
one part of the analysis or

design document. For example,
a data dictionary cataloguing
and describing all names of

classes, roles, associations, etc.
must be maintained throughout

the project.

What you should know!

 How do you represent classes, objects and
associations?

 How do you specify the visibility of attributes and
operations to clients?

 How is a utility different from a class? How is it
similar?

 Why do we need both named associations and roles?

 Why is inheritance useful in analysis? In design?

 How are constraints specified?

Can you answer the following
questions?

 Why would you want a feature to have class scope?

 Why don’t you need to show operations when
depicting an object?

 Why aren’t associations drawn with arrowheads?

 How is aggregation different from any other kind of
association?

 How are associations realized in an implementation
language?

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5

License

