AS 2004 Introducción a la Astrobiología

Carbono: el átomo de los organismos vivos

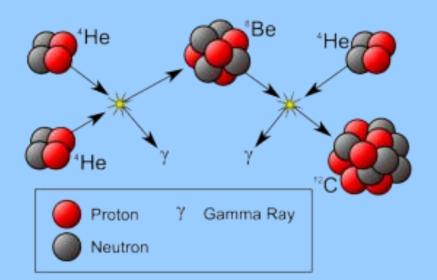
FORMACIÓN DE CARBONO

$${}^{12}_{6}C, {}^{13}_{6}C, {}^{14}_{6}C$$

Posibilidades:

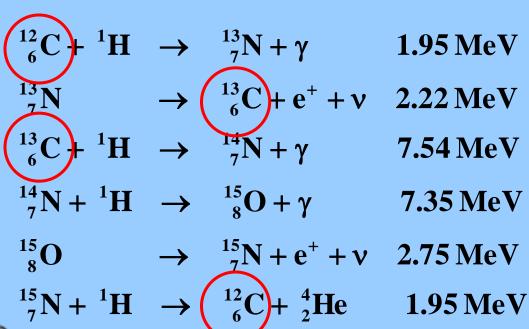
1) Triple colisión de 3 núcleos de He (Muy improbable)

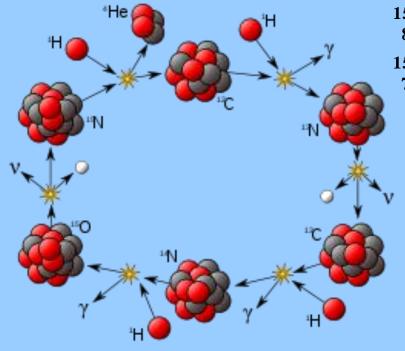
$$3^{4}\text{He} \rightarrow {}^{12}\text{C}$$


- 2) Síntesis de Carbono en dos procesos:
 - i) $2^{4}\text{He} \rightarrow {}^{8}\text{Be}$ (extremadamente inestable)
 - ii) ${}^{4}\text{He} + {}^{8}\text{Be} \rightarrow {}^{12}\text{C}$
- 3) Síntesis de Carbono en ciclo CNO

FORMACION DEL CARBONO

El Proceso Triple-Alfa

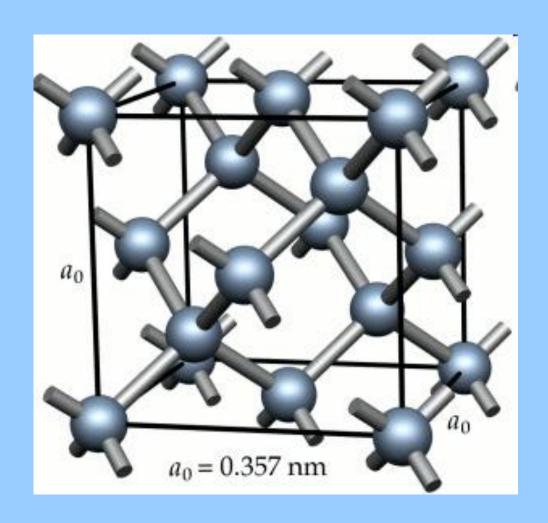

$${}^{4}_{2}\text{He} + {}^{4}_{2}\text{He} \rightarrow {}^{8}_{4}\text{Be} -92 \text{ KeV}$$

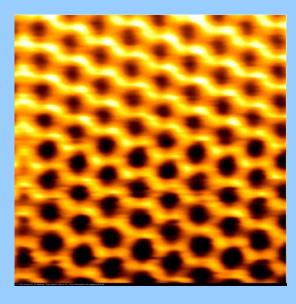

$${}^{8}_{4}\text{Be} + {}^{4}_{2}\text{He} \rightarrow {}^{12}_{6}\text{C} + \gamma \qquad 7.367 \text{ MeV}$$

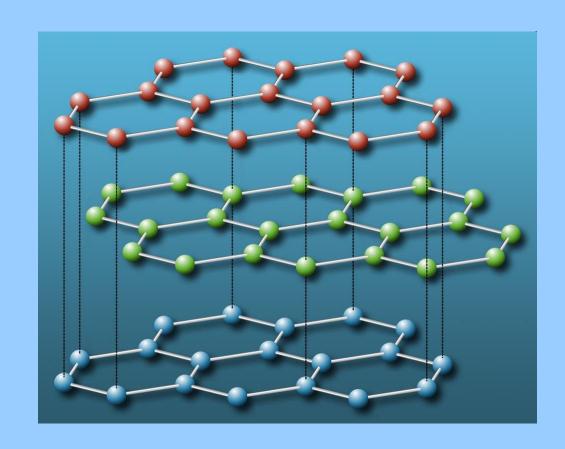


Energía neta liberada: 7.275 MeV.

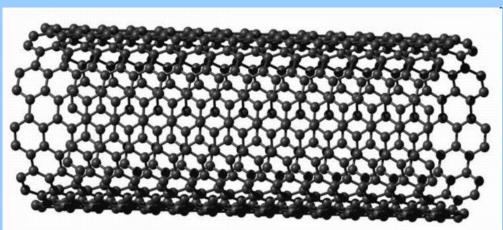
Reacciones principales del Ciclo CNO

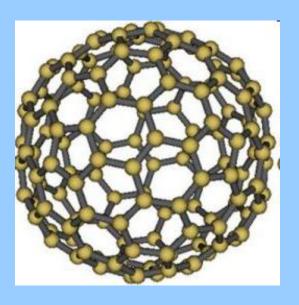



Formas Alotrópicas del carbono: Diamante



Formas Alotrópicas del carbono: Grafito





Formas Alotrópicas del carbono: Fullerenos

Es probable que el fullereno abunde en el Universo cerca de las estrellas rojas gigantes, atrapando en su interior gas helio y otras moléculas.

Datos Interesantes:

- La masa desecada de los tejidos de los organismos vivos, está constituida en un 98 % por carbono e hidrógeno con cantidades variables de O y N dependiendo del tipo.
- Se estima que una simple bacteria contiene 5.000 compuestos orgánicos y un ser humano tiene unos 5.000.000.

La vida en la Tierra está basada en el carbono

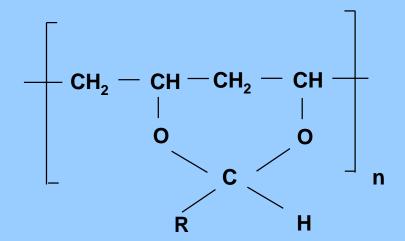
- El carbono tiene valencia 4, uno de los valores más altos posibles en química (al menos para átomos pequeños).
- Forma largas cadenas o hasta redes tridimensionales, con uniones muy fuertes, (ej. el diamante, la sustancia más dura conocida). En estas cadenas o redes de carbono pueden incorporarse otros átomos como hidrógeno, oxígeno y nitrógeno.
- Puede formar una enorme variedad de compuestos de extrema complejidad (característica de la vida).

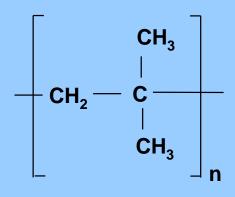
¿Otro elemento que sustituyera al carbono?

