
Testing and Debugging
Alexandre Bergel

abergel@dcc.uchile.cl
28/04/2010

Source

 I. Sommerville, Software Engineering, Addison-
Wesley, Sixth Edn., 2000.

 svnbook.red-bean.com

 www.eclipse.org

Roadmap

1.Testing — definitions and strategies

2.Understanding the run-time stack and heap

3.Debuggers

4.Timing benchmarks

5.Profilers

6.Version control systems

Roadmap

1.Testing — definitions and strategies

2.Understanding the run-time stack and heap

3.Debuggers

4.Timing benchmarks

5.Profilers

6.Version control systems

Testing

Unit testing: test individual (stand-alone) components

Module testing: test a collection of related components (a
module)

Sub-system
testing: test sub-system interface mismatches

System testing:
(i) test interactions between sub-systems, and
(ii) test that the complete systems fulfils
functional and non-functional requirements

Acceptance
testing (alpha/beta

testing):
test system with real rather than simulated
data.

Testing is always iterative!

Regression testing

 Regression testing means testing that everything that
used to work still works after changes are made to the
system!

 tests must be deterministic and repeatable

 should test “all” functionality

 every interface (black-box testing)

 all boundary situations

 every feature

 every line of code (white-box testing)

 everything that can conceivably go wrong!

Regression testing

 It costs extra work to define tests up front, but they
more than pay off in debugging & maintenance!

Caveat: Testing and Correctness

“Program testing can be used to
show the presence of bugs, but
never to show their absence!”

—Edsger Dijkstra, 1970

Testing a Stack

We define a simple regression test that
exercises all StackInterface methods and checks

the boundary situations:
public class LinkStackTest {
 protected StackInterface stack;
 private int size;

 @Before public void setUp() {
 stack = new LinkStack();
 }

 @Test public void empty() {
 assertTrue(stack.isEmpty());
 assertEquals(0, stack.size());
 }
…

Build simple test cases

Construct a test case and check the obvious conditions:

 @Test public void oneElement() {
 stack.push("a");
 assertFalse(stack.isEmpty());
 assertEquals(1, size = stack.size());
 stack.pop();
 assertEquals(size -1, stack.size());
 }

What other test cases do you need to fully exercise a Stack
implementation?

Check that failures are caught

How do we check that an assertion fails when it should?

 @Test(expected=AssertionError.class)
 public void emptyTopFails() {
 stack.top();
 }

 @Test(expected=AssertionError.class)
 public void emptyRemoveFails() {
 stack.pop();
 }

ArrayStack

We can also implement a (variable) Stack using a
(fixed-length) array to store its elements:

public class ArrayStack implements StackInterface {
 private Object store [];
 private int capacity;
 private int size;

 public ArrayStack() {
 store = null; // default value
 capacity = 0; // available slots
 size = 0; // used slots
 }

What would be a suitable class invariant for ArrayStack?

Handling overflow

Whenever the array runs out of space, the Stack “grows” by
allocating a larger array, and copying elements to the new array.

public void push(Object item)
{
 if (size == capacity) {
 grow();
 }
 store[++size] = item; // NB: subtle error!
}

How would you implement the grow() method?

Checking pre-conditions

public boolean isEmpty() { return size == 0; }
public int size() { return size; }

public Object top() {
 assert(!this.isEmpty());
 return store[size-1];
}
public void pop() {
 assert(!this.isEmpty());
 size--;
}

NB: we only check pre-conditions in this version!

Should we also shrink() if the Stack gets too small?

Adapting the test case

We can easily adapt our test case by overriding
the setUp() method in a subclass.

public class ArrayStackTest extends LinkStackTest {
 @Before public void setUp() {
 stack = new ArrayStack();
 }
}

Roadmap

1.Testing — definitions and strategies

2.Understanding the run-time stack and heap

3.Debuggers

4.Timing benchmarks

5.Profilers

6.Version control systems

Testing ArrayStack

When we test our ArrayStack, we get a surprise:

java.lang.ArrayIndexOutOfBoundsException: 2
 at cc3002.stack.ArrayStack.push(ArrayStack.java:27)
 at cc3002.stack.LinkStackTest.twoElement(LinkStackTest.java:46)
 at ...

The stack trace tells us exactly where the exception occurred ...

The Run-time Stack

The run-time stack is a fundamental data structure used to record
the context of a procedure that will be returned to at a later point in

time.

This context (AKA “stack frame”) stores the arguments to the
procedure and its local variables.

