Dealing with objects
Part |l

Alexandre Bergel
abergel@dcc.uchile.cl
31/03/2009

Goal of this lecture

Understanding some of the design rules that govern
inheritance

See practical problems of class inheritance
See a bit of theory

See few research results in object-oriented
programming languages

Recommended Texts

Agile Software Development, Principles, Patterns,
and Practices

Robert C. Martin “Uncle Bob”, 2002

the research icon

The research icon indicates topics
that are not mandatory for the controls
and the exam

Outline

1.Liskov principle

1.theory

2.concrete applications
2.Inheritance examples
3.Examplel: Swing and AW

4.Example?2: The Smalltalk collection class hierarchy

Outline

1.Liskov principle

1.theory

2.concrete applications
2.Inheritance examples
3.Examplel: Swing and AW

4.Example?2: The Smalltalk collection class hierarchy

Liskov substitution principle

Initially introduced in 1987 by Barbara Liskov

Formulated in 1994 with Jeannette Wing as follows:

Let q(x) be a property provable about objects x of type T.
Then q(y) should be true for objects y of type S where S is a
subtype of T.

Liskov principle vulgarized

Subtypes must be substitutable for their base types

Liskov principle vulgarized

void f (B object) { A

}

Liskov principle vulgarized

void f (B object) { Zﬁ&

}

if £f(new B())
behaves correctly, D
f(new D()) hasto

correctly behave as
well

Fragile class

void £ (B object) {

}
if £f(new B())

behaves correctly and
f (new D()) not, then

we say that D is fragile
In the presence of £

Some practical illustrations

Procedural coding style
Object initialization

Access privileges cannot be weakened

Procedural coding style

public static long sumShapes(Shape shapes[]) {
long sum = 0;
for (int i=0; i<shapes.length; i++) {
switch (shapes[i].kind()) {
case Shape.RECTANGLE: // a class constant
sum += shapes[i].rectangleArea();
break;
case Shape.CIRCLE:
sum += shapes[i].circleArea();
break;

}

return sum;

27077

Procedural coding style

public static long sumShapes(Shape shapes[]) {
long sum = 0;

for (int i=0; i<shapes.length; i++) {
switch (shapes[i].kind()) {
case Shape.RECTANGLE: // a class constant

sum += shapes[i].rectangleArea();
break;

case Shape.CIRCLE:

sum += shapes[i].circleArea();
break;

} Simple
return sum;

violation of the

Liskov principle

falels

Object initialization

JComponent

accessibleContext
listenerList

2\

AbstractButton

itemListener
changeEvent

2\

JButton

JButton

AbstractButton
itemListener
changeEvent, ...

JComponent
accessibleContext
listenerList

Object initialization

JComponent

accessibleContext
listenerList

2\

AbstractButton

itemListener
changeEvent

2\

JButton

AbstractButton
itemListener
changeEvent, ...

JComponent
accessibleContext
listenerList

default order of object

iINitialization

Object initialization

JComponent

accessibleContext
listenerList

2\

AbstractButton

itemListener
changeEvent

2\

JButton

AbstractButton
itemListener
changeEvent, ...

JComponent
accessibleContext
listenerList

default order of object

iINitialization

Access privileges can only be

widened
class A {
private void foo () { A
} -foo()

} /\
class B extends A {
protected void foo () {

) #foo()
) /\
class C extends B {

public void foo () { C

y +foo()

Would it be okay to have this”?

class A {
public void foo () {
}

}

class B extends A {
protected void foo () {
}

}

class C extends B {
private void foo () {

}

Access privileges can only be
widened

A protected method may be overridden as public

A private method cannot be overridden in Java

a private method is statically bound

a message send toward a private method is not looked up along
the class hierarchy

Private methods cannot be

overridden
class A {
private void foo () { A
} -foo()

} /\
class B extends A {

protected void foo () { B
super.foo();

} #f00()
} /\
class C extends B {

public void foo () { C
super.foo();

y +foo()

Private methods cannot be

overridden
class A { —
private void foo () { ‘ ‘
} } Error

at compilation

class B extends A {
protected void foo () {
super.foo();

) #foo()
) N\
class C extends B {

public void foo () { C
super.foo();

\ +foo()

Rememober that private methods are
statically bound!

class A {
public String callFoo (){
return this.foo();

}
private String foo () { new C().callFoo()

t u“ "; 11 by
} return “A returns “A

}

class B extends A {
protected String foo () {

What happens if
return “B"; A.foo Is turned as
public?