- Debe ser abundante y formar gran cantidad de uniones: consigo mismo y con otros elementos.
- De los cinco elementos más abundantes:
 - Helio no forma compuestos.
 - El Hidrógeno y el Oxígeno tienen valencia 1 y 2, forman compuestos simples. Cadena de átomos de oxígeno se encuentran en peróxidos (2 átomos de oxígeno)
 - El Nitrógeno tiene valencia 3, sin embargo, no se conocen cadenas de varios átomos de nitrógeno.

Sin ser tan abundante, otro candidato es el Silicio, elemento muy abundante en las rocas y, por lo tanto, en cualquier planeta sólido.

El silicio forma, con el oxígeno la sílice. La mayoría de las rocas son silicatos, derivados de sílice. Además, el silicio tiene valencia 4, igual que el carbono.


¿Puede haber vida basada en el silicio?


Carbono vs. Silicio Grupo IV de la tabla periódica

	Carbono	Silicio
Valencia	4	4
Radio Atómico (Á)	0.91	1.32
Potencial de Ionización (KJ/mol)	1086	786
Afinidad Electrónica (KJ/mol)	122	134
Electronegatividad	2.5	1.8

Carbono vs. Silicio

- Ambos elementos enlazan al oxígeno. Ambos forman cadenas largas (polímeros).
- Carbón forma polímeros. Ej.: poliviníl-(formal,acetal), polimetacrilatos, etc.

 El silicio forma las siliconas (polímeros utilizados para impermeabilizar o para lubricar piezas de metal).

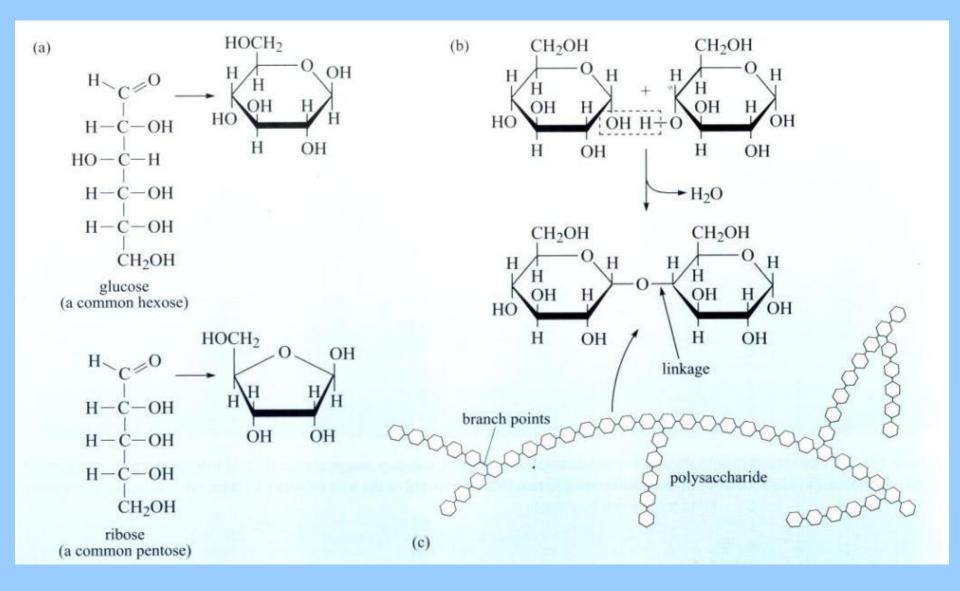
$$CH_3$$
 $-$ Si $-$ O $-$ In
 CH_3

El Intercambio de Oxígeno en seres vivos

- Cuando carbón reacciona con oxígeno, produce dióxido de carbono gaseoso, CO₂ (g);
- El silicio produce dióxido de silicio sólido SiO₂(sílice). El hecho que el óxido de silicio es un sólido es una razón básica en cuanto a porqué no puede apoyar vida.
- El dióxido de silicio forma un enrejado cristalino en cuál el átomo del silicio es rodeado por cuatro átomos de oxígeno.
- En compuestos (silicatos) las unidades SiO₄-4 también existen en minerales tales como los feldespatos, las mica, las zeolitas o los talcos.

Almacenamiento y uso de Energía

- Una forma de vida necesita recoger, almacenar y utilizar energía. La energía debe venir del ambiente.
- La energía se debe utilizar donde y cuando se necesita y sólo en la proporción requerida, de otro modo el proceso podría incinerar la forma de vida.
- En un mundo basado carbón-, el elemento de almacenaje básico es el carbohidrato de fórmula


$$C_X(H_2O)_Y$$
.

Los carbohidratos se oxidan para dar agua y CO_2 , que luego se intercambian con el aire; los carbones están conectados por enlaces simples en una cadena. Una forma de vida- basada en carbón- "quema" este combustible en etapas controladas utilizando reguladores de la velocidad llamados **enzimas.**

Tres azúcares comunes de fórmula $C_6(H_2O)_6$ o $C_6H_{12}O_6$.

- Glucosa, "azúcar de la sangre", fuente inmediata de energía celular.
- · Galactosa, azúcar láctea.
- Fructosa, azúcar en frutas y miel.

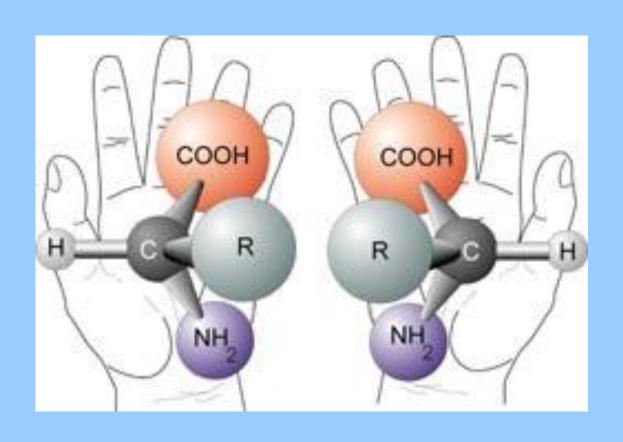
Polisacáridos

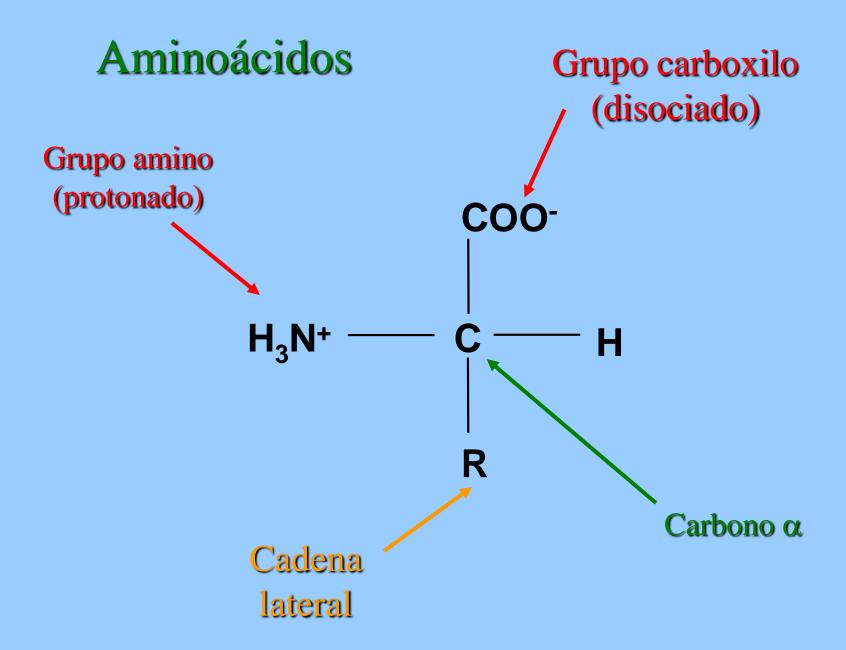
- Los organismos obtienen y controlan energía usando reacciones de reducción-oxidación. Las reacciones (redox) que se basan en transporte de electrones.
- Los organismos terrestres han desarrollado una completa secuencia de catalizadores orgánicos que ayudan a almacenar y a liberar energía en las células.
- Las moléculas inorgánicas encontradas en el ambiente actúan como portadores de electrones para facilitar la transferencia de electrones.