Practically all programming languages use a run-time stack:

The Run-time Stack

 public static void main(String args[]) {
 System.out.println("fact(3) = " + fact(3));
 }
 public static int fact(int n) {
 if (n<=0) { return 1; }
 else { return n*fact(n-1) ; }
 }

The run-time stack in action ...

main …

fact(3)=? n=3; ...

fact(3)=? n=3;fact(2)=? n=2;fact(2) ...

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? n=1;fact(1) ...

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? n=1;fact(0)=? n=0;fact(0) ...

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? n=1;fact(0)=? return 1

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? return 1

fact(3)=? n=3;fact(2)=? return 2

fact(3)=? return 6

fact(3)=6

A stack frame is
pushed with each
procedure call ...

... and popped with
each return.

The Stack and the Heap

The Heap grows with
each new Object

created,

and shrinks
when

Objects are
garbage-
collected.

Roadmap

1.Testing — definitions and strategies

2.Understanding the run-time stack and heap

3.Debuggers

4.Timing benchmarks

5.Profilers

6.Version control systems

Debuggers

 A debugger is a tool that allows you to examine the
state of a running program:

 step through the program instruction by instruction

 view the source code of the executing program

 inspect (and modify) values of variables in various formats

 set and unset breakpoints anywhere in your program

 execute up to a specified breakpoint

 examine the state of an aborted program (in a “core file”)

Using Debuggers

 Interactive debuggers are available for most mature
programming languages and integrated in IDEs.

 Classical debuggers are line-oriented (e.g., jdb); most
modern ones are graphical.

 When should you use a debugger?

 When you are unsure why (or where) your program is not working

Debugging in Eclipse

When
unexpected
exceptions
arise, you

can use the
debugger to
inspect the
program
state …

Debugging Strategy...

 Develop tests as you program

 Apply Design by Contract to decorate classes with invariants and
pre- and post-conditions

 Develop unit tests to exercise all paths through your program

 use assertions (not print statements) to probe the program state

 print the state only when an assertion fails

 After every modification, do regression testing!

Debugging Strategy

 If errors arise during testing or usage

 Use the test results to track down and fix the bug

 If you can’t tell where the bug is, then use a debugger to identify
the faulty code

 - fix the bug

 - identify and add any missing tests!

 All software bugs are a matter of false assumptions. If you make
your assumptions explicit, you will find and stamp out your bugs!

Fixing our mistake

We erroneously used the incremented size as an index into the
store, instead of the new size of the stack - 1:

public void push(Object item) ... {
 if (size == capacity) { grow(); }
 store[size++] = item;
 assert(this.top() == item);
 assert(invariant());
}

store[this.topIndex()] = item;

1
0

NB: perhaps it would be clearer to write:

item

Wrapping Objects

 Wrapping is a fundamental programming technique
for systems integration.

 What do you do with an object whose interface
doesn’t fit your expectations?

 You wrap it

 What are possible disadvantages of wrapping?

client
wrapper

java.util.Stack

Java also provides a Stack implementation,
but it is not compatible with our interface:

public class Stack extends Vector {
 public Stack();
 public Object push(Object item);
 public synchronized Object pop();
 public synchronized Object peek();
 public boolean empty();
 public synchronized int search(Object o);
}

If we change our programs to work with the Java Stack,
we wonʼt be able to work with our own Stack implementations ...

A Wrapped Stack

A wrapper class implements a required interface, by delegating
requests to an instance of the wrapped class:

public class SimpleWrappedStack implements StackInterface {
 Stack stack;
 public SimpleWrappedStack() { stack = new Stack(); }
 public boolean isEmpty() { return stack.empty(); }
 public int size() { return stack.size(); }
 public void push(Object item) { stack.push(item); }
 public Object top() { return stack.peek(); }
 public void pop() { stack.pop(); }
}

Do you see any flaws with our wrapper class?

A contract mismatch

But running the test case yields:

java.lang.Exception: Unexpected exception,
expected<java.lang.AssertionError> but
was<java.util.EmptyStackException>
 ...
Caused by: java.util.EmptyStackException
 at java.util.Stack.peek(Stack.java:79)
 at cc3002.stack.SimpleWrappedStack.top(SimpleWrappedStack.java:32)
 at cc3002.stack.LinkStackTest.emptyTopFails(LinkStackTest.java:28)
 ...

What went wrong?

Fixing the problem

Our tester expects an empty Stack to throw an exception
when it is popped, but java.util.Stack doesn’t do this —

so our wrapper should check its preconditions!

public class WrappedStack implements StackInterface {
 public Object top() {
 assert !this.isEmpty();
 return super.top();
 }
 public void pop() {
 assert !this.isEmpty();
 super.pop();
 assert invariant();
 }
 …
}

Roadmap

1.Testing — definitions and strategies

2.Understanding the run-time stack and heap

3.Debuggers

4.Timing benchmarks

5.Profilers

6.Version control systems

Timing benchmarks

Which of the Stack implementations performs better?
timer.reset();
for (int i=0; i<iterations; i++) {
 stack.push(item);
}
elapsed = timer.timeElapsed();
System.out.println(elapsed + " milliseconds for "
 + iterations + " pushes");
...

