
A bit of C++
Alexandre Bergel

abergel@dcc.uchile.cl
21/06/2010

Roadmap

1.C++ vs C

2.C++ vs Java

3.References vs pointers

4.C++ classes: Orthodox Canonical Form

5.A quick look at STL — The Standard Template
Library

Roadmap

1.C++ vs C

2.C++ vs Java

3.References vs pointers

4.C++ classes: Orthodox Canonical Form

5.A quick look at STL — The Standard Template
Library

Essential C++ Texts

 Bjarne Stroustrup, The C++ Programming Language (Special
Edition), Addison Wesley, 2000.

 Stanley B. Lippman and Josee LaJoie, C++ Primer, Third Edition,
Addison-Wesley, 1998.

 Scott Meyers, Effective C++, 2d ed., Addison-Wesley, 1998.

 James O. Coplien, Advanced C++: Programming Styles and
Idioms, Addison-Wesley, 1992.

 David R. Musser, Gilmer J. Derge and Atul Saini, STL Tutorial and
Reference Guide, 2d ed., Addison-Wesley, 2000.

 Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,
Design Patterns, Addison Wesley, Reading, MA, 1995.

What is C

 C is a general purpose, procedural, imperative
language developed in 1972 by Dennis Ritchie at Bell
Labs for the Unix Operating System.

 Low-level access to memory

 Language constructs close to machine instructions

 Used as a “machine-independent assembler”

My first C Program

#include <stdio.h>

int main(void)
{
 printf("hello, world\n");
 return 0;
} char array

Indicate correct termination

Write to
standard
output

A preprocessor directive

Include standard io
declarations

What is C++

 A “better C” (http://www.research.att.com/~bs/C+
+.html)

 that supports:

 Systems programming

 Object-oriented programming (classes & inheritance)

 Programming-in-the-large (namespaces, exceptions)

 Generic programming (templates)

 Reuse (large class & template libraries)

C++ vs C

 Most C programs are also C++ programs

 Nevertheless, good C++ programs usually do not
resemble C:

 avoid macros (use inline)

 avoid pointers (use references)

 avoid malloc and free (use new and delete)

 avoid arrays and char* (use vectors and strings) ...

 avoid structs (use classes)

C++ vs C

 C++ encourages a different style of programming:

 avoid procedural programming

 model your domain with classes and templates

Roadmap

1.C++ vs C

2.C++ vs Java

3.References vs pointers

4.C++ classes: Orthodox Canonical Form

5.A quick look at STL — The Standard Template
Library

Hello World in Java

package cc3002;
// My first Java program!
public class HelloMain {
 public static void main(String[] args) {
! ! ! ! System.out.println("hello world!");
! ! }
}

“Hello World” in C++

using namespace std;
#include <iostream>
// My first C++ program!
int main(void)
{
! cout << "hello world!" << endl;
! return 0;
}

Use the standard namespace Include standard
iostream classes

A C++ comment

cout is an
instance of
ostream

operator overloading
(two different argument types!)

Makefiles / Managed Make in CDT

c++ helloWorld.cpp -o helloWorld

helloWorld : helloWorld.cpp
! c++ $@.cpp -o $@

make helloWorld

You could compile
it all together by hand:

Or you could use a Makefile
to manage dependencies:

Or you could use cdt
with eclipse to create a

standard managed
make project

C++ Design Goals

 “C with Classes” designed by Bjarne Stroustrup in
early 1980s:

 Originally a translator to C

 Initially difficult to debug and inefficient

 Mostly upward compatible extension of C

 “As close to C as possible, but no closer”

 Stronger type-checking

 Support for object-oriented programming

 Run-time efficiency

 Language primitives close to machine instructions

 Minimal cost for new features

C++ Features

C with Classes
Classes as structs
Inheritance; virtual functions
Inline functions

C++ 1.0 (1985) Strong typing; function prototypes
new and delete operators

C++ 2.0 Local classes; protected members
Multiple inheritance

C++ 3.0 Templates
Exception handling

ANSI C++ (1998) Namespaces
RTTI (Runtime Type Information)