Elementos más importantes en los compuestos orgánicos:

Carbono	Hidrógeno	Oxígeno	Nitrógeno
Azufre	Fósforo	Cloro	Flúor
Yodo	Magnesio	Molibden o	Hierro

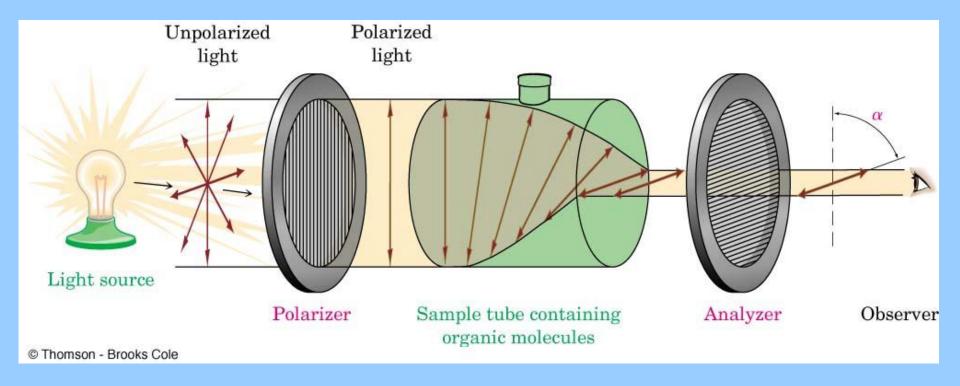
■ El hidrógeno, carbono, nitrógeno y oxígeno constituyen el 99.33 % de todos los átomos que forman los compuestos orgánicos.

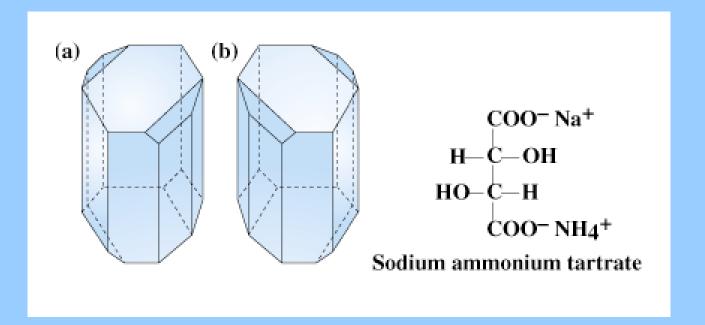

Clasificación de los compuestos orgánicos


Compuesto	Grupo Funcional
Alcanos	R-H
Alquenos	R-C=C- R
Alquinos	R-C≡C- R
Halogenuros de alquilo	R-X en donde X=Halógeno y R =alquilo
Alcoholes	R-OH
Aldehídos	R-CH=O
Cetonas	R-C-R II O

Compuesto	Grupo Funcional
Éteres	R-O-R
Ácidos carboxílicos	R-C=O I OH
Ésteres	R-C=O I O - R
Amidas	R-C=O I NH ₂
Aminas	R - NH ₂

ISOMERÍA ÓPTICA Y AMINOACIDOS


Quiralidad



Los Cristales de ácido tartárico.

Sustancia que se forma en grandes cantidades durante el proceso de fermentación del vino. El ácido tartárico extraído de los barriles de vino disuelto en agua, rota la luz polarizada. Sin embargo, las soluciones preparadas con ácido tartárico sintetizado en el laboratorio no rotan la luz.

Todos los cristales de ácido tartárico extraído de los barriles lucían idénticos. Los cristales sintetizados en laboratorio también lucían idénticos, pero en realidad, se producían dos tipos de cristales, cada uno era la imagen especular del otro.

Pasteur separó los dos tipos de cristales obtenidos en el laboratorio. Los disolvió en agua y vio cómo afectaban el paso de la luz polarizada. Con este sencillo y paciente experimento, Pasteur descubrió la existencia de los isómeros ópticos y fundó la estereoquímica.

¿Orígenes?

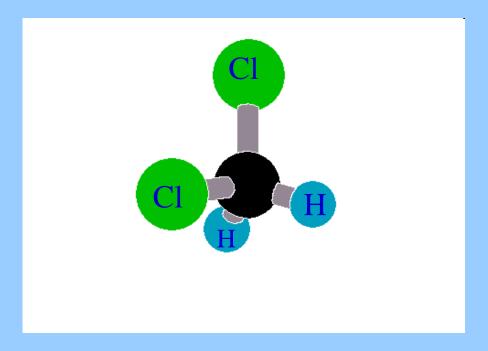
Pasteur fue el primero que arriesgó algunas explicaciones para la asimetría molecular. Se le ocurrió que el origen del fenómeno podía deberse a la influencia de campos magnéticos. Pero hizo crecer cristales entre los polos de un poderoso magneto y obtuvo una mezcla mitad y mitad de isómeros. Luego pensó en el pasaje de la luz solar de este a oeste a través de la atmósfera. Con espejos y mecanismos de relojería iluminó de oeste a este plantas en crecimiento, al revés que en la naturaleza, esperando que las plantas fabricaran moléculas D. Pero eso no ocurrió.

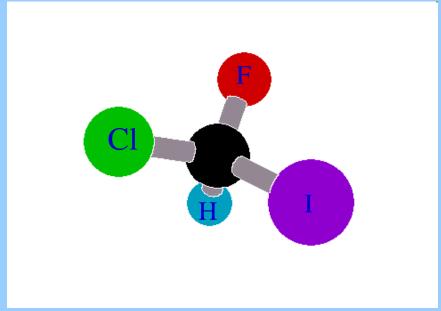
Después de las de Pasteur, aparecieron muchas otras hipótesis. Que la asimetría molecular en los seres vivos podía deberse a la rotación del planeta, o a una fuerza colosal y asimétrica producida cuando la Luna se separó de la Tierra, o a una competencia entre moléculas que terminó en la preponderancia de una de ellas.

En los años 20 se hizo un descubrimiento interesante. Así como los aminoácidos rotan la luz polarizada, al sintetizar moléculas en presencia de luz polarizada, se obtiene mayor proporción de un isómero que de otro. La luz polarizada destruye selectivamente un tipo de isómero.

