
Inheritance and
Refactoring

Alexandre Bergel
abergel@dcc.uchile.cl

05/05/2010

Source

 Wirfs-Brock & McKean, Object Design — Roles,
Responsibilities and Collaborations, 2003.

Roadmap

 1 - Uses of inheritance

 conceptual hierarchy, polymorphism and code reuse

 2 - TicTacToe and Gomoku

 interfaces and abstract classes

 3 - Iterative development

 Quiet testing

 4 - Refactoring

 iterative strategies for improving design

 5 - Top-down decomposition

 decomposing algorithms to reduce complexity

Roadmap

 1 - Uses of inheritance

 conceptual hierarchy, polymorphism and code reuse

 2 - TicTacToe and Gomoku

 interfaces and abstract classes

 3 - Iterative development

 Quiet testing

 4 - Refactoring

 iterative strategies for improving design

 5 - Top-down decomposition

 decomposing algorithms to reduce complexity

What is Inheritance

 Inheritance in object-oriented programming
languages is a mechanism to:

 derive new subclasses from existing classes

 where subclasses inherit all the features from their parent(s)

 and may selectively override the implementation of some features.

Inheritance mechanisms

OO languages realize inheritance in different ways:OO languages realize inheritance in different ways:

self dynamically access subclass methods
super statically access overridden, inherited methods

multiple inheritance inherit features from multiple superclasses

abstract classes partially defined classes (to inherit from only)
mixins build classes from partial sets of features

interfaces specify method argument and return types

subtyping guarantees that subclass instances can be substituted
for their parents

The Board Game...

 Tic Tac Toe is a pretty dull game, but there are many
other interesting games that can be played by two
players with a board and two colors of markers.

 Example: Go-moku

 “A Japanese game played on a go board with players alternating
and attempting to be first to place five counters in a row.”

 — Random House

The Board Game

 We would like to implement a program that can be
used to play several different kinds of games using the
same game-playing abstractions (starting with
TicTacToe and Go-moku).

Use of Inheritance...

 Inheritance in object-oriented programming
languages can be used for (at least) three different, but
closely related purposes:

Use of Inheritance...

 Conceptual hierarchy

 Go-moku is-a kind of Board Game; Tic Tac Toe is-a kind of Board
Game

 Polymorphism

 Instances of Gomoku and TicTacToe can be uniformly manipulated
as instances of BoardGame by a client program

 Software reuse

 Gomoku and TicTacToe reuse the BoardGame interface

 Gomoku and TicTacToe reuse and extend the BoardGame
representation and the implementations of its operations

 Note that these three kinds of inheritance can also

 be exploited separately and independently

Roadmap

 1 - Uses of inheritance

 conceptual hierarchy, polymorphism and code reuse

 2 - TicTacToe and Gomoku

 interfaces and abstract classes

 3 - Iterative development

 Quiet testing

 4 - Refactoring

 iterative strategies for improving design

 5 - Top-down decomposition

 decomposing algorithms to reduce complexity

Class diagrams

KeyKey
- private feature
protected feature
+ public feature

create() static feature
checkWinner() abstract feature

The TicTacToe class
currently looks like

this:

A bad idea...

Why not simply use inheritance for
incremental modification?

Exploiting inheritance for code reuse
without refactoring tends to lead to:
 - duplicated code (similar, but not
reusable methods)
 - conceptually unclear design
(arbitrary relationships between
classes)

Gomoku is not a kind of TicTacToe

Class hierarchy

 Both Go-moku and Tic Tac Toe
are kinds of Board games (IS-A).

 We would like to define a
common interface, and factor the
common functionality into a
shared parent class.

Behaviour that is not shared will be implemented by
the subclasses.

Roadmap

 1 - Uses of inheritance

 conceptual hierarchy, polymorphism and code reuse

 2 - TicTacToe and Gomoku

 interfaces and abstract classes

 3 - Iterative development

 Quiet testing

 4 - Refactoring

 iterative strategies for improving design

 5 - Top-down decomposition

 decomposing algorithms to reduce complexity

Iterative development strategy...

