
Threading in Java
Alexandre Bergel

abergel@dcc.uchile.cl
31/05/2010

Roadmap

 What are threads?

 Example

 Multiple execution

 Scheduling

Threading Introduction

 Threads: expressing logical parallelism in a program

 thread = logical sequence of control

 independent threads = independent logical sequences of control

 generally share one memory

 Threads give the illusion to do some work in parallel

What are threads?

 Threads are a control mechanism offered by both a
library and the programming language

 Used to express concurrency and parallelism in a
program

 The following operations are necessary:

 create -- increase parallelism

 synchronize -- coordinate

 destroy -- decrease parallelism

What are threads in Java?

 Threads are exposed as a special kind of object

 Operations are methods on thread objects

 Each thread object is a unit of parallelism

 A thread can be executed independently therefore

Example: Handing web requests

Web
server

Thread 1

Example: Handing web requests

Web
server

Thread 1

http://localhost:8000/index.html

Example: Handing web requests

Web
server

Thread 1

http://localhost:8000/index.html

Request

Thread n

Example: Handing web requests

Web
server

Thread 1

http://localhost:8000/index.html

Request

Thread n

Example: Handing web requests

Web
server

Thread 1

Issues with threads

 Sharing and Synchronization

 Threads may share access to objects (object state, open files, and
other resources) associated with a single process

 Scheduling

 if # of threads != # of processes, scheduling of threads is an issue

 Operations in different threads may occur in variety of orders

Threads operations

 construction

 usually done by passing a runnable object to the thread on
construction

 starting

 Invoking a thread’s start() method cases the run() method of the
runnable object to run

 priority

 Threads can be run at different priority levels

 control

 this refers to control methods provided by the Thread class

Thread life cycle

start

stoprunnable

blocked

running

start stop

yield stop

stop

resume/notify stop

Thread life cycle

start

stoprunnable

blocked

running

start stop

yield stop

stop

resume/notify stop

Check: http://java.sun.com/javase/6/docs/
api/java/lang/Thread.State.html

The Thread class

 defined as a class in the core Java language

 implements an interface called Runnable

 define a single abstract method called run()

public interface Runnable {
public void run();

}
public class Thread implements Runnable { ... }

Using the Runnable Interface

 A class must implement the Runnable interface

 provide an implementation of the run method

 initiates the computation in the thread

 public class ConcurrentReader implements Runnable {

 public void run () {/* code here executed concurrently
with callers */ }

 ...

 }

Creating a Thread

 Steps

 Creating an object of type Runnable

 Bind it to a new Thread object

 Start it

 Start

 creates the thread stack for the thread

 then invokes the run() method of the Runnable object in the new
thread

Example

 ConcurrentReader readerThread = new ConcurrentReader();

 Thread t = new Thread (readerThread);

 t.start(); // start the thread and call run()

 java.lang.Thread class has a constructor that takes an object
of type Runnable

 You may also subclass Thread

 What do you think about that?

java.lang.Thread

 There are a number of methods defined on the
Thread class

 To query the thread to find its priority

 To put it to sleep

 Cause it to yield to another thread

 stop

 syspend its execution

 resume its execution, etc, ...

Example: a simple counter

 public class SmallExample implements Runnable {

 	 private String info;

 	 public SmallExample(String info) { this.info = info; }

 	
 	 public void run () {

 	 	 for(int i = 1; i < 10; i++) {

 	 	 	 System.out.println(info + " " + i);

 	 	 }

 	 }

 	
 	 public static void main(String[] argv) {

 	 	 new Thread(new SmallExample("thread1")).start();

 	 	 new Thread(new SmallExample("thread2")).start();

 	 	 new Thread(new SmallExample("thread3")).start();

 	 }

 }

Example

thread1 1
thread1 2
thread1 3
thread1 4
thread1 5
thread1 6
thread1 7
thread1 8
thread1 9
thread2 1
thread2 2
thread2 3
thread2 4
thread2 5
thread2 6
thread3 1
thread3 2
thread3 3
thread3 4
thread3 5
thread3 6
thread3 7
thread3 8
thread3 9
thread2 7
thread2 8
thread2 9

Buh?
No parallelism?