Java and C++ — Similarities and
Extensions

Similarities:
- primitive data types (in Java,
platform independent)
- syntax: control structures,
exceptions ...
- classes, visibility declarations
(public, private)
- multiple constructors, this, new
- types, type casting (safe in Java,
not in C++)
-comments

Some Java Extensions:
- garbage collection
- standard abstract
machine
- standard classes (came
later to C++)
- packages (now C++ has
namespaces)
- final classes
- autoboxing
- generics instead of
templates

Java Simplifications of C++

 no pointers — just references

 no functions — can declare static methods

 no global variables — use public static variables

 no destructors — garbage collection and finalize

 no linking — dynamic class loading

 no header files — can define interface

Java Simplifications of C++

 no operator overloading — only method overloading

 no member initialization lists — call super constructor

 no preprocessor — static final constants and
automatic inlining

 no multiple inheritance — implement multiple
interfaces

 no structs, unions, enums — typically not needed

New Keywords

 In addition the keywords inherited from C, C++ adds:
Exceptions catch, throw, try

Declarations:

bool, class, enum, explicit,
export, friend, inline, mutable,
namespace, operator, private,
protected, public, template,
typename, using, virtual,
volatile, wchar_t

Expressions:

and, and_eq, bitand, bitor, compl,
const_cast, delete, dynamic_cast,
false, new, not, not_eq, or,
or_eq, reinterpret_cast,
static_cast, this, true, typeid,
xor, xor_eq

(see http://www.glenmccl.com/glos.htm)

Roadmap

1.C++ vs C

2.C++ vs Java

3.References vs pointers

4.C++ classes: Orthodox Canonical Form

5.A quick look at STL — The Standard Template
Library

Memory Layout

Text: executable program text (not writable)
Static: static data
Heap: dynamically allocated global memory (grows

upward)Stack: local memory for function calls (grows downward)

The address space consists of (at least):

Pointers in C++

int i;
int *iPtr; // a pointer to an integer

iPtr = &i; // iPtr contains the address of I
*iPtr = 100;

…
100

456FD4
456FD4
456FD0

i
iPtr

…

variable value Address in hex

References

References are especially useful in procedure calls to
avoid the overhead of passing arguments by value,

without the clutter of explicit pointer dereferencing (y
= *ptr;)

 A reference is an alias for another variable:

int i = 10;
int &ir = i;!! // reference (alias)
ir = ir + 1;!! // increment i

void refInc(int &n)
{
! n = n+1; // increment the variable n refers to
}

10i,ir

References vs Pointers

 References should be preferred to pointers except
when:

 manipulating dynamically allocated objects

 new returns an object pointer

 a variable must range over a set of objects

 use a pointer to walk through the set

C++ Classes

MyClass oVal;!! ! ! // constructor called
! ! ! ! ! ! ! ! // destroyed when scope ends

MyClass *oPtr;! ! ! ! // uninitialized pointer

oPtr = new MyClass;!! // constructor called
! ! ! ! ! ! ! ! // must be explicitly deleted

C++ classes may be instantiated either
automatically (on the stack):

or dynamically (in the heap)

Constructors and destructors

#include <iostream>
#include <string>

using namespace std;
class MyClass {
private:
! string name;
public:
! MyClass(string name) : name(name) { ! ! // constructor
! ! cout << "create " << name << endl;
! }
! ~MyClass() { ! ! ! ! ! ! ! ! !
! ! cout << "destroy " << name << endl;!
! }
};

Include standard iostream
and string classes

Use initialization
list in constructor

Specify cleanup
in destructor

Automatic and dynamic destructionMyClass& start() { ! ! ! ! ! // returns a reference
! MyClass a("a"); ! ! ! ! ! // automatic
! MyClass *b = new MyClass("b");! // dynamic
! return *b; ! ! ! ! ! ! ! // returns a reference (!) to b
} !! ! ! ! ! ! ! ! ! ! // a goes out of scope

void finish(MyClass& b) {
! delete &b; ! ! ! ! ! ! ! // need pointer to b
}

#include "MyClass.h"

using namespace std;

int main (int argc, char **argv) {
!
 MyClass aClass("d");
 MyClass& bClass = aClass.start();
!
 aClass.finish(bClass);
! return 0;

