
Iterative Development
Alexandre Bergel

abergel@dcc.uchile.cl
26/04/2010

Source

 Rebecca Wirfs-Brock, Alan McKean,

 Object Design — Roles, Responsibilities and Collaborations,
Addison-Wesley, 2003.

 Kent Beck,

 Extreme Programming Explained — Embrace Change, Addison-
Wesley, 1999.

Roadmap

 1 - The iterative software lifecycle

 2 - Responsibility-driven design

 3 - TicTacToe example

 Identifying objects

 Scenarios

 Test-first development

 Printing object state

 Testing scenarios

 Representing responsibilities as contracts

Roadmap

 1 - The iterative software lifecycle

 2 - Responsibility-driven design

 3 - TicTacToe example

 Identifying objects

 Scenarios

 Test-first development

 Printing object state

 Testing scenarios

 Representing responsibilities as contracts

The Classical Software Lifecycle

Maintenance

Testing

Implementation

Design

Requirements
Collections

Analysis
The classical software
lifecycle models the

software development
as a step-by-step “waterfall”

between the various
development phases.

The waterfall model is unrealistic for many reasons, especially:
- requirements must be “frozen” too early in the life-cycle
- requirements are validated too late

Iterative Development

 In practice, development is always iterative, and all
software phases progress in parallel.

If the waterfall model is pure fiction, why is it still
the standard software process?

Testing Implementation

Design
Requirements

Collections

Analysis

Maintenance through iteration

Testing based on requirements Validation through prototyping

Testing throughout implementation

Design through refactoring

Roadmap

 1 - The iterative software lifecycle

 2 - Responsibility-driven design

 3 - TicTacToe example

 Identifying objects

 Scenarios

 Test-first development

 Printing object state

 Testing scenarios

 Representing responsibilities as contracts

What is Responsibility-Driven
Design?

 Responsibility-Driven Design is

 a method for deriving a software design in terms of collaborating
objects

 by asking what responsibilities must be fulfilled to meet the
requirements,

 and assigning them to the appropriate objects (i.e., that can carry
them out)

How to assign responsibility?

 Pelrine’s Laws:

 “Don't do anything you can push off to someone else.”

 “Don't let anyone else play with you.”

 RDD leads to fundamentally different designs than
those obtained by functional decomposition or data-
driven design

 Class responsibilities tend to be more stable over
time than functionality or representation

Roadmap

 1 - The iterative software lifecycle

 2 - Responsibility-driven design

 3 - TicTacToe example

 Identifying objects

 Scenarios

 Test-first development

 Printing object state

 Testing scenarios

 Representing responsibilities as contracts

Example: “Tic Tac Toe”

 Requirements

 “A simple game in which one player marks down only crosses and
another only ciphers [zeroes], each alternating in filling in marks in
any of the nine compartments of a figure formed by two vertical
lines crossed by two horizontal lines, the winner being the first to fill
in three of his marks in any row or diagonal.”

 — Random House Dictionary

 We should design a program that implements the
rules of Tic Tac Toe

Setting Scope...

 Questions:

 Should we support other games?

 Should there be a graphical UI?

 Should games run on a network? Through a browser?

 Can games be saved and restored?

 A monolithic paper design is bound to be wrong!

Setting Scope

 An iterative development strategy:

 limit initial scope to the minimal requirements that are interesting

 grow the system by adding features and test cases

 let the design emerge by refactoring roles and responsibilities

 How much functionality should you deliver in the first
version of a system?

 Select the minimal requirements that provide value to the client

Roadmap

 1 - The iterative software lifecycle

 2 - Responsibility-driven design

 3 - TicTacToe example

 Identifying objects

 Scenarios

 Test-first development

 Printing object state

 Testing scenarios

 Representing responsibilities as contracts

Tic Tac Toe Objects...

Objects Responsibilities
Game Maintain game rules

Player Make moves
Mediate user interaction

Compartment Record marks
Figure (State) Maintain game state

Some objects can be identified from the requirements:

Entities with clear responsibilities are more likely to end up as
objects in our design

Tic Tac Toe Objects

Others can be eliminated:Others can be eliminated:
Non-Objects Justification

Crosses, ciphers Same as Marks
Marks Value of Compartment

Vertical lines Display of State
Horizontal lines ditto

Winner State of Player
Row View of State

Diagonal ditto

✎How can you tell when you have the “right” set of objects?
✔Each object has a clear and natural set of responsibilities.
✎How can you tell when you have the “right” set of objects?
✔Each object has a clear and natural set of responsibilities.

Missing Objects

 Now we check if there are unassigned
responsibilities:

 Who starts the Game?

 Who is responsible for displaying the Game state?

 How do Players know when the Game is over?

 Let us introduce a Driver that supervises the Game

 How can you tell if there are objects missing in your
design?

 When there are responsibilities left unassigned

Roadmap

 1 - The iterative software lifecycle

 2 - Responsibility-driven design

 3 - TicTacToe example

 Identifying objects

 Scenarios

 Test-first development

 Printing object state

 Testing scenarios

 Representing responsibilities as contracts

Scenarios

A scenario describes a typical sequence of interactions:

Are there other equally valid scenarios for this problem?