Evidencia en el ISM

- Un meteorito caído en 1969, en la localidad de Murchinson en el estado de Victoria, Australia. En su interior se descubrieron aminoácidos, pero no en las proporciones esperadas. Había dos veces más alanina L que D, por ejemplo. Y tres veces más ácido glutámico L que D. Todo parecía indicar que cuando se formó el sistema solar, la asimetría molecular ya existía.
- Luz polarizada proveniente de Orión OMC-1, ¿Cuál es el filtro que polariza la luz en Orión OMC-1? ...La dispersión de la luz al chocar con partículas de polvo diminutas alargadas, alineadas por el campo magnético de una estrella cercana, generan el tipo de luz requerida para afectar la composición de las mezclas de isómeros sometidos a su influencia. El polvo estelar es un filtro polarizante natural.
- Decaimiento Beta y las Interacciones Débiles.
- "Fluke seeding"

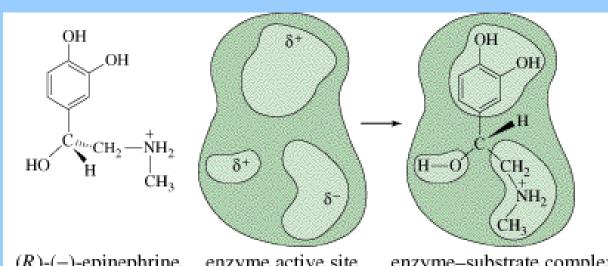

Asimetrías de los seres vivos


Aminoácidos sintetizados en el laboratorio se obtienen en una mezcla 50% y 50% de isómeros D y L .

En los seres vivos sólo hay aminoácidos L.

(Una rara excepción es la presencia de aminoácidos D en la pared celular de algunas bacterias. Otro ejemplo es el de la sacarosa, el azúcar que forma parte de las moléculas de ADN. Todas las sacarosas dentro de los organismos son isómeros D.)