}

create d
create a
create b
destroy a
destroy b
destroy d

Roadmap

1.C++ vs C

2.C++ vs Java

3.References vs pointers

4.C++ classes: Orthodox Canonical Form

5.A quick look at STL — The Standard Template
Library

Orthodox Canonical Form

class myClass {
public:
! myClass(void);! ! ! ! ! ! ! ! // default constructor
! myClass(const myClass& copy); ! ! ! // copy constructor
! ! ...!! ! ! ! ! ! ! ! ! ! // other constructors
! ~myClass(void);!! ! ! ! ! ! ! // destructor
! myClass& operator=(const myClass&); ! // assignment
! ! ...!! ! ! ! ! ! ! // other public member functions
private:
! ! ...
};

Most of your classes should look like this:

Why OCF?

 If you don’t define these four member functions, C++
will generate them

 default constructor

 will call default constructor for each data member

 destructor

 will call destructor of each data member

 copy constructor

 will shallow copy each data member

 pointers will be copied, not the objects pointed to!

 assignment

 will shallow copy each data member

Example: A String Class

 We would like a String class that protects C-style
strings:

 strings are indistinguishable from char pointers

 string updates may cause memory to be corrupted

 Strings should support:
 creation and destruction

 initialization from char arrays

 copying

 safe indexing

 safe concatenation and updating

 output

 length, and other common operations ...

A Simple String.h

class String
{
! friend ostream& operator<<(ostream&, const String&);
public:
! String(void);! ! ! ! ! ! ! // default constructor
! ~String(void);!! ! ! ! ! ! // destructor
! String(const String& copy);! ! ! // copy constructor
! String(const char*s);!! ! ! ! // char* constructor!
! String& operator=(const String&); ! // assignment

! inline int length(void) const { return ::strlen(_s); }
! char& operator[](const int n) throw(exception);
! String& operator+=(const String&) throw(exception); ! // concatenation
private:
! char *_s; // invariant: _s points to a null-terminated heap string
! void become(const char*) throw(exception); !// internal copy function
};

A friend function
prototype
declaration of the
String class

Operator
overloading

Returns a
reference
to ostream

Operator
overloading of =inline

Default Constructors

String::String(void)
{
! _s = new char[1];! ! ! // allocate a char array
! _s[0] = '\0';!! ! ! ! // NULL terminate it!
}

Allocate memory
for the string

String anEmptyString; !! ! // call String::String()
String stringVector[10]; !! // call it ten times!

Every constructor should establish the class invariant:

The default constructor for a class is called when a new
instance is declared without any initialization parameters:

Destructors

String::~String (void)
{
! delete [] _s; !! !
}

free memory

The String destructor must explicitly free any memory
allocated by that object

Every new must be matched somewhere by a delete!
- use new and delete for objects

 - use new[] and delete[] for arrays!

Copy Constructors

String::String(const String& copy)
{
! become(copy._s); !! ! ! // call helper
}

void String::become(const char* s) throw (exception)
{
! _s = new char[::strlen(s) + 1];
! if (_s == 0) throw(logic_error("new failed"));
! ::strcpy(_s, s);
}

From std

Our String copy constructor must create a deep copy:

A few remarks ...

 We must define a copy constructor, ... else copies of
Strings will share the same representation!

 Modifying one will modify the other!

 Destroying one will invalidate the other!

 We must declare copy as const, … else we won’t be
able to construct a copy of a const String!

 Only const (immutable) operations are permitted on const values

A few remarks ...

 We must declare copy as String&, not String,
… else a new copy will be made before it is passed to
the constructor!

 Functions arguments are always passed by value in C++

 The “value” of a pointer is a pointer!

 The abstraction boundary is a class, not an object.
Within a class, all private members are visible (as is
copy._s)

Other Constructors

 Class constructors may have arbitrary arguments, as
long as their signatures are unique and unambiguous:

 Since the argument is not modified, we can declare it
as const. This will allow us to construct String
instances from constant char arrays.