What happened?

thread1 1
thread1 2
thread1 3
thread1 4
thread1 5
thread1 6
thread1 7
thread1 8
thread1 9
thread2 1
thread2 2
thread2 3
thread2 4
thread2 5
thread2 6
thread3 1
thread3 2
thread3 3
thread3 4
thread3 5
thread3 6
thread3 7
thread3 8
thread3 9
thread2 7
thread2 8
thread2 9

Example

Buh?
No parallelism?

What happened?

Each thread did not
wait for the others

Letting other thead execute

 public class SmallExample implements Runnable {

 	 private String info;

 	 public SmallExample(String info) { this.info = info; }

 	
 	 public void run () {

 	 	 for(int i = 1; i < 10; i++) {

 	 	 	 System.out.println(info + " " + i);
 Thread.yield();

 	 	 }

 	 }

 	
 	 public static void main(String[] argv) {

 	 	 new Thread(new SmallExample("thread1")).start();

 	 	 new Thread(new SmallExample("thread2")).start();

 	 	 new Thread(new SmallExample("thread3")).start();

 	 }

 }

Letting other thead execute

 public class SmallExample implements Runnable {

 	 private String info;

 	 public SmallExample(String info) { this.info = info; }

 	
 	 public void run () {

 	 	 for(int i = 1; i < 10; i++) {

 	 	 	 System.out.println(info + " " + i);
 Thread.yield();

 	 	 }

 	 }

 	
 	 public static void main(String[] argv) {

 	 	 new Thread(new SmallExample("thread1")).start();

 	 	 new Thread(new SmallExample("thread2")).start();

 	 	 new Thread(new SmallExample("thread3")).start();

 	 }

 }

Causes the
currently
executing thread
object to
temporarily
pause and allow
other threads to
execute.

Slow down!

 public class SmallExample implements Runnable {

 	 private String info;

 	 public SmallExample(String info) { this.info = info; }

 	
 	 public void run () {

 	 	 for(int i = 1; i < 10; i++) {

 	 	 	 System.out.println(info + " " + i);
 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 	 e.printStackTrace();

 }

 	 	 }

 	 }

 	 ...

Slow down!

 public class SmallExample implements Runnable {

 	 private String info;

 	 public SmallExample(String info) { this.info = info; }

 	
 	 public void run () {

 	 	 for(int i = 1; i < 10; i++) {

 	 	 	 System.out.println(info + " " + i);
 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 	 e.printStackTrace();

 }

 	 	 }

 	 }

 	 ...

Causes the currently
executing thread to
sleep (temporarily
cease execution) for
the specified number
of milliseconds

A bit more refined example

 public class Counter implements Runnable {

 	 private int value = 0;

 ...	

 	 public void run () {

 	 	 while (true) {

 	 	 	 System.out.println(info + " " + value);

 	 	 	 value ++;

 	 	 	 waitSecond(1);

 	 	 }

 	 }

 ...

 	 public static void main(String[] argv) {

 	 	 Counter counter = new Counter("Counter");

 	 	 Thread thread = new Thread(counter);

 	 	 thread.start();

 	 	 counter.waitSecond(3);

 	 	 thread.stop();

 	 }

 }

A bit more refined example

 public class Counter implements Runnable {

 	 private int value = 0;

 ...	

 	 public void run () {

 	 	 while (true) {

 	 	 	 System.out.println(info + " " + value);

 	 	 	 value ++;

 	 	 	 waitSecond(1);

 	 	 }

 	 }

 ...

 	 public static void main(String[] argv) {

 	 	 Counter counter = new Counter("Counter");

 	 	 Thread thread = new Thread(counter);

 	 	 thread.start();

 	 	 counter.waitSecond(3);

 	 	 thread.stop();

 	 }

 }

Deprecated
method!

