
Design by Contract
Alexandre Bergel

abergel@dcc.uchile.cl
05/04/2010

Design by contract

 Bertrand Meyer, Object-Oriented Software
Construction, Prentice Hall, 1997

Roadmap

1.Contracts, exceptions, failures, defects and
assertions

2.Data abstraction — Stack example

3.Class invariants

4.Programming by Contract

5.Assertions

Roadmap

1.Contracts, exceptions, failures, defects and
assertions

2.Data abstraction — Stack example

3.Class invariants

4.Programming by Contract

5.Assertions

Contracts

If either client or server
does not (or cannot)
respect the contract,
exception is signaled.

Exceptions, failures and defects

 An exception is the occurrence of an abnormal
condition during the execution of a software element

 A failure is the inability of a software element to satisfy
its purpose

 A defect (AKA “bug”) is the presence in the software
of some element not satisfying its specification

 Contracts may fail due to defects in the client or
server code. Failure should be signaled by raising an
exception

Assertions

 An assertion is a declaration of a boolean expression
that the programmer believes should hold at some
point in a program.

 Assertions should not affect the logic of the program

 If an assertion failures, an exception should be raised

x = y*y;
assert x >= 0;

Roadmap

1.Contracts, exceptions, failures, defects and
assertions

2.Data abstraction — Stack example

3.Class invariants

4.Programming by Contract

5.Assertions

Stacks

 A Stack is a classical data abstraction with many
applications in computer programming.

 Stacks support two mutating methods: push and
pop.

Operatio
n

Stack isEmpty() size() top()
TRUE 0 (error)

push(6) FALSE 1 6
push(7) FALSE 2 7
push(3) FALSE 3 3
pop() FALSE 2 7

push(2) FALSE 3 2
pop() FALSE 2 7

6 7

6 7 3

6 7

6 7 2

6 7

6

Example: Balancing Parentheses

 Problem

 Determine whether an expression containing parentheses (),
brackets [] and braces { } is correctly balanced

 Examples

 balanced

 not balanced

if (a.b()) { c[d].e(); }
else { f[g][h].i(); }

((a+b())

A simple algorithm

 Approach:

 when you read a left parenthesis, push the matching
parenthesis on a stack

 when you read a right parenthesis, compare it to the
value on top of the stack

 if they match, you pop and continue

 if they mismatch, the expression is not balanced

 if the stack is empty at the end, the whole expression
is balanced, otherwise not

Using a Stack to match parentheses

 Sample input: “([{ }]]”

Input Case Op Stack
(left push))
[left push])]
{ left push })]}
} match pop)]
] match pop)
] mismatch ^false)

The ParenMatch class

 A ParenMatch object uses a stack to check if
parentheses in a text String are balanced:

public class ParenMatch {
 private String line;
 private StackInterface stack;

 public ParenMatch (String aLine, StackInterface aStack)
 {
 line = aLine;
 stack = aStack;
 }

A declarative algorithm

 We implement our algorithm at a high level of
abstraction:

public boolean parenMatch() {
 for (int i=0; i<line.length(); i++) {
 char c = line.charAt(i);
 if (isLeftParen(c)) { // expect matching right paren later
 stack.push(matchingRightParen(c)); // Autoboxed to Character
 } else {
 if (isRightParen(c)) {
 // empty stack => missing left paren
 if (stack.isEmpty()) { return false; }
 if (stack.top().equals(c)) { // Autoboxed
 stack.pop();
 } else { return false; } // mismatched paren
 }
 }
 }
 return stack.isEmpty(); // not empty => missing right paren
}

Ugly, procedural version

public boolean parenMatch() {
 char[] chars = new char[1000]; // ugly magic number
 int pos = 0;
 for (int i=0; i<line.length(); i++) {
 char c = line.charAt(i);
 switch (c) { // what is going on here?
 case '{' : chars[pos++] = '}'; break;
 case '(' : chars[pos++] = ')'; break;
 case '[' : chars[pos++] = ']'; break;
 case ']' : case ')' : case '}' :
 if (pos == 0) { return false; }
 if (chars[pos-1] == c) { pos--; }
 else { return false; }
 break;
 default : break;
 }
 }
 return pos == 0; // what is this?
}

Helper methods

 The helper methods are trivial to implement, and their
details only get in the way of the main algorithm.

	 private boolean isLeftParen(char c) {
 return (c == '(') || (c == '[') || (c == '{');
 }

 private boolean isRightParen(char c) {
 return (c == ')') || (c == ']') || (c == '}');
 }

What is Data Abstraction?