 We need to find out which TicTacToe functionality will:

 already work for both TicTacToe and Gomoku

 need to be adapted for Gomoku

 can be generalized to work for both

 Example: set() and get() will not work for a 19×19
board!

Iterative development strategy...

 Rather than attempting a “big bang” redesign, we will
iteratively redesign our game:

 introduce a BoardGame interface that TicTacToe implements

 move all TicTacToe implementation to an AbstractBoardGame
parent

 fix, refactor or make abstract the non-generic features

 introduce Gomoku as a concrete subclass of AbstractBoardGame

Iterative development strategy

 After each iteration we run our regression tests to
make sure nothing is broken!

 When should you run your (regression) tests?

 After every change to the system.

Version 3 (add interface)

We specify the interface both subclasses
should implement:

public interface BoardGame {
 public void update() throws IOException;
 public void move(char col, char row, char mark);
 public Player currentPlayer(); // NB: new method
 public Player winner();
 public boolean notOver();
 public int squaresLeft();
}

Initially we focus only on abstracting from the
current TicTacToe implementation

Speaking to an Interface

Clients of TicTacToe and Gomoku should only depend on the
BoardGame interface:

public class GameDriver {
 public static void main(String args[]) {
 Player X = new Player('X');
 Player O = new Player('O');
 playGame(new TicTacToe(X, O));
 }

 public static void playGame(BoardGame game) {
 ...
 }

Speak to an interface, not an implementation

Roadmap

 1 - Uses of inheritance

 conceptual hierarchy, polymorphism and code reuse

 2 - TicTacToe and Gomoku

 interfaces and abstract classes

 3 - Iterative development

 Quiet testing

 4 - Refactoring

 iterative strategies for improving design

 5 - Top-down decomposition

 decomposing algorithms to reduce complexity

Quiet Testing...

Our current TestDriver prints the state of the game after
each move, making it hard to tell when a test has failed.

Tests should be silent unless an error has occurred!

public static void playGame(BoardGame game, boolean verbose) {
 ...
 if (verbose) {
 System.out.println();
 System.out.println(game);
 ...
}

NB: we must shift all responsibility for printing to playGame()

Quiet Testing

A more flexible approach is to let the client
supply the PrintStream:

public static void playGame(BoardGame game, PrintStream out) {
 try {
 do { // all printing must move here …
 out.println();
 out.println(game);
 out.print("Player "
 + game.currentPlayer().mark() + " moves: ");
 …

playGame(game, System.out);
playGame(game, new PrintStream(new NullOutputStream()));

The TestDriver can simply send the output to a Null stream:

NullOutputStream

A Null Object implements an interface with null methods:

public class NullOutputStream extends OutputStream {
 public NullOutputStream() { super(); }

 // Null implementation of inherited abstract method
 public void write(int b) throws IOException { }
}

Null Objects are useful for eliminating flags and switches

TicTacToe adaptations

In order to pass responsibility for printing to the GameDriver, a
BoardGame must provide a method to export the current Player:

Now we run our regression tests and
(after fixing any bugs) continue

public class TicTacToe implements BoardGame {
 ...
 public Player currentPlayer() {
 return player[turn];
 }

Version 4 — add abstract class

AbstractBoardGame will provide common variables and
methods for TicTacToe and Gomoku.