Version 0 — skeleton

Our first version does very little!

class GameDriver {
 static public void main(String args[]) {
 TicTacToe game = new TicTacToe();
 do { System.out.print(game); }
 while(game.notOver());
 }
public class TicTacToe {
 public boolean notOver() { return false; }
 public String toString() { return("TicTacToe\n");}
}

How do you iteratively “grow” a program?
Always have a running version of your program.

SVN branches

 Copy a SVN folder to assign a symbolic label to all
files of a given revision

 svn copy project/trunk project/tags/version0

Roadmap

 1 - The iterative software lifecycle

 2 - Responsibility-driven design

 3 - TicTacToe example

 Identifying objects

 Scenarios

 Test-first development

 Printing object state

 Testing scenarios

 Representing responsibilities as contracts

Version 1 — game state

 We will use chess notation to access the game state

 Columns ‘a’ through ‘c’

 Rows ‘1’ through ‘3’

 How do we decide on the right interface?

 First write some tests!

Test-first development

public class TicTacToeTest {
 private TicTacToe game;

 @Before public void setUp() {
 super.setUp();
 game = new TicTacToe();
 }

 @Test public void testState() {
 assertTrue(game.get('a','1') == ' ');
 assertTrue(game.get('c','3') == ' ');
 game.set('c','3','X');
 assertTrue(game.get('c','3') == 'X');
 game.set('c','3',' ');
 assertTrue(game.get('c','3') == ' ');
 assertFalse(game.inRange('d','4'));
 }
}

Generating methods

Test-first programming can drive the
development of the class interface …

Roadmap

 1 - The iterative software lifecycle

 2 - Responsibility-driven design

 3 - TicTacToe example

 Identifying objects

 Scenarios

 Test-first development

 Printing object state

 Testing scenarios

 Representing responsibilities as contracts

Representing game state

public class TicTacToe {
 private char[][] gameState;
 public TicTacToe() {
 gameState = new char[3][3];
 for (char col='a'; col <='c'; col++)
 for (char row='1'; row<='3'; row++)
 this.set(col,row,' ');
 }
...

Printing the state

By re-implementing TicTacToe.toString(),
we can view the state of the game:

3 | |
 ---+---+---
2 | |
 ---+---+---
1 | |
 a b c

How do you make an object printable?
Override Object.toString()

TicTacToe.toString()

Use a StringBuilder (not a String)
to build up the representation:

public String toString() {
 StringBuffer rep = new StringBuilder();
 for (char row='3'; row>='1'; row--) {
 rep.append(row);
 rep.append(" ");
 for (char col='a'; col <='c'; col++) { ... }
 ...
 }
 rep.append(" a b c\n");
 return(rep.toString());
}

Roadmap

 1 - The iterative software lifecycle

 2 - Responsibility-driven design

 3 - TicTacToe example

 Identifying objects

 Scenarios

 Test-first development

 Printing object state

 Testing scenarios

 Representing responsibilities as contracts

Version 2 — adding game logic

 We will

 Add test scenarios

 Add Player class

 Add methods to make moves, test for winning

Refining the interactions

We will want both real and test Players,
so the Driver should create them

 Updating the
Game and
printing it should
be separate
operations.

 The Game
should ask the
Player to make a
move, and then
the Player will
attempt to do so.

Testing scenarios

Our test scenarios will play and test scripted games

@Test public void testXWinDiagonal() {
 checkGame("a1\nb2\nc3\n", "b1\nc1\n", "X", 4);
}
// more tests …

public void checkGame(String Xmoves, String Omoves,
 String winner, int squaresLeft) {
 Player X = new Player('X', Xmoves); // a scripted player
 Player O = new Player('O', Omoves);
 TicTacToe game = new TicTacToe(X, O);
 GameDriver.playGame(game);
 assertTrue(game.winner().name().equals(winner));
 assertTrue(game.squaresLeft() == squaresLeft);
}

Running the test cases

Player O moves: O at c1
3 | |
 ---+---+---
2 | X |
 ---+---+---
1 X | O | O
 a b c
Player X moves: X at c3
3 | | X
 ---+---+---
2 | X |
 ---+---+---
1 X | O | O
 a b c
game over!

3 | |
 ---+---+---
2 | |
 ---+---+---
1 | |
 a b c
Player X moves: X at a1
3 | |
 ---+---+---
2 | |
 ---+---+---
1 X | |
 a b c
...

The Player

We use different constructors to make real or test Players:

public class Player {
 private final char mark;
 private final BufferedReader in;

A real player reads from the standard input stream:
 public Player(char mark) {
 this(mark, new BufferedReader(
 new InputStreamReader(System.in)
));
 }

This constructor just calls another one ...

Player constructors...

But a Player can be constructed that reads its
moves from any input buffer:

 protected Player(char initMark, BufferedReader initIn) {
 mark = initMark;
 in = initIn;
 }

This constructor is not intended to be called directly.