Cloruro de Metilo


Aquiral Quiral

Un objeto quiral carece de ejes de rotación impropios

Nomenclatura: D, L si hay 1 carbón asimétrico

R, S si hay varios carbones asimétricos

Discriminación Biológica

(R)-(-)-epinephrine natural epinephrine

enzyme active site

enzyme-substrate complex

OH OH OH OH OH OH CH₃

$$C_{1m}OH$$

$$CH_3$$

$$H_2$$

$$CH_3$$

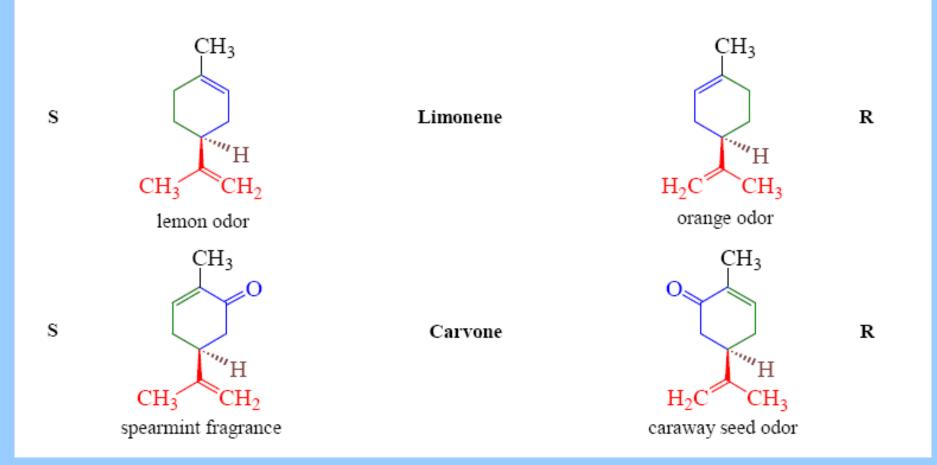
$$H_2$$

$$CH_3$$

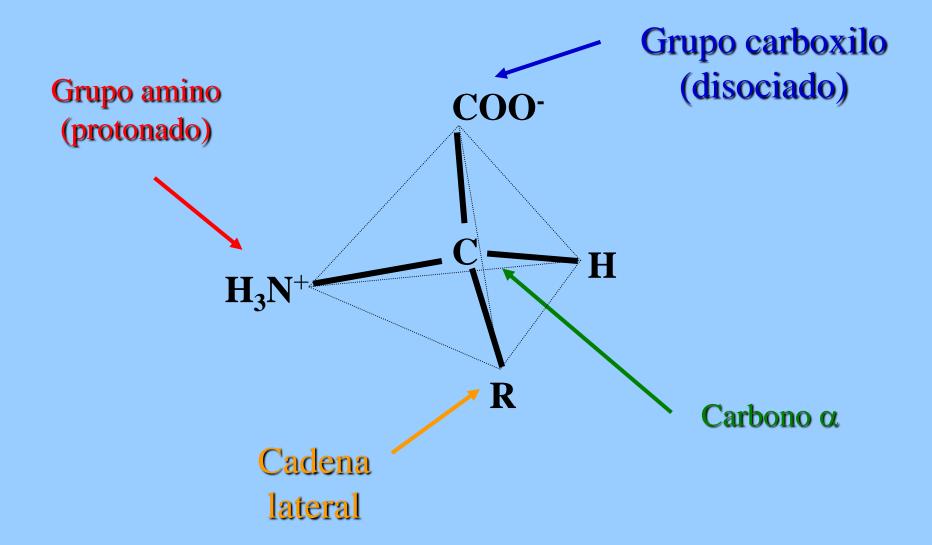
$$H_2$$

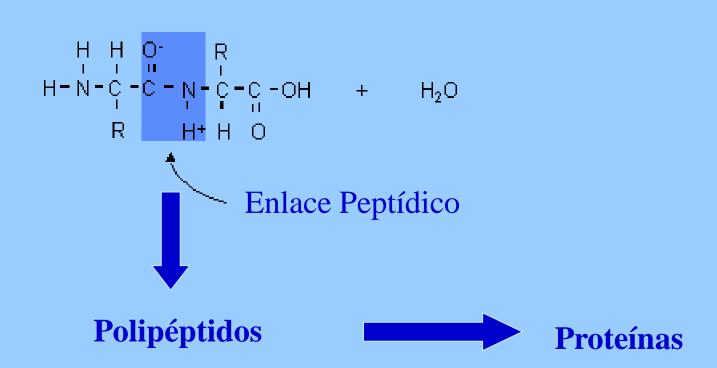
$$CH_3$$

(S)-(+)-epinephrine unnatural epinephrine


does not fit the enzyme's active site

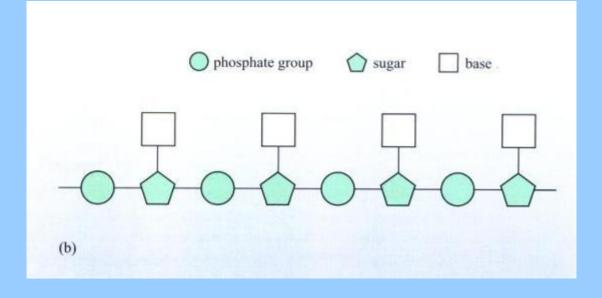
Ibuprofeno

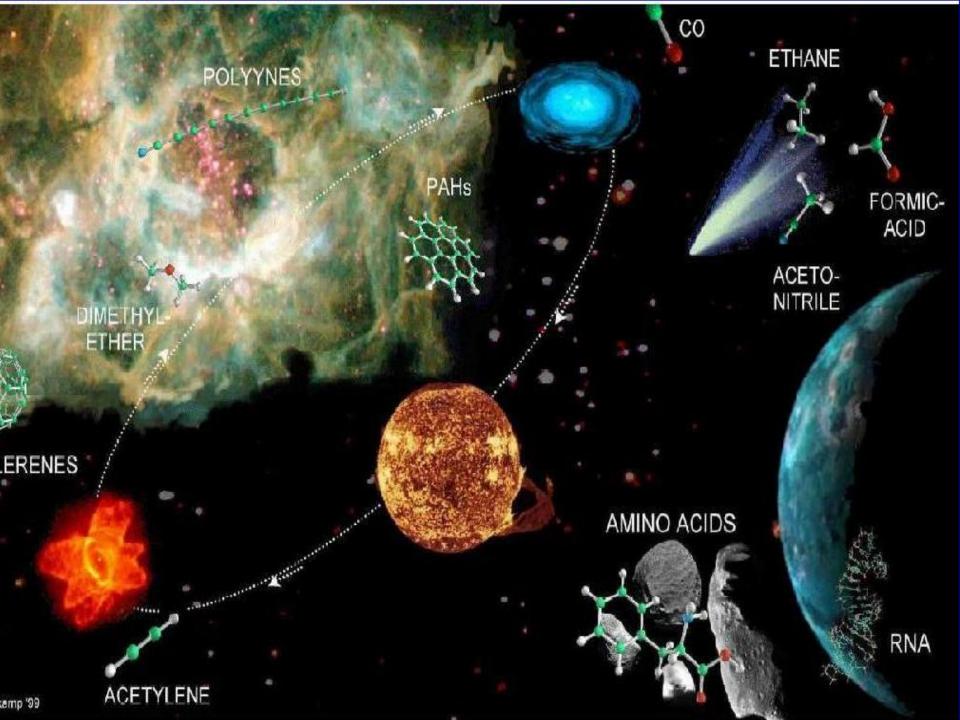

Levo-Ibuprofeno, droga calmante y anti-inflamatoria


Dextro-Ibuprofeno sin actividad

Quiralidad y Actividad Biológica

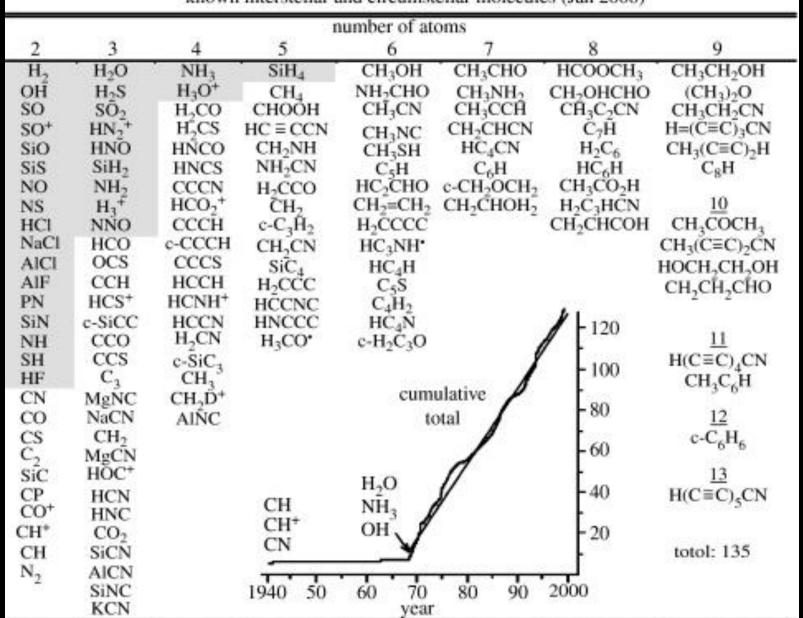
Aminoácidos




Nucleotido

- Azúcar
- Grupo Fosfato
- Base Nitrogenada

Acido Nucleico

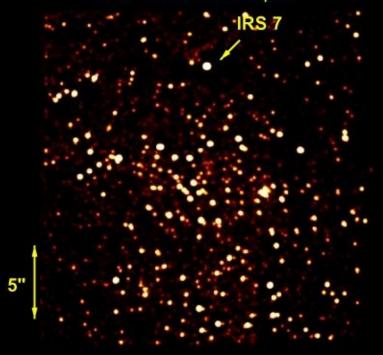


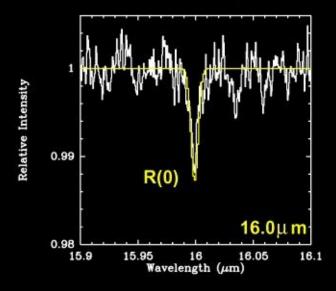
Formación de Moléculas en el ISM

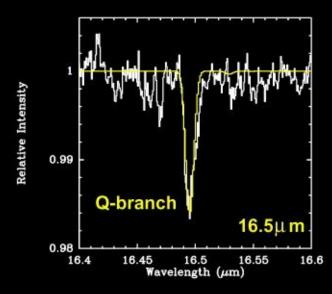
Moléculas Observadas

known interstellar and circumstellar molecules (Jan 2006)