In a first step we include the entire TicTacToe implementation …

When should a class be declared abstract?
Declare a class abstract if it is intended to be subclassed,

but not instantiated

public abstract class AbstractBoardGame implements BoardGame {
 static final int X = 0;
 static final int O = 1;
 …

Roadmap

 1 - Uses of inheritance

 conceptual hierarchy, polymorphism and code reuse

 2 - TicTacToe and Gomoku

 interfaces and abstract classes

 3 - Iterative development

 Quiet testing

 4 - Refactoring

 iterative strategies for improving design

 5 - Top-down decomposition

 decomposing algorithms to reduce complexity

Refactoring

 Refactoring is a process of moving methods and
instance variables from one class to another to
improve the design, specifically to:

 reassign responsibilities

 eliminate duplicated code

 reduce coupling: interaction between classes

 increase cohesion: interaction within classes

Refactoring strategies

 We have adopted one possible refactoring strategy, first
moving everything except the constructor from TicTacToe
to AbstractBoardGame, and changing all private features
to protected. TicTacToe inherits everything:

 We could equally have started with an empty
AbstractBoardGame and gradually moved shared code
there

public class TicTacToe extends AbstractBoardGame {
 public TicTacToe(Player playerX, Player playerO)
 {
 super(playerX, playerO);
 }
}

Version 5 — refactoring...

 Now we must check which parts of
AbstractBoardGame are generic, which must be
repaired, and which must be deferred to its
subclasses:

 the number of rows and columns and the winning
score may vary

 introduce instance variables and an init() method

 rewrite toString(), invariant(), and inRange()

Version 5 — refactoring

 set() and get() are inappropriate for a 19×19 board

 index directly by integers

 fix move() to take String argument (e.g., “f17”)

 add methods to parse string into integer coordinates

 getWinner() and toString() must be generalized

AbstractBoardGame

We introduce an abstract init() method for
arbitrary sized boards:

public abstract class AbstractBoardGame ... {
 protected abstract void init();
 …

public class TicTacToe extends AbstractBoardGame {
 ...
 protected void init() {
 rows = 3;
 cols = 3;
 winningScore = 3;
 }
 …

And call it from the constructors of our subclasses:

Or: introduce a constructor for AbstractBoardGame!

BoardGame

Most of the changes in AbstractBoardGame are to protected
methods.

The only public (interface) method to change is move():

public interface BoardGame {
 ...
 public void move(String coord, char mark);
 ...
}

Player

The Player’s move() method can now be radically simplified:

public void move(BoardGame game) throws IOException {
 String line;
 line = in.readLine();
 if (line == null) {
 throw new IOException("end of input");
 }
 game.move(line, this.mark());
}

How can we make the Player responsible for checking
if the move is valid?

Roadmap

 1 - Uses of inheritance

 conceptual hierarchy, polymorphism and code reuse

 2 - TicTacToe and Gomoku

 interfaces and abstract classes

 3 - Iterative development

 Quiet testing

 4 - Refactoring

 iterative strategies for improving design

 5 - Top-down decomposition

 decomposing algorithms to reduce complexity

Version 6 — Gomoku

 The final steps are:

 rewrite checkWinner()

 introduce Gomoku

 - modify TestDriver to run tests for both TicTacToe and Gomoku

 - print game state whenever a test fails

 modify GameDriver to query user for either TicTacToe or Gomoku

Keeping Score

 The Go board is too large to search
exhaustively for a winning Go-moku
score.

 We know that a winning sequence
must include the last square marked.
So, it suffices to search in all four
directions starting from that square
to see if we find 5 in a row.

 Whose responsibility is it to search?

A new responsibility ...

Maintaining the state of the board and searching for a
winning run seem to be unrelated responsibilities. So let’s

introduce a new object (a Runner) to run and count a
Player’s pieces.

protected void checkWinner(int col, int row)... {
 char player = this.get(col,row);
 Runner runner = new Runner(this, col, row);
 // check vertically
 if (runner.run(0,1) >= this.winningScore)
 { this.setWinner(player); return; }
 // check horizontally
 if (runner.run(1,0) >= this.winningScore)
 { this.setWinner(player); return; }
 ...
}

The Runner

The Runner must know its game, its home
(start) position, and its current position:

public class Runner {
 BoardGame game;
 int homeCol, homeRow; // Home col and row
 int col=0, row=0; // Current col & row

 public Runner(BoardGame myGame, int myCol, int myRow) {
 game = myGame;
 homeCol = myCol;
 homeRow = myRow;
 }
...