String::String(const char* s)
{
! become(s);
}

Assignment Operators

 Return String& rather than void so the result can be used in
an expression

 Return String& rather than String so the result won’t be
copied!

 this is a pseudo-variable whose value is a pointer to the
current object

 so *this is the value of the current object, which is returned by
reference

String& String::operator=(const String& copy)
{
! if (this != ©) {! ! // take care!
! ! delete [] _s;
! ! become(copy._s);
! }
! return *this; ! ! ! ! // NB: a reference, not a copy
}

Assignment is different from the copy constructor because
an instance already exists:

Implicit Conversion

 When an argument of the “wrong” type is passed to a
function, the C++ compiler looks for a constructor that
will convert it to the “right” type:

 is implicitly converted to:

str = "hello world";

str = String("hello world");

NB: compare to autoboxing in Java

Operator Overloading (indexing)

 Not only assignment, but other useful operators can
be “overloaded” provided their signatures are unique:

 NB: a non-const reference is returned, so can be
used as an lvalue in an assignment

char& String::operator[] (const int n) throw(exception)
{
! if ((n<0) || (length()<=n)) {
! ! throw(logic_error("array index out of bounds"));
! }
! return _s[n];
}

Overloadable Operators

+ - * / % ^ & |

- ! , = < > <= >=

++ -- << >> == != && ||

+= -= /= %= ^= &= |= *=

<<= >>= [] () -> ->* new delete

The following operators may be overloaded:

NB: arity and precedence are fixed by C++

Friends

 We would like to be able to write:

 But:

 It can’t be a member function of ostream, since we can’t extend
the standard library

 It can’t be a member function of String since the target is cout

 But it must have access to String’s private data

 So ... we need a binary function << that takes a cout
and a String as arguments, and is a friend of String.

cout << String("TESTING ... ") << endl;

Friends ...

class String
{
 friend ostream&
! ! ! operator<<(ostream&, const String&);
! ...
};

ostream&
operator<<(ostream& outStream, const String& s)
{
! return outStream << s._s;
}

We declare:

And define:

Roadmap

1.C++ vs C

2.C++ vs Java

3.References vs pointers

4.C++ classes: Orthodox Canonical Form

5.A quick look at STL — The Standard Template
Library

Standard Template Library

 STL is a general-purpose C++ library of generic
algorithms and data structures.

 Containers store collections of objects

 vector, list, deque, set, multiset, map, multimap

 Iterators traverse containers

 random access, bidirectional, forward/backward ...

 Function Objects encapsulate functions as objects

 arithmetic, comparison, logical, and user-defined ...

 Algorithms implement generic procedures

 search, count, copy, random_shuffle, sort, ...

 Adaptors provide an alternative interface to a
component

 stack, queue, reverse_iterator, ...

An STL Line Reverser

#include <iostream>
#include <stack>! ! ! ! ! ! // STL stacks
#include <string>! ! ! ! ! ! // Standard strings

void rev(void)
{
! typedef stack<string> IOStack;! // instantiate the template
! IOStack ioStack;! ! ! ! ! // instantiate the template class
! string buf;

! while (getline(cin, buf)) {
! ! ioStack.push(buf);
! }
! while (ioStack.size() != 0) {
! ! cout << ioStack.top() << endl;
! ! ioStack.pop();
! }
}

What we didn’t have time for ...

 virtual member functions, pure virtuals

 public, private and multiple inheritance

 default arguments, default initializers

 method overloading

 const declarations

 enumerations

 smart pointers

 static and dynamic casts

 Templates, STL

 template specialization

 namespaces

What you should know!

 What new features does C++ add to C?

 What does Java remove from C++?

 How should you use C and C++ commenting styles?

 How does a reference differ from a pointer?

 When should you use pointers in C++?

 Where do C++ objects live in memory?

 What is a member initialization list?

 Why does C++ need destructors?

 What is OCF and why is it important?

 What’s the difference between delete and delete[]?

 What is operator overloading?

Can you answer these questions?

 Why doesn’t C++ support garbage collection?

 Why doesn’t Java support multiple inheritance?

 What trouble can you get into with references?

 Why doesn’t C++ just make deep copies by default?

 How can you declare a class without a default
constructor?

 Why can objects of the same class access each
others private members?

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

!
Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5

License