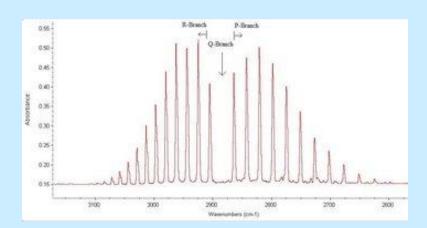
Moléculas Observadas

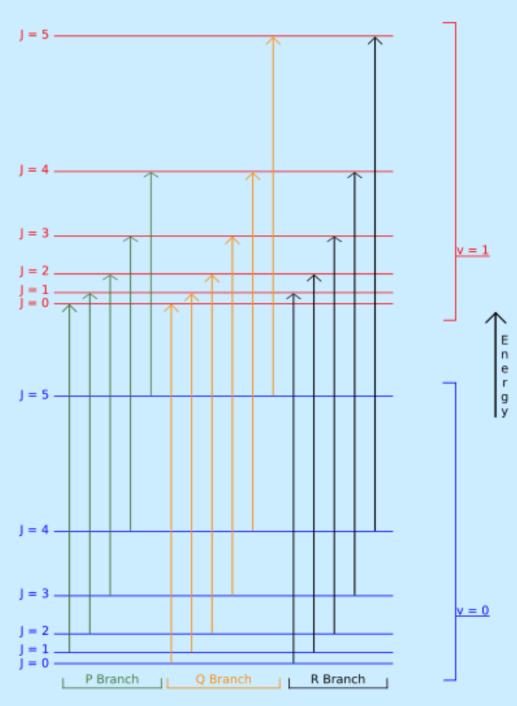

hydrogen species H ₂	HD ,	H_3^+	H_2D^+		
hydrogen and carbo	on compounds				
CH	CH ⁺	C_2	CH ₂	C ₂ H	C ₃
CH ₃	C_2H_2	C ₃ H (lin)	C ₃ H (circ)	CH ₄	C ₃ H ₂ (circ)
H ₂ CCC (lin)	C_4H	C ₅	C_2H_4	C ₅ H	H_2C_4 (lin)
CH ₃ C ₂ H	C ₆ H	H ₂ C ₆	C ₇ H	CH ₃ C ₄ H	C ₈ H
hydrogen, carbon a	nd oxygen compound				
OH	CO	CO ⁺	H ₂ O	HCO	HCO+
HOC+	C ₂ O	CO_2	H ₃ O ⁺	HOCO+	H ₂ CO
C ₃ O	CH ₂ CO	НСООН	H ₂ COH ⁺	CH ₃ OH	HC ₂ CHO
C ₅ O	CH ₃ CHO	C2H4O (circ)	CH ₃ OCHO	CH ₂ OHCHO	CH ₃ COOH
CH ₃ OCH ₃	CH ₃ CH ₂ OH	(CH ₃) ₂ CO			
hydrogen, carbon a	nd nitrogen compoun	ds			
NH	CN	NH ₂	HCN	HNC	N ₂ H ⁺
NH ₃	HCNH+	H ₂ CN	HCCN	C ₃ N	CH ₂ CN
CH ₂ NH	HC ₂ CN	HC ₂ NC	NH ₂ CN	C ₃ NH	CH ₃ CN
CH ₃ NC	HC ₃ NH ⁺	C ₅ N	CH ₃ NH ₂	CH2CHCN	HC ₅ N
CH ₃ C ₃ N	CH ₃ CH ₂ CN	HC ₇ N	CH ₃ C ₅ N	HC ₉ N	HC ₁₁ N
hydrogen, carbon (possibly), nitrogen an	d oxygen compounds			
NO	HNO	N ₂ O	HNCO	NH ₂ CHO	
other species					
SH	CS	SO	SO^+	NS	SiH
SiC	SiN	SiO	SiS	HCI	NaCl
AICI	KCI	HF	AIF	CP	PN
H ₂ S	C ₂ S	SO_2	OCS	HCS ⁺	SiC ₂ (circ)
NaCN	MgCN	MgNC	H ₂ CS	HNCS	C ₃ S
HSiC ₂	SiC ₃	SiH ₄	SiC ₄	CH ₃ SH	C ₅ S


Note: (circ) denotes circular molecules and (lin) denotes linear molecules.


SWS Detection of Interstellar CH₃

Galactic Center 2 µm

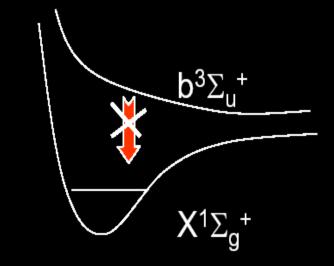




Feuchtgruber, Helmich, van Dishoeck & Wright 2000

Ratio -> T_{ex} = 17 K

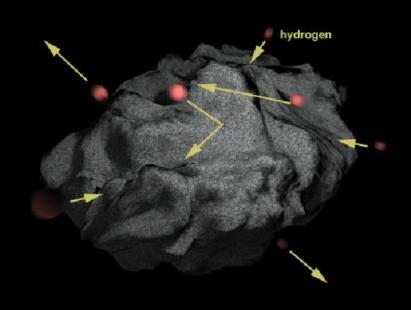
Espectro Rotación-Vibración

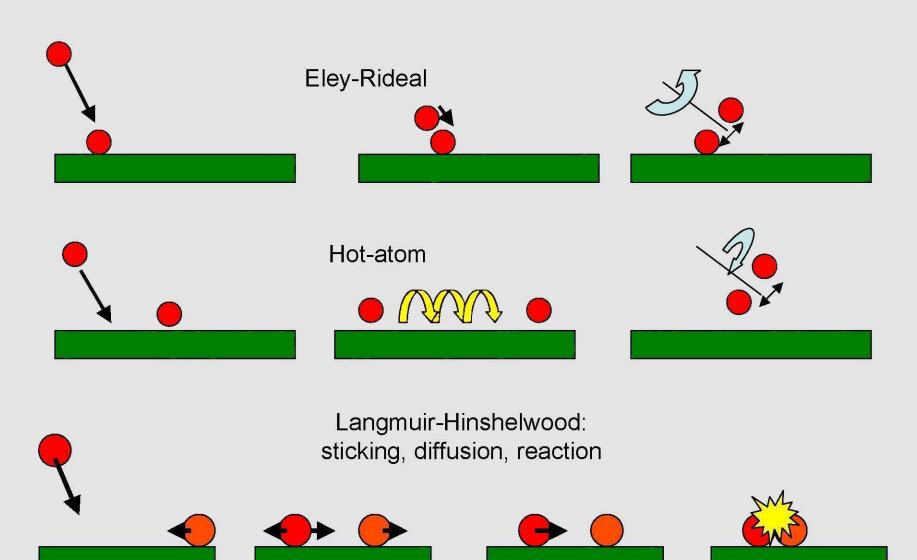

H₂ No se forma en fase gas por asociación radiativa de dos átomos neutros

Se requiere un tercer cuerpo

Granos Interstelares
actúan como
Catalizadores

Formación de Hidrógeno Molecular


- Rutas de formación fase-Gas
 - H+H \rightarrow H₂ + hv
 - $H + e \rightarrow H^- + hv$ $H^- + H \rightarrow H_2 + e$ ■ $H^- + M^+ \rightarrow H + M$ $H^- + hv \rightarrow H + e$
 - $H + H^+ \rightarrow H_2^+ + h\nu$ $H_2^+ + H \rightarrow H_2 + H^+$


Mecanismo más eficiente

 $H + H \rightarrow H_2$ sobre polvo

- Silicatos (olivina)
- · Carbón
- · Hielo

Mechanisms of reaction

Mecanismos de Adsorción

Mecanismo de Langmuir-Hinshelwood:

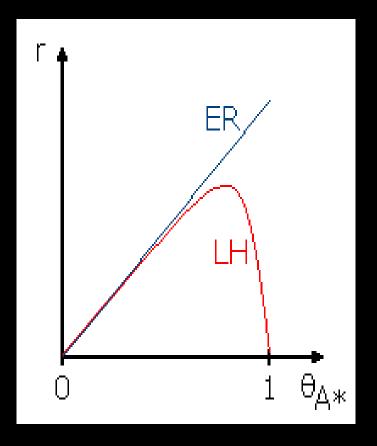
- 1. Adsorción desde la fase gaseosa
- 2. Disociación de moléculas en la superficie
- 3. Reacción entre moléculas adsorbidas
- 4. Desorción hacia la fase gaseosa

Mecanismos de Adsorción

Mecanismo de Eley-Rideal:

- 1. Adsorción desde la fase gaseosa
- 2. Disociación de moléculas en la superficie
- 3. Reacción entre moléculas adsorbidas
- 4. Reacción entre moléculas en la fase gaseosa y moléculas adsorbidas
- 5. Desorción hacia la fase gaseosa

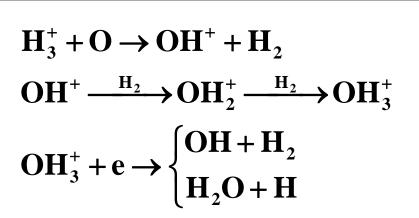
(Esta última etapa no ocurre en un mecanismo Langmuir-Hinshelwood)

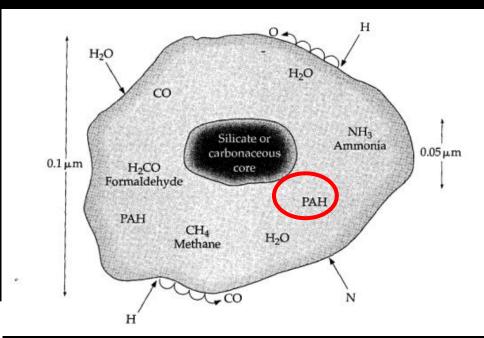

¿Eley-Rideal o Langmuir-Hinshelwood?