}

}

class C extends B {
public String foo () {
return “C";

}

Outline

1.Liskov principle

1.theory

2.concrete applications

2.Inheritance examples
3.Examplel: Swing and AWT

4.Example?2: The Smalltalk collection class hierarchy

Virtual Classes
A powerful mechanism in object-oriented programming

Ole Lebhrmann Madsen

Computer Science Department, Aarhus University
Ny Muskegade, DK-$000 Anshus C, Denmark
TH.: 4456 12 71 35 - E-moaik: clmadsenB@daimidk

Abstract

The notions of class, subelass and virtual procedure are
fairly well understood and recognized as some of the key
concepts in object-oriented programming. The poasibil.
ity of modifying a virtual procedure in a subclass is a
powerful technique for specializing the general proper-
ties of the superclass.

In most object.oriented languages, the atiributes of
an object may be references to objects and (viztual) pro-
cedures. In Simuls and BETA it is also possible to have
class attributes. The power of class attributes has not
yet been widely tecognized. In BETA a class may alio
have wmirtual class attributes. This makes it possible to
defer part of the specification of & class attribute 1o &
subclass. In this sense virtual classes are analogous to
virtual procedures. Virtual classes are mainly interest-
ing within strongly typed languages where they provide
a mechanism for defining general parameterized classes
such as set, vector and list. In this sense they provide
an alternative to generics.

Although the notion of virteal class originates from
BETA, it is presented as a general language mechanism.

Keywords: languages, virtual procedure, virtual class,
strong typing, parameterited class, gemerics, BETA,
Simula, Eiffe]l, C++, Smalltalk

1 Introduction

The notions of class and subclass are some of the key
language concepts associated with object.oriented pio-

Perwiasam) copy without foe a8 o pan of Ten masenad n graceed provided
that $he copeey are pok made or Sorireied G Gret commeriwd misantage.
e MM g mghs pemscr and ihe sthe of (e patle stare and mn date spper
and motxe m grven (e g s By pew e o
Competing Machinery. 1o copy ofderee. of 1o repabinh, teguees » fex
anad v @eciie peTTIme e

© 1900 ACM G W AT/ ON0ONT S 9

Blrger Meller-Pedorsen
Norwegian Computing Center
P.O. Box 114, Blindern, N-0314 Osdo 3, Novway
TH: 447 245 35 00 - E-mail: bizger@ne uninett.no

gramming, Classes support the classification of objects
with the same properties, and subclassing supports the
specialization of the general properties. A class defines
a set of attributes associated with each instance of the
class. An attribute may be either an object reference
(ot just reference for short) or a procedure.

In a subclass it is possible to specialize the general
properties defined in the superclass. This can be done
by adding references and /ot procedures. However, it is
also possible to modify the procedures defined in the su.
petclass. Modification can take place in different ways.
In Simula 67 (4] a procedure attribute may be declared
virtual. A virtual procedure may then be redefined in o
subclass. A mon-virtual procedure cannot be redefined®.
This is essentially the same scheme adapted by Co &
(16] and Eiffel [13]. In Smalltalk [6] any procedure is
virtual in the sense that it can be redefined in & sub
class, and even the parameters of a procedure may be
redefined,

In BETA [8] s virtual procedure cannot be redefized
in & subclass, but it may be further defined by an ea.
tended definition. The extended procedure is a “sub-
procedure” (in the same way as for subelass) of the pro-
cedure defined in the superclass. This implies that the
actions of a virtual procedure definition are automat.
ieally combined with the actions of the extended pro-
cedure in & subclass. This is the case for all levels of
subclasses that farther defines a virtual procedure. In
Smalitalk and C4++ it is the responsibility of the pro-
grammer to combine a redefined visteal procedure with
the cotresponding virtual procedure of the superciass,
This is of course more flexible, since the programmer
can ignote the procedure in the superclass. However, it
is also & potential source of erros since the programmer
may forget to execute the virtusl procedure from the
saperclass.