Complexity aside, how can you tell which implementation
strategy will perform best?

Run a benchmark

Timer

import java.util.Date;
public class Timer { // Abstract from the
 protected Date startTime; // details of timing
 public Timer() {
 this.reset();
 }
 public void reset() {
 startTime = new Date();
 }
 public long timeElapsed() {
 return new Date().getTime() - startTime.getTime();
 }
}

Sample benchmarks (milliseconds)

Stack Implementation 100K pushes 100K pops
p2.stack.LinkStack 126 6
p2.stack.ArrayStack 138 3
p2.stack.WrappedStack 104 154

Can you explain these results? Are they what you expected?

Roadmap

1.Testing — definitions and strategies

2.Understanding the run-time stack and heap

3.Debuggers

4.Timing benchmarks

5.Profilers

6.Version control systems

Profilers

 A profiler tells you where a terminated program has
spent its time

 1 - your program must first be instrumented by

 I - setting a compiler (or interpreter) option, or

 II - adding instrumentation code to your source program

 2 - the program is run, generating a profile data file

 3 - the profiler is executed with the profile data as input

 The profiler can then display the call graph in various
formats

 Caveat: the technical details vary from compiler to
compiler

Using java -Xprof

Flat profile of 0.61 secs (29 total ticks): main

 Interpreted + native Method
 20.7% 0 + 6 java.io.FileOutputStream.writeBytes
 3.4% 0 + 1 sun.misc.URLClassPath$FileLoader.<init>
 3.4% 0 + 1 p2.stack.LinkStack.push
 3.4% 0 + 1 p2.stack.WrappedStack.push
 3.4% 0 + 1 java.io.FileInputStream.open
 3.4% 1 + 0 sun.misc.URLClassPath$JarLoader.getResource
 3.4% 0 + 1 java.util.zip.Inflater.init
 3.4% 0 + 1 p2.stack.ArrayStack.grow
 44.8% 1 + 12 Total interpreted

…

Example of Profiler Features

Using Profilers

 When should you use a profiler?

 Always run a profiler before attempting to tune performance.

 How early should you start worrying about
performance?

 Only after you have a clean, running program with poor
performance.

 NB: The call graph also tells you which parts of the
program have (not) been tested!

Roadmap

1.Testing — definitions and strategies

2.Understanding the run-time stack and heap

3.Debuggers

4.Timing benchmarks

5.Profilers

6.Version control systems

Version Control Systems

 A version control system keeps track of multiple file
revisions:

 check-in and check-out of files

 logging changes (who, where, when)

 merge and comparison of versions

 retrieval of arbitrary versions

 “freezing” of versions as releases

 reduces storage space (manages sources files + multiple “deltas”)

Version control

 Version control enables you to make radical changes
to a software system, with the assurance that you can
always go back to the last working version.

 When should you use a version control system?

 Use it whenever you have one available, for even the smallest
project!

 Version control is as important as testing in iterative
development!

Subversion (SVN)

 SVN is a standard versioning system for Mac, Windows
and UNIX platforms (see subversion.tigris.org)

 Shared repository for teamwork

 Manages hierarchies of files

 Manages parallel development branches

 Uses optimistic version control

 no locking

 merging on conflict

 Offers network-based repositories

 Integrated in Eclipse!

Using SVN

svn import ${svnrepo}/MyProject
cd MyProject make a svn directory
cd somewhere checkout a svn project
svn co ${svnrepo}/MyProject
cd MyProject
... modify and add files (text or binary)
svn add ArrayStack.java
svn commit commit changes (with comments)
... time passes ...
svn update update working copy (if necessary)
svn log list recent changes

SVN and Eclipse

Eclipse offers a
simple GUI for

interacting with svn
repositories

What you should know!

 What is a regression test? Why is it important?

 What strategies should you apply to design a test?

 What are the run-time stack and heap?

 How can you adapt client/supplier interfaces that
don’t match?

 When are benchmarks useful?

Can you answer these questions?

 Why can’t you use tests to demonstrate absence of
defects?

 How would you implement ArrayStack.grow()?

 Why doesn’t Java allocate objects on the run-time stack?

 What are the advantages and disadvantages of
wrapping?

 What is a suitable class invariant for WrappedStack?

 How can we learn where each Stack implementation is
spending its time?

 How much can the same benchmarks differ if you run
them several times?

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5

License

