MA2001 Cálculo en Varias Variables. Semestre 2009-03

Profesor: Marcelo Leseigneur Auxiliares: Cristopher Hermosilla y Víctor Verdugo

Pauta P2 Control 1

Miércoles 30 de Diciembre de 2009

- **P2.** a) Determine la falsedad o veracidad de las siguientes aseveraciones en \mathbb{R}^n . Justifique en cada caso.
 - 1) Sea E un subconjunto de \mathbb{R}^n dotado de una norma, entonces E = int(adh E).

<u>Falso</u>: Basta tomar un $E \subset \mathbb{R}^n$ cerrado, pues $int(adh\ E) = int(E) \neq E$. Por ejemplo, consideremos $E = [0, 1] \subset \mathbb{R}$, dotado de la norma $|\cdot|$. Claramente $int(adh\ E) = (0, 1) \neq [0, 1]$.

2) Sea E un subconjunto de \mathbb{R}^n dotado de una norma, entonces E = adh(int E).

<u>Falso</u>: Basta tomar un $E \subset \mathbb{R}^n$ abierto, pues $adh(int \ E) = adh(E) \neq E$. Por ejemplo, consideremos $E = (0,1) \subset \mathbb{R}$, dotado de la norma $|\cdot|$. Claramente $adh(int \ E) = [0,1] \neq (0,1)$.

3) Sea E un subconjunto de \mathbb{R}^n dotado de una norma, entonces $E = int(E) \cup \partial E$

<u>Falso</u>: Consideremos $E = (0,1] \subset \mathbb{R}$, dotado de la norma $|\cdot|$. Claramente $int(E) \cup \partial E = (0,1) \cup \{0,1\} = [0,1] \neq (0,1]$.

4) Sea E un subconjunto de \mathbb{R}^n dotado de una norma, entonces int $(E^c) = (adh \ E)^c$

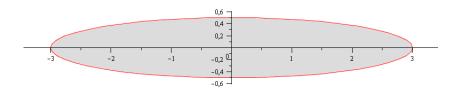
Verdadero: Probemos ambas inclusiones:

- \subseteq) Sea $x \in int(E^c)$. Luego, existe $\delta \in \mathbb{R}$ tal que $B(x,\delta) \subset E^c$, es decir, $B(x,\delta) \cap E = \emptyset$. Tenemos asi que x no es punto adherente a E y por lo tanto $x \in (adh\ E)^c$.
- \supseteq) Sea $x \in (adh\ E)^c$. Entonces, existe $\rho \in \mathbb{R}$, tal que $B(x,\rho) \cap E = \emptyset$, es decir, $B(x,\rho) \subset E^c$. Tenemos asi que x es punto interior de E^c y por lo tanto $x \in int\ (E^c)$.
- b) 1) Dada una norma $||\cdot||$ en \mathbb{R}^n y una matriz P no singular de $n \times n$. Demuestre que la función N(x) = ||Px|| es también una norma de \mathbb{R}^n .
 - i) Puesto que $||\cdot||$ es norma en \mathbb{R}^n , se tiene que $0 \le ||Px|| = N(x) < +\infty$
 - ii) Debemos probar que $N(x) = 0 \Leftrightarrow x = 0$. En efecto:
 - \Rightarrow) Sea N(x) = 0. Luego ||Px|| = 0. Dado que $||\cdot||$ es norma, tenemos que Px = 0. Pero P es no singular, es decir, invertible, y por lo tanto x = 0.
 - \Leftarrow) Sea x=0. Luego Px=0. Dado que $||\cdot||$ es norma, tenemos que ||Px||=0, y por lo tanto, N(x)=0.
 - $iii) \ N(\lambda x) = ||P(\lambda x)|| = ||\lambda(Px)|| = |\lambda|||Px|| = |\lambda|N(x).$
 - $|V(x+y)| = ||P(x+y)|| = ||Px + Py|| \le ||Px|| + ||Py|| = N(x) + N(y).$

Luego, $N(\cdot)$ es norma.

2) Demuestre que en \mathbb{R}^2 , la función $N_1(x,y) = \left[\frac{x^2}{9} + 4y^2\right]^{\frac{1}{2}}$ es una norma. Haga un dibujo del conjunto B[(0,0),1].

Consideremos \mathbb{R}^2 dotado de la norma euclideana, y la matriz $P=\begin{pmatrix} \frac{1}{3} & 0 \\ 0 & 2 \end{pmatrix}$, la cual es invertible, pues $|P|=\frac{2}{3}\neq 0$. Luego, $Px=\begin{pmatrix} \frac{1}{3} & 0 \\ 0 & 2 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}=\begin{pmatrix} \frac{x}{3} \\ 2y \end{pmatrix}$, y por lo probado anteriormente, la función $N_1(x,y)=||Px||_2=\left[\frac{x^2}{9}+4y^2\right]^{\frac{1}{2}}$ es una norma. La bola es $B[(0,0),1]=\{(x,y)\in\mathbb{R}^2:\frac{x^2}{9}+4y^2\leq 1\}$, y su frontera corresponde a una elipse de semiejes 3 y $\frac{1}{2}$ centrada en el origen:



c) Para cada una de las siguientes funciones encuentre el grafo correspondiente. Para esto, puede ser utilidad dibujar las curvas de nivel.

Función	Grafo
$z = y \operatorname{sen} x$	II
$z = \cos\left(\frac{\pi}{1+x^2+y^2}\right)$	IV
2x + 3y + 4z = 0	I
$z = y^3$	III
$z = x^2$	V
$z = x^2 + y^2$	VI