Using the terminology from [18] a class im BETA
‘Iz Semula & subclass may declare & new procedure with the

same name as & procedure defined in & superclass. This does et
have the effect of & redefinition s in Senaltalc.

@OOPSLA'89

Window: class Stream
(# UppexrLeft,LowerRight: @ Point;
Label: = Text;
Move: proc (% ... 8);
Display: virtual proc (# ... #);
#)

Figure 2: Example of class declaration

“In Figure 2 an example of a class is given. Class Window is
described as a subclass of class Stream. ...”

Window: class Stream
(# UppexrLeft,LowerRight: @ Point;
Label: = Text;
Move: proc (% ... 8);
Display: virtual proc (# ... #);
#)

Figure 2: Example of class declaration

“In Figure 2 an example of a class is given. Class Window is
described as a subclass of class Stream. ...”

Do you think a window can be considered as a stream?

Collection

Link

N\

Process

SMALLIALK=8O %
N\
LinkedList
Adele Godberg and David Robeon A
Semaphore

Probably a semaphore can be seen as a collection, but is it

worth subclassing LinkedList in that case?

Outline

1.Liskov principle

1.theory

2.concrete applications
2.Inheritance examples
3.Example1: Swing and AWT

4.Example?2: The Smalltalk collection class hierarchy

Presentation of AWT

java.awt
Component
. Container Button
Window
Frame V

In the AWT framework:

Widgets are components (i.e., inherit from Component)

A frame is a window (Frame is a subclass of Window)

Swing at the top of AWT

java.awt
Component
L I~
Window Container Button
Fr}r;e A A
javax.swing
JComponent
JFrame JWindow AV

JButton

Problem #1: Brocken Inheritance

java.awt
Component
L I~
7 Window N Container Button
Fr}r;e A A
javax.swing
JComponent
JFrame JWindOW A JButton

Are not subclasses of JComponent

Problem #1:

Brocken Inheritance

java.awt
ComPonentL\
' Butt
Frame N Window rd Con'galner utton
javax.spving
JComponent ‘

JWindow
TR H JButton

Missing inheritance link between JFrame and JWindow

Problem #2: Code Duplication

Code Duplication

java.awt
Component
' Button
Frame Window N Conzner
javax.syving
Wind JComponent
JFrame J neow accessibleCont
ccessibleContext accessibleContext [5date() |Button
rootPane
update up%ateii 1

setLayout()

setLayout()

Problem #3: Explicit Type Checks
and Casts

public class Container extends Component {
Component components[] = new Component [0];
public Component add (Component comp) {...}

}

public class JComponent extends Container {
public void paintChildren (Graphics g) {

for (; i>=0 ; i--) {
Component comp = getComponent (1i);
isJComponent = (comp instanceof JComponent);

((JComponent) comp) .getBounds();

+}

Supporting Unanticipated Changes

AWT couldn’t be enhanced without risk of breaking
existing code

Swing is, therefore, built on the top of AWT using
subclassing

As a result, Swing is a big mess internally!

Why do we care to have a messy
Swing ?

Swing appeared in 1998, and has not evolved since!

Swing is too heavy to be ported to PDA,
cellphones, ...

SWT is becoming a new standard.