Eley-Rideal mechanism:

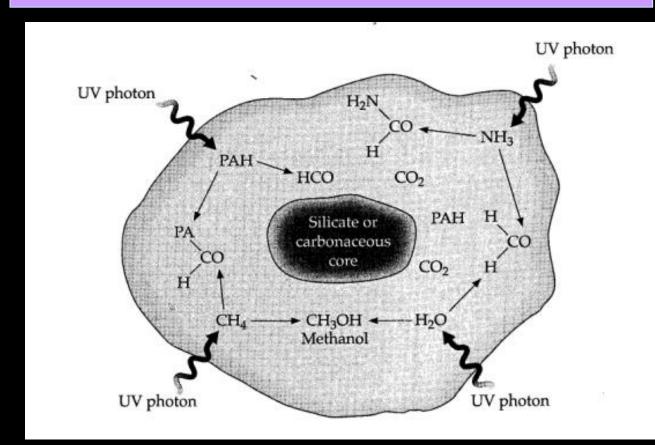
La velocidad aumenta con el aumento de la superficie cubierta hasta que la superficie está completamente cubierta de átomos.

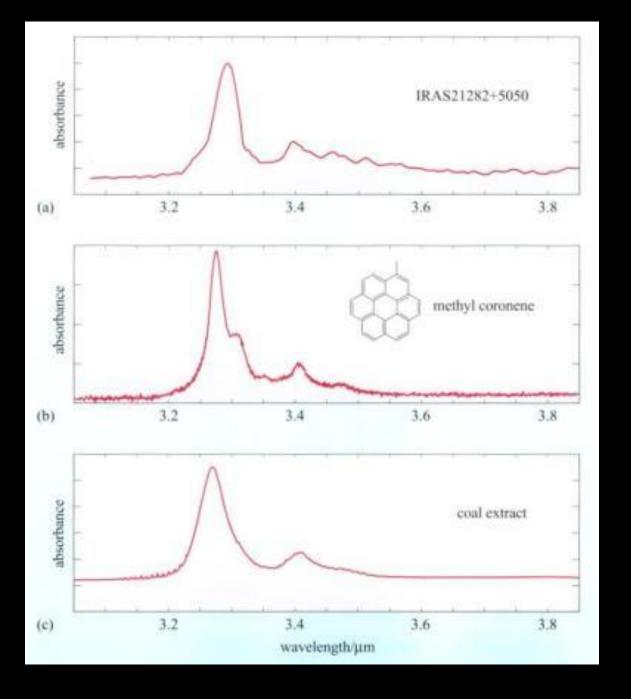
Langmuir-Hinshelwood:


La velocidad llega a un máximo y termina en cero cuando la superficie está completamente cubierta de átomos.



Formación de Moléculas Simples


 La química Interstelar comienza con la formación de granos de polvo

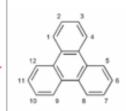

$$H_2 + Ray. C\acute{o}sm. \rightarrow H_2^+ + e$$

 $H_2^+ + H_2 \rightarrow H_3^+ + H$

$$C^{+} + OH \rightarrow CO^{+} + H$$
 $CO^{+} + H_{2} \rightarrow HCO^{+} + H$
 $HCO \xrightarrow{H^{+}} CH_{3}OH, etc$

Antraceneo	Benzopireno	
Criseno	Coroneneo	
Coranuleno	Naftaceno	
Naftaleneo	Pentaceneo	
Fenantreno	Pireno	

No\\ol


• PAHs

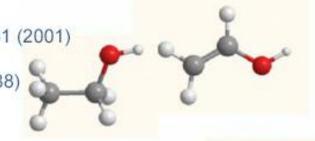
Fulerenos

0

Granos de polvo

Trifenileno

Ovaleno

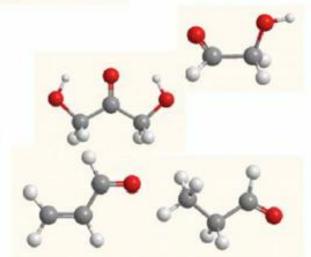


Variedad de Moléculas Orgánicas complejas encontradas en el ISM

alcohols

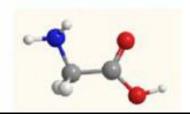
vinylalcohol Turner et al., ApJ 561 (2001)

ethanol Miller et al., A&A 205 (1988)



sugars & aldehydes

glycolaldehyde Hollis et al., ApJ. 540 (2000)


1,3-dihydroxyacetone Widicus et al., ApJ 624 (2005)

propenal & propanal Hollis et al., ApJ 610 (2004)

amino acid

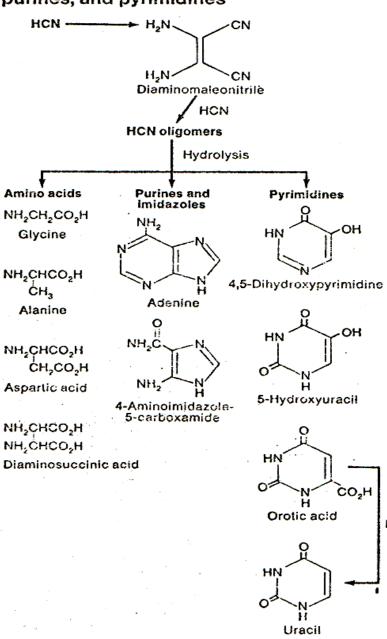
glycine (?) Kuan et al., ApJ 593 (2003) Snyder et al., ApJ 619 (2005)

Polimerización de HCN forma Bases Purínicas

(e.g. Ferris et al., Tetrahedron 40, 1093-1120 (1984))

HCN
$$\xrightarrow{\text{H}_2\text{N}}$$
 CN $\xrightarrow{\text{hv}}$ $\xrightarrow{\text{hv}}$ NC $\xrightarrow{\text{NH}}$ $\xrightarrow{\text{HCN}}$ adenine $(\text{H}_5\text{C}_5\text{N}_5)$ $\xrightarrow{\text{Urrea}}$ guanine $(\text{H}_5\text{C}_5\text{N}_5\text{O})$ AICN

(e.g. Saladino et al., Top. Cur. Chem. 259, 29-68 (2005))

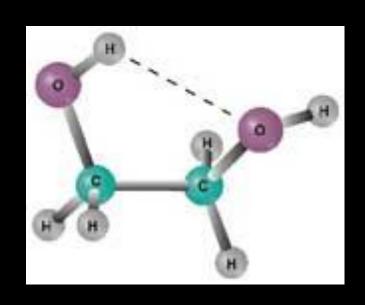

$$\begin{array}{c|c} & & & \\ \hline & & \\ & & \\ & & \\ \hline & & \\ & &$$

Sitios Potenciales para formación de moléculas orgánicas como resultado de procesos químicos prebióticos