 An implementation of a stack consists of:

 a data structure to represent the state of the stack

 a set of operations that access and modify the stack

 Encapsulation means bundling together related entities

 Information hiding means exposing an abstract
interface and hiding the rest

 An Abstract Data Type (ADT):

 encapsulates data and operations, and

 hides the implementation behind a well-defined interface

StackInterface

 Interfaces let us abstract from concrete implementations:

 public interface StackInterface {
 public boolean isEmpty();
 public int size();
 public void push(Object item);
 public Object top();
 public void pop();
}

How can clients accept multiple implementations of an ADT?
Make them depend only on an interface or an abstract class.

Interfaces in Java

 Interfaces reduce coupling between objects and their
clients:

 A class can implement multiple interfaces ... but can only extend
one parent class

 Clients should depend on an interface, not an implementation ...
so implementations don’t need to extend a specific class

 Define an interface for any ADT that will have more
than one implementation

Why are ADTs important?

 Communication — Declarative Programming

 An ADT exports what a client needs to know, and nothing more!

 By using ADTs, you communicate what you want to do, not how to
do it!

 ADTs allow you to directly model your problem domain rather than
how you will use to the computer to do so

Why are ADTs important?

 Software Quality and Evolution

 ADTs help you to decompose a system into manageable parts,
each of which can be separately implemented and validated.

 ADTs protect clients from changes in implementation.

 ADTs encapsulate client/server contracts

 Interfaces to ADTs can be extended without affecting clients.

 New implementations of ADTs can be transparently added to a
system

Stacks as Linked Lists

A Stack can
easily be

implemented
by a linked data

structure:

stack = new Stack();
stack.push(6);
stack.push(7);
stack.push(3);
stack.pop();

LinkStack Cells

We can define the Cells of the linked list as an inner
class within LinkStack:

public class LinkStack implements StackInterface {
 private Cell top;
 private class Cell {
 Object item;
 Cell next;
 Cell(Object item, Cell next) {
 this.item = item;
 this.next = next;
 }
 }
 ...
}

Private vs Public instance variables

 When should instance variables be public?

 Always make instance variables private or protected.

 The Cell class is a special case, since its instances
are strictly private to LinkStack!

Roadmap

1.Contracts, exceptions, failures, defects and
assertions

2.Data abstraction — Stack example

3.Class invariants

4.Programming by Contract

5.Assertions

LinkStack ADT

 The constructor must construct a valid initial state:

public class LinkStack implements StackInterface {
 ...
 private int size;
 public LinkStack() {
 // Establishes the class invariant.
 top = null;
 size = 0;
 }
 ...

Class Invariants

 A class invariant is any condition that expresses the
valid states for objects of that class:

 it must be established by every constructor

 every public method

 may assume it holds when the method starts

 must re-establish it when it finishes

 Stack instances must satisfy the following invariant:

 size ≥ 0

 ...

LinkStack Class Invariant

 A valid LinkStack instance has an integer size, and a
top that points to a sequence of linked Cells, such
that:

 size is always ≥ 0

 When size is zero, top points nowhere (== null)

 When size > 0, top points to a Cell containing the top item

Roadmap

1.Contracts, exceptions, failures, defects and
assertions

2.Data abstraction — Stack example

3.Class invariants

4.Programming by Contract

5.Assertions

Design by Contract

 Every ADT is designed to provide certain services
given certain assumptions hold

 An ADT establishes a contract with its clients by associating a
precondition and a postcondition to every operation O, which
states:

 if the precondition does not hold, the ADT is not required to
provide anything!

In other words...

 Design by Contract = Don’t accept anybody else’s
garbage!

Pre- and Postconditions

 The precondition binds clients:

 it defines what the ADT requires for a call to the operation to be
legitimate

 it may involve initial state and arguments

 The postcondition, in return, binds the supplier:

 it defines the conditions that the ADT ensures on return

 it may only involve the initial and final states, the arguments and
the result

Benefits and Obligations

 A contract provides benefits and obligations for both
clients and suppliers:

Obligations Benefits

Client Only call pop() on a
non-empty stack!