Top-down decomposition

Implement algorithms abstractly, introducing helper methods
for each abstract step, as you decompose:

Well-chosen names eliminate the need for most comments!

public int run(int dcol, int drow)
 throws AssertionException {
 int score = 1;
 this.goHome() ;
 score += this.forwardRun(dcol, drow);
 this.goHome();
 score += this.reverseRun(dcol, drow);
 return score;
}

Recursion

Many algorithms are more naturally expressed with
recursion than iteration.

Recursively move forward as long as we are in a run.
Return the length of the run:

private int forwardRun(int dcol, int drow) {
 this.move(dcol, drow);
 if (this.samePlayer())
 return 1 + this.forwardRun(dcol, drow);
 else
 return 0;
}

More helper methods

Helper methods keep the main algorithm clear and uncluttered,
and are mostly trivial to implement.

How would you implement move() and samePlayer()?

private int reverseRun(int dcol, int drow) ... {
 return this.forwardRun(-dcol, -drow);
}

private void goHome() {
 col= homeCol;
 row = homeRow;
}

BoardGame

The Runner now needs access to the get() and inRange()
methods so we make them public:

Which methods should be public?
Only publicize methods that clients will really need,

and will not break encapsulation

public interface BoardGame {
 ...
 public char get(int col, int row);
 public boolean inRange(int col, int row);
 ...
}

Gomoku

Gomoku is similar to TicTacToe, except it is played on
a 19x19 Go board, and the winner must get 5 in a row.

In the end, Gomoku and TicTacToe could inherit everything
(except their constructor) from AbstractGameBoard!

public class Gomoku extends AbstractBoardGame {
 public Gomoku(Player playerX, Player playerO) {
 super(playerX, playerO);
 }
 protected void init() {
 rows = 19;
 cols = 19;
 winningScore = 5;
 }
}

Abstract test framework

public abstract class AbstractBoardGameTest extends TestCase {
 protected BoardGame game;

 public AbstractBoardGameTest (String name) { super(name); }

 public void checkGame(String Xmoves, String Omoves,
 String winner, int squaresLeft) {
 Player X = new Player('X', Xmoves);
 Player O = new Player('O', Omoves);
 game = makeGame(X,O);
 GameDriver.playGame(game, new PrintStream(new NullOutputStream()));
 assertEquals(game.winner().name(), winner);

 assertEquals(game.squaresLeft(), squaresLeft);
 }
 abstract protected BoardGame makeGame(Player X, Player O) ;
 …
}

Gomoku tests …

Subclasses specialize the factory method for
 instantiating the game

public class GomokuTest extends AbstractBoardGameTest {
 …

 public void testXWinsDiagonal() {
 checkGame("\naa\n" // nonsense input
 + "f6\ng5\ne7\nd8\nc9\n",
 "b2\nh4\nc3\nd4\n",
 "X", (19*19-9));
 }

 protected BoardGame makeGame(Player X, Player O) {
 return new Gomoku(X, O);
 }
}

What you should know!

 How does polymorphism help in writing generic
code?

 When should features be declared protected rather
than public or private?

 How do abstract classes help to achieve code reuse?

 What is refactoring? Why should you do it in small
steps?

 How do interfaces support polymorphism?

 Why should tests be silent?

Can you answer these questions?

 What would change if we didn’t declare
AbstractBoardGame to be abstract?

 How does an interface (in Java) differ from a class
whose methods are all abstract?

 Can you write generic toString() and invariant()
methods for AbstractBoardGame?

 Is TicTacToe a special case of Gomoku, or the other
way around?

 How would you reorganize the class hierarchy so that
you could run Gomoku with boards of different sizes?

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5

License