Localización	Temperatura, K	Concentrac. Partíc.cm ⁻³	Fuente de energía
1. Nubes Interestelares	Frío 10	10 ³	Rayos Cósmicos
	Centro Caliente 50	10 ⁵	Rayos Cósmicos
2. Nebulosas Protosolares	Parte Externa 60	109	Viento Solar
	Parte Interna 600	1012	Viento Solar
3. Cometas	Superficie 20 or 100	1019	UV estelar y rayos cósmicos
	Centro 20 or 500	1019	²⁶ A
4. Cometas capturados por planetas	Superficie 2-200	1019	UV Solar
5. Tierra Primordial	Hidrósfera 330	1019	UV Solar
	Baja atmósfera 330	1016	Relámpagos

a ($T^{\circ} y P^{\circ}$) hay 2.6 10^{18} (part/cm³)

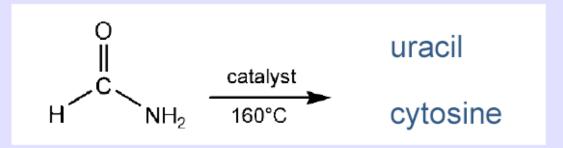
HCN oligomers hydrolyze to amino acids, purines, and pyrimidines



Cianuro de hidrógeno (HCN) como fuente de Síntesis Prebiótica

Polímeros de HCN pueden estar presentes en diferentes cuerpos del sistema solar externo (cometas, Titán)

- Polímeros de HCH depositados por cometas podrían haber establecido la vida basada en proteínas y ácidos nucleicos en la Tierra
- Es un precursor químico para purinas y pirimidinas, fuentes para síntesis prebiótica

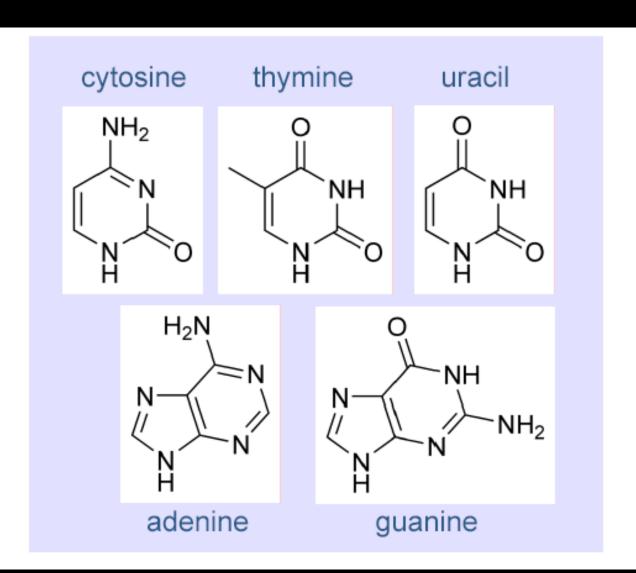

Azúcares en el espacio

- Etilen-glicol fue descubierto recientemente en una nube interestelar masiva de polvo y gas cerca del centro de la Vía Láctea (detección: NSF- Radio Telescopio de 12 Metros).
- Etilen-glicol (molécula de 10-átomos compuesta de C, H, O) es una de las cinco moléculas más grandes descubiertas en el espacio.
- Es también una forma reducida químicamente del glicol-aldehído (8-átomos) el miembro más simple de la familia de lo azúcares.
- Se puede producir a partir de glicol-aldehído por adición de dos átomos de hidrógeno. Ambas moléculas han sido detectadas en el espacio.

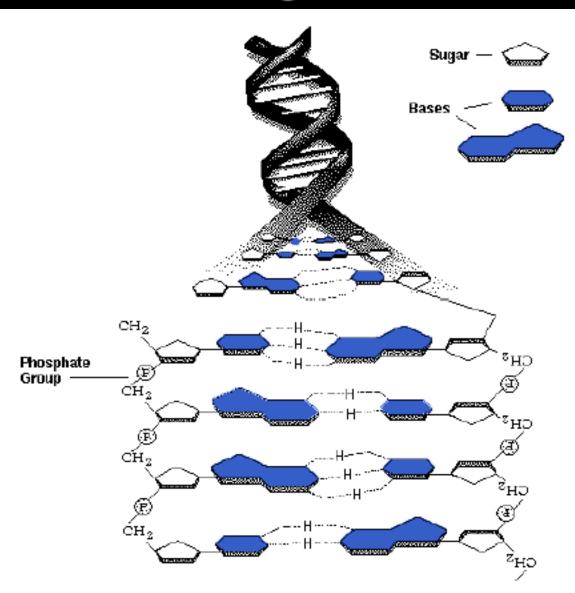
Procesos catalíticos de formamida en polvo interestelar forma preferentemente pirimidinas

Saladino et al., ChemBioChem 6, 1368-1374 (2005)

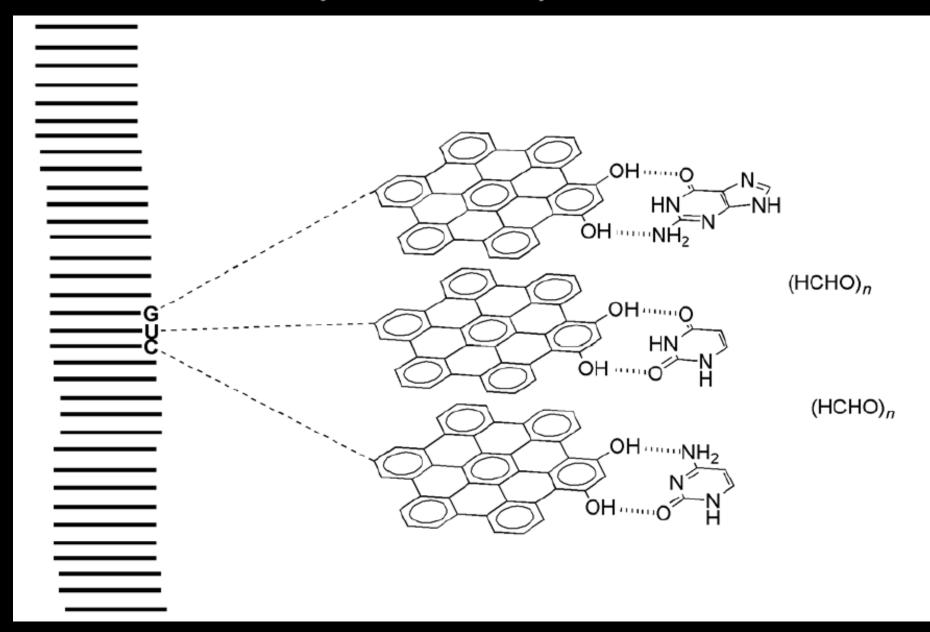
 adenine, guanine and uracil were found in the Murchison and Orgueil meteorites Stoks et al., Geoch. et Cosmoch. Acta 45, 563-569 (1981); Stoks et al. Nature 282, 709-710 (1979)



large fragment of Orgueil meteorite


Bases Nucleicas

pyrimidines:


purines:

Nucleobases - building blocks de ADN

PAHs y moléculas prebióticas