Either a system evolves, or it is dead. [Lehmans74]

Classbox/J

Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz, Classbox/J:
Controlling the Scope of Change in Java, In Proceedings of Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA'05), New York, NY, USA, ACM Press, pp. 177-189, 2005

Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel Wuyts,
Classboxes: Controlling Visibility of Class Extensions, In Computer
Languages, Systems and Structures, Volume 31, Number 3-4, pp.
107-126, May, 2005, Impact Factor 0.467 (2005)

Refining Classes (1 / 2)

A classbox widgetsCB

package widgetsCB;

public class Component {
public void update() {this.paint();}
public void paint () {/*01d code*/}

}

public class Button extends Component {

}

Refining Classes (2 / 2)

Widget enhancements defined in New\WidgetsCB:

package NewWidgetsCB;

import widgetsCB.Component;
import widgetsCB.Button;

refine Component {
/* Variable addition */
private ComponentUI lookAndFeel;

/* Redefinition of paint() */
public void paint() {
/* Code that uses lookAndFeel*/ }

Multiple Versions of Classes

widgetsCB

Component

paint()
update()

Button P

new Button(‘Ok’”).update()

@ :-:-- Import
: C-; class refinement
NewWidgetsCB | * -~
e e
----- | Component |
'IookAndFeeI .
.paint() E
e
""" : Button
new Button(“Ok’).update()
(MacOS Button!

Swing

AwtCB

Refactored as a Classbox

Component

A~

Container

—_

setLayout()

setLayout()

, Button
Frame |57 Window | A
javax.sﬁng
Wind JComponent
Inaow

JFrame) accessibleContext
accessibleContext accessibleContext update() JButton
rootPane .m%LEa.?H
Iﬁ'r(')_up ate update

Swing Refactored as a Classbox

AwtCB

Component
, Container | - Button
Frame |37/ Window | : ®
® L : :

SwingC-EB

R S Component
............. I . o
Frame | .. UISCE =
........................... :rootPane : :..................................1 :-----------.."--...---....
F 00D0O000000000000000CO000000C : update()
:setLayout() ‘ : add(Component) : : Button
EsetRootPane() : i P -

: remove(Component)
:setContentPane() :

Outline

1.Liskov principle
1.theory

2.concrete applications

2.Inheritance examples
3.Examplel: Swing and AWT

4.Example2: The Smalltalk collection class
hierarchy

the Stream framework In Squeak

Example of a library that has been in use for almost
20 years

Contains many flaws in its design

the Stream framework In Squeak

Positionable
Stream

Stream

atend
close
contents
do:

flush
next
next:
next:put:
nextPut:
nextPutAll:
upToEnd

collection
position
readLimit

atEnd
contents
iISEmpty
next:
peek
position
position:
reset
setToEnd
skip:
skipTo:
upTo:
upToEnd

FileStream

WriteStream

writeLimit

contents
flush

next
nextPut:
nextPutAll:

Y~

ReadStream

next
next:
RextPut:
size
upTo:
upToEnd

position:
reset
setToEnd
size
space

cr

rwmode
name
filelD
buffer1

A

ReadWriteStream

close
contents
next
next:

atEnd
close
flush
fullName
next
next:
nextPut:
nextPutAll:
peek
position
position:
reset
setToEnd
size

skip:
upTo:
upToEnd

Methods too high

FileStream

rwmode
name
filelD
buffer1

.

nextPutAll: aCollection
aCollection do: [:v| self nextPut: v].
A aCollection

Positionable WriteStream
Stream writeLimit
collection contents
iti flush
Stream position
. . He*t
atEnd readLimit oxtPUL:
close atEnd -
contents contents <l ng)s(:’:iD:r:A”-
o SEmPty Feset .
flush next:
next eek setToEnd
: size
next: P V\ space
. position: ReadStream clro
nextPut: reset next
nextPptAll; setToEnd next: 4
skip: RextPut: ReadWriteStream
skipTo: size close
4 Hata — aaaiagts

atEnd
close
flush
fullName
next
next:
nextPut:
nextPutAll:
peek
position
position:
reset
setToEnd
size

skip:
upTo:
upToEnd

Methods too high

The nextPut: method defined in Stream allows for
element addition

The ReadStream class is read-only

It therefore needs to “cancel” this method by
redefining it and throwing an exception

Unused state

Stream

atend
close
contents
do:

flush
next
next:
next:put:
nextPut:
nextPutAll:
upToEnd

Positionable

collection
position
readLimit

contents
iISEmpty
next:
peek
position
position:
reset
setToEnd
skip:
skipTo:
upTo:
upToEnd

—

FileStream

flush
Aext
nextPut:

nextPutAll:

ReadStream

next
next:
RextPut:
size
upTo:
upToEnd

position:
reset
setToEnd
size
space

cr

rwmode
name
filelD
buffer1

A

ReadWriteStream

close
contents
next
next:

atEnd
close
flush
fullName
next
next:
nextPut:
nextPutAll:
peek
position
position:
reset
setToEnd
size

skip:
upTo:
upToEnd

Unused state

State defined in the super classes are becoming
irrelevant in subclasses

FileStream does not use inherited variables

Positionable

Stream
collection
Stream position
atend readLimit
close atEnd
contents contents
do: iISEmpty
flush next:
next peek
next: position
next:put: position:
nextPut: reset
nextPutAll: setToEnd
upToEnd skip:
skipTo:
upTo:
upToEnd

WriteStream
writeLimit
contents
flush
next
nextPut:
nextPutAll:

size
upTo:
upToEnd

position:
reset
setToEnd
size
space

cr

A

Multiple Inheritance Simulation

FileStream

rwmode
name
filelD
buffer1

ReadWriteStream

close
ontents

atEnd
close
flush
fullName
next
next:
nextPut:
nextPutAll:
peek
position
position:
reset
setToEnd
size

skip:
upTo:
upToEnd

Multiple Inheritance Simulation

Methods are duplicated among different class
hierarchies

Class schizophrenia®?

Too many responsibllities for classes

object factories

group methods when subclassing

Class schizophrenia®?

Too many responsibllities for classes

object factories => need for completeness

group methods when subclassing => need to incorporate
incomplete fragments

Traits

Stéphane Ducasse, Oscar Nierstrasz, Nathanael Scharli, Roel Wuyts, and
Andrew P. Black. Traits: A Mechanism for fine-grained Reuse. In ACM

Transactions on Programming Languages and Systems (TOPLAS) 28(2) p. 331
—388, March 2006

Nathanael Scharli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P. Black.
Traits: Composable Units of Behavior. In Proceedings of European
Conference on Object-Oriented Programming (ECOOP'03), LNCS 2743 p. 248
—274, Springer Verlag, July 2003

Class = Superclass + State + Traits
+ Glue Methods

Traits are the behavioral building blocks of classes

Generic properties

Object
/ \ TColor
: TRectangle
Component Geomeftrical
RectangleWidget RectangleShape
x1,yl, x2,y2 y Tcolor point1, point2
setX1(...) setX1(...)
setY1(... TRectangle [|setY1(...)

Stream revisited

E Core TStream :
[}

! binary !
! close I
| closed \
\ isBinary !
! isClosed !
i / isStream !
[}

! TGettableStream # \ I
1| do: atEnd TPositionableStream TPuttableStream |
| nextMatchFor: next atEnd position nextPutAll: | nextPut: :
|| next: peek atStart setPosition: ne.xt..put. :
'| peekFor: outputCollectionClass back size print: !
| skip: close flush !
' | skipTo: isEmpty ﬁ |
1| upTo: position: |
! upToEnd reset |
|| upToElementSatisfying: setToEnd !
l !
! |
| @ {#basicBack->#back} !
[} / [}
! TGettablePositionableStream TPuttablePositionableStream !
! back writeBack !
I backUpTo: I
\ match: :
| nextDelimited: !
: skip: !
! l

What you should know!

What is the Liskov principle?

How the Liskov principle affects the design of a
programming language

Why a good class hierarchy is not easy to obtain and
requires experience

Defining a subclass should be driven by the IS-A
relation

Can you answer to these questions”

Why a class Window should not be defined as a
subclass of Stream?

What makes class inheritance so difficult to use?

Is there a definitive answer on what a good class
hierarchy is?

License

http://creativecommons.org/licenses/by-sa/2.5

@creative
commons

C OMMONS DEED

Attribution-ShareAlike 2.5
You are free:

+ to copy, distribute, display, and perform the work
+ to make derivative works

« to make commercial use of the work

Under the following conditions:

@ Attribution. You must attribute the work in the manner specified by the author or licensor.
@ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.
+ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