Stack size decreases by 1.
Top element is removed.

Supplier
Decrement the size.
Remove the top
element.

No need to handle case
when stack is empty!

Stack pre- and postconditions

 Our Stacks should deliver the following contract:

Operation Requires Ensures
isEmpty() - no state change
size() - no state change

push(Object
item)

-
not empty,
size == old size +
1,
top == itemtop() not empty no state change

pop() not empty size == old size
-1

Roadmap

1.Contracts, exceptions, failures, defects and
assertions

2.Data abstraction — Stack example

3.Class invariants

4.Programming by Contract

5.Assertions

Assertions

 An assertion is any boolean expression we expect to
be true at some point

Assertions have four principle
applications

 Help in writing correct software

 formalizing invariants, and pre- and post-conditions

 Documentation aid

 specifying contracts

 Debugging tool

 testing assertions at run-time

 Support for software fault tolerance

 detecting and handling failures at run-time

Assertions since Java 1.4

 assert is a keyword in Java as of version 1.4

 will raise an AssertionError if expression is false.

 NB: Throwable Exceptions must be declared; Errors and runtime
errors need not be!

assert expression;

Testing Invariants

 Every class has its own invariant:

protected boolean invariant() {
 return (size >= 0) &&
 ((size == 0 && this.top == null)
 || (size > 0 && this.top != null));
}

Why protected and not private?

Disciplined Exceptions

 There are only two reasonable ways to react to an
exception:

 clean up the environment and report failure to the client
(“organized panic”)

 attempt to change the conditions that led to failure and retry

 It is not acceptable to return control to the client
without special notification

Disciplined Exceptions

 When should an object throw an exception?

 If and only if an assertion is violated

 If it is not possible to run your program without raising
an exception, then you are abusing the exception-
handling mechanism!

Checking pre-conditions

 Assert pre-conditions to inform clients when they
violate the contract.

 When should you check pre-conditions to methods?

 Always check pre-conditions, raising exceptions if
they fail.

public Object top() {
 assert(!this.isEmpty()); // pre-condition
 return top.item;
}

Checking post-conditions

 Assert post-conditions and invariants to inform
yourself when you violate the contract.

 When should you check post-conditions?

 Check them whenever the implementation is non-
trivial.

 public void push(Object item) {
 top = new Cell(item, top);
 size++;
 assert !this.isEmpty(); // post-condition
 assert this.top() == item; // post-condition
 assert invariant();
 }

Running parenMatch

public static void parenTestLoop(StackInterface stack) {
 BufferedReader in =
 new BufferedReader(new InputStreamReader(System.in));
 String line;
 try {
 System.out.println("Please enter parenthesized expressions to test");
 System.out.println("(empty line to stop)");
 do {
 line = in.readLine();
 System.out.println(new ParenMatch(line, stack).reportMatch());
 } while(line != null && line.length() > 0);
 System.out.println("bye!");
 } catch (IOException err) {
 } catch (AssertionException err) {
 err.printStackTrace();
 }
}

Running ParenMatch.main ...

Please enter parenthesized expressions to test
(empty line to stop)
(hello) (world)
"(hello) (world)" is balanced
()
"()" is balanced
static public void main(String args[]) {
"static public void main(String args[]) {" is not balanced
()
"()" is not balanced
}
"}" is balanced

"" is balanced
bye!

Which contract is
being violated?

What you should know!

 What is the difference between encapsulation and information
hiding?

 What is an assertion?

 How are contracts formalized by pre- and post-conditions?

 What is a class invariant and how can it be specified?

 What are assertions useful for?

 How can exceptions be used to improve program robustness?

 What situations may cause an exception to be raised?

Can you answer these questions?

 Why is strong coupling between clients and suppliers
a bad thing?

 When should you call super() in a constructor?

 When should you use an inner class?

 How would you write a general assert() method that
works for any class?

 What happens when you pop() an empty
java.util.Stack? Is this good or bad?

 What impact do assertions have on performance?

 Can you implement the missing LinkStack methods?

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5

License