Player constructors

A test Player gets its input from a String buffer:

The default constructor returns a dummy Player
representing “nobody”

 public Player(char mark, String moves) {
 this(mark, new BufferedReader(
 new StringReader(moves)
));
 }

 public Player() { this(' '); }

Roadmap

 1 - The iterative software lifecycle

 2 - Responsibility-driven design

 3 - TicTacToe example

 Identifying objects

 Scenarios

 Test-first development

 Printing object state

 Testing scenarios

 Representing responsibilities as contracts

Tic Tac Toe Contracts

 Explicit invariants

 turn (current player) is either X or O

 X and O swap turns (turn never equals previous turn)

 game state is 3×3 array marked X, O or blank

 winner is X or O iff winner has three in a row

 Implicit invariants

 initially winner is nobody; initially it is the turn of X

 game is over when all squares are occupied, or there is a winner

 a player cannot mark a square that is already marked

 Contracts

 the current player may make a move, if the invariants are
respected

Encoding the contract

We must introduce state variables to implement
the contracts

public class TicTacToe {
 static final int X = 0; // constants
 static final int O = 1;
 private char[][] gameState;
 private Player winner = new Player(); // = nobody
 private Player[] player;
 private int turn = X; // initial turn
 private int squaresLeft = 9;
...

Supporting test Players

 public TicTacToe(Player playerX, Player playerO)
 { // ...
 player = new Player[2];
 player[X] = playerX;
 player[O] = playerO;
 }

The Game no longer instantiates the Players,
but accepts them as constructor arguments:

Invariants

private boolean invariant() {
 return (turn == X || turn == O)
 && (this.notOver()
 || this.winner() == player[X]
 || this.winner() == player[O]
 || this.winner().isNobody())
 && (squaresLeft < 9 // else, initially:
 || turn == X && this.winner().isNobody());
}

These conditions may seem obvious, which
is exactly why they should be checked ...

Assertions and tests often tell us what methods should be
implemented, and whether they should be public or private.

Delegating Responsibilities...

When Driver updates the Game, the Game just asks
the Player to make a move:

 public void update() throws IOException {
 player[turn].move(this);
 }

Note that the Driver may not do this directly!

Delegating Responsibilities...

 public void move(char col, char row, char mark) {
 assert(notOver());
 assert(inRange(col, row));
 assert(get(col, row) == ' ');
 System.out.println(mark + " at " + col + row);
 this.set(col, row, mark);
 this.squaresLeft--;
 this.swapTurn();
 this.checkWinner();
 assert(invariant());
 }

The Player, in turn, calls the Game’s move() method:

Small Methods

Introduce methods that make the intent of your code clear.

public boolean notOver() {
 return this.winner().isNobody()
 && this.squaresLeft() > 0;
}
private void swapTurn() {
 turn = (turn == X) ? O : X;
}

Well-named variables and methods typically eliminate the need for
explanatory comments!

Accessor Methods

Accessor methods protect clients
from changes in implementation:

public Player winner() {
 return winner;
}
public int squaresLeft() {
 return this.squaresLeft;
}

When should instance variables be public?
Almost never! Declare public accessor methods instead.

getters and setters in Java

 Accessors in Java are known as “getters” and
“setters”.

 Accessors for a variable x should normally be called getx() and
setx()

 Frameworks such as EJB depend on this convention!

Code Smells —
TicTacToe.checkWinner()

 for (char col='a'; col <='c'; col++) {
 player = this.get(col,'1');
 if (player == this.get(col,'2')
 && player == this.get(col,'3')) {
 this.setWinner(player);
 return;
 }
 }
 player = this.get('b','2');
 if (player == this.get('a','1')
 && player == this.get('c','3')) {
 this.setWinner(player);
 return;
 }
 if (player == this.get('a','3')
 && player == this.get('c','1')) {
 this.setWinner(player);
 return;
 }
}

private void checkWinner()
 {
 char player;
 for (char row='3'; row>='1'; row--) {
 player = this.get('a',row);
 if (player == this.get('b',row)
 && player == this.get('c',row)) {
 this.setWinner(player);
 return;
 }
 }

Duplicated code stinks!
How can we clean it up?

GameDriver

In order to run test games, we separated Player instantiation
from Game playing:

public class GameDriver {
 public static void main(String args[]) {
 try {
 Player X = new Player('X');
 Player O = new Player('O');
 TicTacToe game = new TicTacToe(X, O);
 playGame(game);
 } catch (AssertionException err) {
 ...
 }
 }

How can we make test scenarios play silently?

What you should know!

 What is Iterative Development, and how does it differ from
the Waterfall model?

 How can identifying responsibilities help you to design
objects?

 Where did the Driver come from, if it wasn’t in our
requirements?

 Why is Winner not a likely class in our TicTacToe design?

 Why should we evaluate assertions if they are all supposed
to be true anyway?

 What is the point of having methods that are only one or two
lines long?

Can you answer these questions?

 Why should you expect requirements to change?

 In our design, why is it the Game and not the Driver
that prompts a Player to move?

 When and where should we evaluate the TicTacToe
invariant?

 What other tests should we put in our TestDriver?

 How does the Java compiler know which version of
an overloaded method or constructor should be
called?

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5

License