A bit more refined example

 public class Counter implements Runnable {

 	 private int value = 0;

 ...	

 	 public void run () {

 	 	 while (true) {

 	 	 	 System.out.println(info + " " + value);

 	 	 	 value ++;

 	 	 	 waitSecond(1);

 	 	 }

 	 }

 ...

 	 public static void main(String[] argv) {

 	 	 Counter counter = new Counter("Counter");

 	 	 Thread thread = new Thread(counter);

 	 	 thread.start();

 	 	 counter.waitSecond(3);

 	 	 thread.stop();

 	 }

 }

“This method is
inherently unsafe.”

How to make a counter stop then?

 public class Counter implements Runnable {

 	 private int value = 0;

 ...	

 	 public void run () {

 	 	 while (true) {

 	 	 	 System.out.println(info + " " + value);

 	 	 	 value ++;

 	 	 	 waitSecond(1);

 	 	 }

 	 }

 ...

 	 public static void main(String[] argv) {

 	 	 Counter counter = new Counter("Counter");

 	 	 Thread thread = new Thread(counter);

 	 	 thread.start();

 	 	 counter.waitSecond(3);

 	 	 thread.stop();

 	 }

 }

“This method is
inherently unsafe.”

How to make a counter stop then?

 public class Counter implements Runnable {

 	 private boolean shouldRun;

 	 public Counter(String info) { this.info = info; shouldRun = true; }
 ...

 public void run () {

 	 while (shouldRun) {

 	 	 System.out.println(info + " " + value);

 	 	 value ++;

 	 	 waitSecond(1);

 	 }

 }

 ...

 private void stopRunning() { shouldRun = false; }

 public static void main(String[] argv) {

 	 Counter counter = new Counter("Counter");

 	 Thread thread = new Thread(counter);

 	 thread.start();

 	 counter.waitSecond(3);

 	 counter.stopRunning();
 }}

Synchronization

 public class SynchronizedCounter {

 private int c = 0;

 public synchronized void increment() {

 c++;

 }

 public synchronized void decrement() {

 c--;

 }

 public synchronized int value() {

 return c;

 }

 }

Synchronization

 If count is an instance of SynchronizedCounter, then
making these methods synchronized has two effects:

 First, it is not possible for two invocations of synchronized
methods on the same object to interleave. When one thread is
executing a synchronized method for an object, all other threads
that invoke synchronized methods for the same object block
(suspend execution) until the first thread is done with the object.

 Second, when a synchronized method exits, it automatically
establishes a happens-before relationship with any subsequent
invocation of a synchronized method for the same object. This
guarantees that changes to the state of the object are visible to all
threads.

 Note that constructors cannot be synchronized

Synchronization

 If count is an instance of SynchronizedCounter, then
making these methods synchronized has two effects:

 First, it is not possible for two invocations of synchronized
methods on the same object to interleave. When one thread is
executing a synchronized method for an object, all other threads
that invoke synchronized methods for the same object block
(suspend execution) until the first thread is done with the object.

 Second, when a synchronized method exits, it automatically
establishes a happens-before relationship with any subsequent
invocation of a synchronized method for the same object. This
guarantees that changes to the state of the object are visible to all
threads.

 Note that constructors cannot be synchronized

http://java.sun.com/docs/books/
tutorial/essential/concurrency/

syncmeth.html

Conclusion

 Java threads are the basis for expression of
parallelism

 convenient, nice encapsulation, cleanly integrated

 can build flexible expression and management

 Do not overuse Threads

 It may leads to complex and hard-to-debug situations

What you should know

 What are threads?

 What threads are often necessary?

 How to define a thread?

 When you need to employ threads?

 Understand what are the synchronization problems in
threading

Can you answer to these questions?

 Why each web request must be handled in a
separate thread?

 Can you provide an example of synchronization
problem?

